两亲性Pt(Ⅱ)配合物的设计、合成、光物理及Langmuir-Blodgett成膜性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属Pt(II)具有d8电子构型,容易形成平面四方形配合物。由于金属-金属间相互作用力和分子内/分子间配体π–π相互作用的存在,这些配合物往往展现出一些特殊的光物理性质。乙炔基是很好的σ给电子体,它的引入大大增强了配体场的场强,减弱了MLCT态通过d-d态的失活,最终得到长寿命高量子产率的发光配合物。多金属氧簇化学组成丰富,拓扑结构多样,具有丰富的物理化学性质。两亲性分子在指导多金属氧簇的超分子自组装方面具有其独特的优势,表现出了很大的灵活性。在本论文中,我们设计合成了新的具有两亲性的Pt(II)配合物,并对其LB成膜性及包埋多金属氧簇形成复合物进行了研究。
     我们合成出一系列含有2,6-二(1′-烷基-3′-吡唑基)吡啶(N5Cn)的Pt(II)配合物[Pt(N5Cn)Cl]X (1–9)和[Pt(N5Cn)(C≡CR)]X (10–13) (X=三氟磺酸根或六氟磷酸根, R = C6H5, C6H4-CF3?p, C6H4-N(C6H5)2?p)。我们对这些Pt(II)配合物的氧化还原和光物理性质进行了研究。通过单晶X-射线衍射分析确定了几个Pt(II)配合物的分子结构。带有长烷基链的Pt(II)配合物[Pt(N5C14)Cl]PF6 (7)和[Pt(N5C14) (C≡CC6H5)]PF6 (13)能够在空气/水界面上形成有序、均一的单层膜。通过压力-面积等温(π-A)曲线,紫外-可见光光谱(UV-Vis),小角X-射线衍射(XRD),红外光谱(IR),偏振红外光谱(PIR),小角X-射线光电子能谱(XPS)等手段,我们对所得到的LB膜的结构与性质进行了详细的表征。我们还研究了Pt(II)配合物13多层膜的发光性质。
     我们利用Click反应,合成出一系列含有2,6-二(4′-1′,2′,3′-三氮唑基)吡啶(N7CR)的Pt(II)配合物[Pt(N7CR)Cl]X (1–7)和[Pt(N7CR)(C≡CR′)]X (8–13) (X=三氟磺酸根、六氟磷酸根或氯离子; R = CnH2n+1, C6H5, CH2C6H5; R′= C6H5, C6H4-CF3?p, C6H4-CF3?p, C6H4-N(CH3)2?p)。我们对这些Pt(II)配合物的氧化还原和光物理性质进行了研究。带有长烷基链的Pt(II)配合物[Pt(N7C12)Cl]Cl (3-Cl)和[Pt(N7C12)(C≡CC6H5)]Cl (13)能够在空气/水界面上形成有序、均一的单层膜。通过压力-面积等温(π-A)曲线,紫外-可见光光谱(UV-Vis),小角X-射线衍射(XRD),红外光谱(IR),偏振红外光谱(PIR)等手段,我们对所得到的LB膜的结构与性质进行了详细的表征。我们还研究了Pt(II)配合物13多层膜的发光性质。
     我们利用2,2′-联吡啶(bpy)和乙酰丙酮(acac)与Pt(II)配合,得到一系列新的Pt(II)配合物[Pt(bpy)(R-acac)]X (X=三氟磺酸根或六氟磷酸根; R = H或C12H25)。通过对乙酰丙酮3位上进行烷基取代(C12-acac),得到了带有长烷基链的两亲性Pt(II)配合物[Pt(bpy)(C12-acac)]PF6 (2)。我们对Pt(II)配合物(1和2)的光物理性质进行了研究。带有长烷基链的Pt(II)配合物(2)能够在空气/水界面上形成有序、均一的单层膜。通过压力-面积等温(π-A)曲线,紫外-可见光光谱(UV-Vis),小角X-射线衍射(XRD)等手段,我们对所得到的LB膜的结构与性质进行了基本的表征。我们还研究了Pt(II)配合物2多层膜的发光性质。
     我们尝试将带有正电荷的Pt(II)配合物( [Pt(N5C14)Cl]OTf和[Pt(N7C12)Cl]OTf),分别与Keggin型多金属氧簇磷钨酸(H3PW12O40)、硼钨酸钾(K9BW11O39)通过静电相互作用形成复合物(SEP1, SEP2),并对所得到复合物进行了基本表征。将复合物SEP2铺展在空气/水界面,得到了它的压力-面积等温(π-A)曲线。
The third row transition metal platinum lies in Group 10 of the periodic table, and its most common oxidation state is +2 with d8 electronic configuration. Platinum(II) complexes usually adopt square planar geometry and they often exhibit intriguing spectroscopic and photophysical properties associated with the occurrence of Pt···Pt andπ?πinteractions. By the effect of the coordination of the stronglyσ-donating alkynyl ligand, the non-radiative deactivation via the d?d LF state can be reduced as a result of a larger d–d LF splitting. Thus, platinum(II) complexes with long lifetime and high quantum yield can be obtained. Polyoxometalates (POMs) exhibit abundant chemical composition, various topologies and extensive physical and chemical properties. Amphiphilic molecules possess special advantages for directing the supramolecular self-assembly of POMs, exhibiting considerable flexibility. In this dissertation, new classes of amphiphilic platinum(II) complexes have been designed and synthesized. In addition to their spectroscopic and luminescence properties, their Langmuir-Blodgett films and surfactant-encapsulated polyoxometalates (SEPs) have also been studied.
     Two series of novel platinum(II) 2,6-bis(1-alkyl-pyrazol-3-yl)pyridyl (N5Cn) complexes, [Pt(N5Cn)Cl]X (1?9) and [Pt(N5Cn)(C≡CR)]X (10?13) (X = OTf or PF6; R = C6H5, C6H4-CF3?p and C6H4-N(C6H5)2?p), with various chain length of alkyl groups on the nitrogen atom of pyrazolyl units have been successfully synthesized and characterized. Their electrochemical and photophysical properties have been studied. Some of their molecular structures have also been determined by X-ray crystallography. Two amphiphilic platinum(II) 2,6-bis(1-tetradecyl- pyrazol-3-yl)pyridyl (N5C14) complexes, [Pt(N5C14)Cl]PF6 (7) and [Pt(N5C14)(C≡CC6H5)]PF6 (13), were found to form stable and reproducible Langmuir films at the air-water interface. The characterization of such multilayer LB films has been investigated by the study of their surface pressure-area (π–A) isotherms, UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) and polarized IR spectroscopy. The luminescence property of 13 in Langmuir-Blodgett (LB) films has also been studied.
     Two series of novel platinum(II) 2,6-bis(1-alkyl-1,2,3-triazol-4-yl)pyridyl (N7R) complexes, [Pt(N7R)Cl]X (1?7) and [Pt(N7R)(C≡CR′)]X (8?13) (X = OTf or PF6; R = CnH2n+1, C6H5, CH2C6H5; R′= C6H5, C6H4-CF3?p, C6H4-CF3?p, C6H4-N(CH3)2?p), with various alkyl groups on the nitrogen atom of triazolyl units have been successfully synthesized and characterized. Their electrochemical and photophysical properties have been studied. Two amphiphilic platinum(II) 2,6-bis(1-dodecyl-1,2,3-triazol-4-yl)pyridyl (N7C12) complexes, [Pt(N7C12)Cl]Cl (3-Cl) and [Pt(N7C12)(C≡CC6H5)]Cl (13), were found to form stable and reproducible Langmuir films at the air-water interface. The characterization of such multilayer LB films has been investigated by the study of their surface pressure-area (π–A) isotherms, UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and polarized IR spectroscopy. The luminescence property of 13 in Langmuir-Blodgett (LB) films has also been studied.
     A series of novel platinum(II)(diimine)(acetylacetonate) ([Pt(bpy)(R-acac)]) complexes, [Pt(bpy)(R-acac)]X (1, 2) (X = OTf or PF6; R = CnH2n+1 or H), with various alkyl groups on the acac units has been successfully synthesized and characterized. Their photophysical properties have been studied. An amphiphilic platinum(II) complex, [Pt(bpy)(C12-acac)]PF6 (2) was found to form stable and reproducible Langmuir films at the air-water interface. The characterization of such multilayer LB films has been investigated by the study of their surface pressure-area (π–A) isotherms, UV-vis spectroscopy, X-ray diffraction (XRD). The luminescence property of 2 in Langmuir-Blodgett (LB) films has also been studied.
     Two SEPs of platinum(II) complexes ([Pt(N5C14)Cl]OTf and [Pt(N7C12)Cl]OTf) encapsulated Keggin type polyoxometalates (H3PW12O40 and K9BW11O39) (SEP1 and SEP2, respectively) have been successfully synthesized and characterized. The surface pressure-area (π–A) isotherm of SEP2 has also been investigated.
引文
[1] V. Balzani, F. Scandola, Supramolceular Photchemistry, Horwood: Chiehester, U.K., 1991.
    [2] K. Kalyanasundaram, Photochemistry of Poly Pyridine and Porphyrin Complexes, Academic Press: London, 1991.
    [3] A. Juris, V.Balzani, F. Barigelletti, S. Campagna, P. Belser, A. von Zelewsky, Coord. Chem. Rev. 1988, 84, 85.
    [4] T. J. Meyer, Acc. Chem. Res. 1989, 22, 163.
    [5] F. Seandola, M. T. Indelli, C. Chiorboli, C. A. Bignozzi, ToP. Curr. Chem. 1990, 158, 73.
    [6] V. Balzani, A. Juris, M. Venturi. S. Campagna, S. Serroni, Chem. Rev. 1996, 96, 759.
    [7] R. Amadelli, R. Argazzi, C. A. Bignozzi. F. Scandola, J. Am. Chem. Soc.1990, 112, 7099.
    [8] E. Pellizzetti, M. Schiavello, Eds. Photochemical Conversion and Storage of Solar Energy, Kluwer: Dordrecht, 1991.
    [9] B. O’Regan, M. Grartzel, Nature. 1991, 353, 737.
    [10] C. S. Christ, J. Yu, X.Zhao, G. T. R. Palmore, M. S. Wrighton, Inorg. Chem. 1992, 31, 4439.
    [11] S. L. Larson, L. F. Cooley, C .M. Elliott, D. K. Kelley, J. Am. Chem. Soc. 1992, 114, 9504.
    [12] A. J. Bard, Integrated Chemieal Systems, Wiley: NewYork, 1994.
    [13] S. M. Molnar, G. Nallas, J. S. Bridgewater, K. J. Brewer, J. Am. Chem. Soc. 1994, 116, 5206.
    [14] Hagfelt, M.GraetZel. Chem Rev. 1995, 95, 49.
    [15] C. A. Bignozzi, J. R. Sehoonover, F. Scandola, Prog. Inorg. Chem. 1997, 44, l.
    [16] V. Goulle, A. Harriman, J. -M. Lehn, J. Chem. Soc., Chem. Commun. 1993,1034.
    [17] P. Belser, M. Baak, R. Dux, L. De Cola. V. Balzani, Angew. Chem., Int. Ed. Engl. 1995, 34, 595.
    [18] J. P. Lecomte, A. Kirsch-De Mesmaeker, G. Orellana, J. Phys. Chem. 1994, 98, 5382.
    [19] Klimant, 0. S. Wolfbeis, Anal. Chem. 1995, 67, 3160.
    [20] W. Y. Xu, K. A. Kneas, J. N. Demas, B. A. DeGraff, Anal. Chem. 1996, 68, 2605.
    [21] L. Fabbrizzi, M. Lieehelli, P. Pallavieini, A. Perotti, A. Taglietti, D. Sacehi, Chem. Eur. J. 1996, 2, 75.
    [22] G. DiMarco, M. Lanza, M. Pierueeini, S. Campagna, Adv. Mater. 1996, 8, 576.
    [23] A. M. MeDonagh, M. P. Cifuentes, N. T. Lueas, M. G. HumPhery, S. Houbrechts, A. Persoons, J. Organom.Chem., 2000, 605,184.
    [24] A. M. MeDonagh, M. G. Humphrey, M. Samoe, B. L. Davies. S. Houbrechts, T. Wada, H. Sasabe, A. Persoons, J. Am. Chem. Soc. 1999, 121, 1405.
    [25] S. K. Hurst, M. P. Cifuentes, J. P. L. Morrall, N. T. Lueas, L. R. Whittall, M. G. Humphrey, L. Asselberghs, A. Persoons, M. Samoc, B. L. Davies, A. C. Willis, Organometallies 2001, 20, 4664.
    [26] M. P. Cifuentes, C. E. Powell, M. G. Humphrey, G. A. Heath, M. Samoc, B. L. Davies, J. Phys. Chem. 2001, 105(42) , 9625.
    [27] M. McDonagh, M. G. Humphrey. M. Samoe, B. L. Davies, Organometallics, 1999, 18(25):5195.
    [28] J. Vieente, M. T. Chieote, M. D. Abrisqueta, M. C. R. Arellano, P. G. Jones, MG. Humphrey, M. P. Cifuentes, M. Samoe, B. Luther-Davies, Organometallies 2000, 19(16), 2968.
    [29] E. Pelizzetti, N. Serpone, Homogeneous and Heterogeneous Photoeatalysis; E. Pelizzetti, N. Serpone, Ed.; D. Reidel Publishing: Dordreeht, Holland, 1985.
    [30] J. -G. Liu, B-H.Ye, H. Cao, Q -Z. Zhen, L. -N. Ji, Chem.Lett. 1999,1085; A. E. Friedman, J.–Cahmbron, J. -P. Sauvage, N. J. Turro, K. Barton, J. Am. Chem.Soc. 1990, 11, 4960.
    [31] A. Ambroise, B. G. Maiya, Inorg. Chem. 2000, 39, 4264.
    [32] B. P. Hudson, J. Sou, D. J. Berger, D. R. McMillin, J. Am. Chem. Soc. 1992, 114, 8997.
    [33] V. M. Miskowaski, V. H. Houlding, C. M. Che and Y. Wang Inorg. Chem. 1993, 32, 2518.
    [34] H.K. Yip, L.K. Cheng, K.K. Cheung, C.M. Che, J. Chem. Soc., Dalton Trans. 1993, 2933;
    [35] K.W. Jennette, S.J. Lippard, G.A. Vassiliades, W.R. Bauer, Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 3839
    [36] S C. Yu, S. Hou, W.K. Chan, Marcomolecules 1999, 32, 5251
    [37] V.W.W. Yam, R.P.L. Tang, K.M.C. Wong, K.K. Cheung, Organometallics 2001, 20, 4476;
    [38] C. Yu, K.M.C. Wong, K.H.Y. Chan, V.W.W. Yam, Angew. Chem. Int. Ed. 2005, 44, 791;
    [39] C. Yu, K.H.Y. Chan, K.M.C. Wong, V.W.W. Yam, Chem. Eur. J. 2008, 14, 4577
    [40] (a) G. Magnus Pogg Ann. 1828, 14, 239. (b) D. M. Roundhill, H. B. Gray and C. M. Che Acc. Chem. Res. 1989, 22, 55. (c) M. Stock and H. Yersin Chem. Phys. Lett. 1976, 40, 423. (d) W. Daniels, H. Yersin, M. Stock and G. Gliemann Solid State Commun. 1981, 40, 937. (e) H. Yersin and U. Riedl Inorg. Chem. 1995, 34, 1642.
    [41] (a) V. H. Houlding and V. M. Miskowski Coord. Chem. Rev. 1991, 111, 145. (b) C. B. Pettijohn, E. B. Jochnowitz, B. Chuong, J. K. Nagle and A. Vogler Coord. Chem. Rev. 1998, 171, 85.
    [42] D. K. Crites, C. T. Cunningham and D. R. McMillin Inorg. Chim. Acta 1998, 273, 346.
    [43] D. R. McMillin and J. J. Moore Coord. Chem. Rev. 2002, 229, 113.
    [44] S. W. Lai and C. M. Che Top. Curr. Chem. 2004, 241, 27.
    [45] F. N. Castellano, I. E. Pomestchenko, E. Shikhova, F. Hua, M. L. Muro and N. Rajapakse Coord. Chem. Rev. 2006, 250, 1819.
    [46] J. A. Gareth Williams Top. Curr. Chem. 2007, 281, 205.
    [47] K. M. C. Wong and V. W. W. Yam Coord. Chem. Rev. 2007, 251, 2477.
    [48] I. Eryazici, and C. N. Moorefield and G. R. Newkome Chem. Rev. 2008, 108, 1834.
    [49] G. T. Morgan and F. H. Burstall J. Chem. Soc. 1934, 965.
    [50] R. S. Osborn and D. Rogers J. Chem. Soc. Dalton Trans. 1974, 1002.
    [51] A. Vogler and H. Kunkely J. Am. Chem. Soc. 1981, 103, 1559.
    [52] J. A. Zuleta, C. A. Chesta and R. Eisenberg J. Am. Chem. Soc. 1989, 111, 8916.
    [53] V. M. Miskowski and V. H. Houlding Inorg. Chem. 1989, 28, 1529.
    [54] C. M. Che, L. Y. He, C. K. Poon and T. C. W. Mak Inorg. Chem. 1989, 28, 3081.
    [55] C. M. Che, K. T. Wan, L. Y. He, C. K. Poon and V. W. W. Yam J. Chem. Soc. Chem. Commun. 1989, 943.
    [56] J. Biedermann, G. Gliemann, U. Klement, K. J. Range and M. Zabel Inorg. Chem. 1990, 29, 1884.
    [57] H. Kunkely and A. Vogler J. Am. Chem. Soc. 1990, 112, 5625.
    [58] K. T. Wan, C. M. Che and K. C. Cho J. Chem. Soc. Dalton Trans 1991, 1077.
    [59] V. M. Miskowski and V. H. Houlding Inorg. Chem. 1991, 30, 4446.
    [60] J. A. Zuleta, J. M. Bevilacqua, D. M. Proserpio, P. D. Harvey and R. Eisenberg Inorg. Chem. 1992, 31, 2396.
    [61] V. M. Miskowaski, V. H. Houlding, C. M. Che and Y. Wang Inorg. Chem. 1993, 32, 2518.
    [62] R. H. Zherber, M. Croft, M. J. Coyer, B. Bilash and A. Sahiner Inorg. Chem. 1994, 33, 2422.
    [63] M. M. Mdleleni, J. S. Bridgewater, R. J. Watts and P. C. Ford Inorg. Chem. 1995, 34, 2334.
    [64] W. B. Connick, L. M. Henling, R. E. Marsh and H. B. Gray Inorg. Chem. 1996,33, 6261.
    [65] W. B. Connick, R. E. Marsh, W. P. Schaefer and H. B. Gray Inorg. Chem. 1997, 36, 913.
    [66] S. D. Cummings and R. Eisenberg Inorg. Chem. 1995, 34, 2007.
    [67] S. D. Cummings and R. Eisenberg J. Am. Chem. Soc. 1996, 118, 1949.
    [68] W. B. Connick, D. Geiger and R. Eisenberg Inorg. Chem. 1999, 38, 3264.
    [69] (a) C. W. Chan, L. K. Cheng and C. M. Che Coord. Chem. Rev. 1994, 132, 87. (b) M. Hissler, W. B. Connick, D. K. Geiger, J. E. McGarrah, D. Lipa, R. J. Lachicotte and R. Eisenberg Inorg. Chem. 2000, 39, 447.
    [70] C. Ed Whittle, J. A. Weinstein, M. W. George and K. S. Schanze Inorg. Chem. 2001, 40, 4053.
    [71] J. E. McGarrah, Y. J. Kim, M. Hissler and R. Eisenberg Inorg. Chem. 2001, 40, 4510.
    [72] J. E. McGarrah and R. Eisenberg Inorg. Chem. 2003, 42, 4355.
    [73] W. Lu, M. C. W. Chan, N. Zhu, C. M. Che, Z. He and K. Y. Wong Chem. Eur. J. 2003, 9, 6155.
    [74] S. C. Chan, M. C. W. Chan, Y. Wang, C. M. Che, K. K. Cheung and N. Zhu Chem. Eur. J. 2001, 7, 4180.
    [75] I. E. Pomestchenko, C. R. Luman, M. Hissler, R. Ziessel and F. N. Castellano Inorg. Chem. 2003, 42, 1394.
    [76] T. J. Wadas, R. J. Lachicotte and R. Eisenberg Inorg. Chem. 2003, 42, 3772.
    [77] N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner and M. D. Ward Chem. Eur. J. 2003, 9, 5283.
    [78] O. S. Wenger, S. G. Revilla, H. U. Güdel, H. B. Gray and R. Valiente Chem. Phys. Lett. 2004, 384, 190.
    [79] E. A. Gilk, S. Kinayyigit, K. L. Ronayne, M. Towrie, I. V. Sazanovich, J. A. Weinstein and F. N. Castellano Inorg. Chem. 2008, 47, 6974.
    [80] F. Hua, S. Kinayyigit, J. R. Cable and F. N. Castellano Inorg. Chem. 2005, 44, 471.
    [81] F. Hua, S. Kinayyigit, J. R. Cable and F. N. Castellano Inorg. Chem. 2006, 45, 4304.
    [82] J. K. W. Lee, C. C. Ko, K. M. C. Wong, N. Zhu and V. W. W. Yam Organometallics 2007, 26, 12.
    [83] S. Goeb, A. A. Rachford and F. N. Castellano Chem. Commun. 2008, 814.
    [84] N. M. Shavaleev, E. S. Davies, H. Adams, J. Best and J. A. Weinstein Inorg. Chem. 2008, 47, 1532.
    [85] E. A. M. Geary, L. J. Yellowless, L. A. Jack, I. D. H. Oswald, S. Parsons, N. Hirata, J. R. Durrant and N. Robertson Inorg. Chem. 2005, 44, 242.
    [86] Q. D. Liu, W. Li Jia and S. Wang Inorg. Chem. 2005, 44, 1332.
    [87] J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau and M. E. Thompson Inorg. Chem. 2002, 41, 3055.
    [88] F. Hua, S. Kinayyigit, A. A. Rachford, E. A. Shikhova, S. Goeb, J. R. Cable, C. J. Adams, K. Kirschbaum, A. A. Pinkerton and F. N. Castellano Inorg. Chem. 2007, 46, 8771.
    [89] M. Howe-Grant and S. J. Lippard Biochemistry, 1979, 18, 5762.
    [90] A. H. J. Wang, J. Nathans, G. Van der Marel, J. H. Van Boom and A. Rich Nature, 1978, 276, 471.
    [91] S. J. Lippard Acc. Chem. Res. 1978, 11, 211.
    [92] K. W. Jennette, S. J. Lippard and G. A. Vassiliades and W. R. Bauer Proc. Nat. Acad. Sci. USA 1974, 71, 3839.
    [93] K. W. Jennette, J. T. Gill, J. A. Sadownick and S. J. Lippard J. Am. Chem. Soc. 1976, 98, 6159.
    [94] C. S. Peyratout, T. K. Aldridge, D. K. Crites and D. R. McMillin Inorg. Chem. 1995, 34, 4484.
    [95] J. A. Bailey, V. M. Miskowski and H. B. Gray Inorg. Chem. 1993, 32, 369.
    [96] H. K Yip, L. K. Cheng, K. K. Cheung and C. M. Che J. Chem. Soc. Dalton Trans. 1993, 2933.
    [97] T. K. Aldridge, E. M. Stacy and D. R. McMillin Inorg. Chem. 1994, 33, 722.
    [98] (a) J. A. Bailey, M. G. Hill, R. E. Marsh, V. M. Miskowski, W. P. Schaefer and H. B. Gray Inorg. Chem. 1995, 34, 4591. (b) M. G. Hill, J. A. Bailey, V. M. Miskowski and H. B. Gray Inorg. Chem. 1996, 35, 4585.
    [99] R. Büchner, J. S. Field, R. J. Haines, C. T. Cunningham and D. R. McMillin Inorg. Chem. 1997, 36, 3952.
    [100] G. Arena, G. Calogero, S. Campagna, L. M. Scolaro, V. Ricevuto and R. Romeo Inorg. Chem. 1998, 37, 2763.
    [101] S. W. Lai, M. C. W. Chan, K. K. Cheung and C. M. Che Inorg. Chem. 1999, 38, 4262.
    [102] B. C. Tzeng, W. F. Fu, C. M. Che, H. Y. Chao, K. K. Cheung and S. M. Peng J. Chem. Soc. Dalton Trans. 1999, 1017.
    [103] R. Büchner, C. T. Cunningham, J. S. Field, R. J. Haines, D. R. McMillin and G. C. Summerton J. Chem. Soc. Dalton Trans. 1999, 711.
    [104] J. F. Michalec, S. A. Bejune and D. R. McMillin Inorg. Chem. 2000, 39, 2708.
    [105] D. K. Crites Tears and D. R. McMillin Coord. Chem. Rev. 2001, 211, 195.
    [106] J. F. Michalec, S. A. Bejune, D. G. Cuttel, G. C. Summerton, J. A. Gertenbach, J. S. Field, R. J. Haines and D. R. McMillin Inorg. Chem. 2001, 40, 2193.
    [107] T. J. Wadas, Q. M. Wang, Y. J. Kim, C. Flaschenreim, T. N. Blanton and R. Eisenberg J. Am. Chem. Soc. 2004, 126, 16841.
    [108] V. W. W. Yam, R. P. L. Tang, K. M. C. Wong, X. X. Lu, K. K. Cheung and N. Zhu Chem. Eur. J. 2002, 8, 4066.
    [109] K. M. C. Wong, N. Zhu and V. W. W. Yam Chem. Commun. 2006, 3441.
    [110] J. Moussa, K. M. C. Wong, L. M. Chamoreau, H. Amouri and V. W. W. Yam J. Chem. Soc. Dalton Trans. 2007, 3526.
    [111] P. Wu, J. Schneider, W. W. Brennessel and R. Eisenberg Inorg. Chem. 2008, 47, 69.
    [112] V. W. W. Yam, R. P. L. Tang, K. M. C. Wong and V. W. W. Yam Organometallics 2001, 20, 4476.
    [113] Q. Z. Yang, L. Z. Wu, Z. X. Wu, L. P. Zhang and C. H. Tung Inorg. Chem.2002 41, 5653.
    [114] S. Chakraborty, T. J. Wadas, H. Hester, C. Fiaschenreim, R. Schmehl and R. Eisenberg Inorg. Chem. 2005, 44, 6284.
    [115] E. Shikhova, E. O. Danilov, S. Kinayyigit, I. E. Pomestchenko, A. D. Tregubov, F. Camerel, P. Ratailleau, R. Ziessel and F. N. Castellano Inorg. Chem. 2007, 46, 3038.
    [116] H. S. Lo, S. K. Yip, N. Zhu and V. W. W. Yam Dalton Trans. 2007, 4386.
    [117] Y. Fan, L. Y. Zhang, F. R. Dai, L. X. Shu and Z. N. Chen Inorg. Chem. 2008, 47, 2811.
    [118] A. A. Rachford, S. Goeb, R. Ziessel and F. N. Castellano Inorg. Chem. 2008, 47, 4348.
    [119] V. W. W. Yam, K. M. C. Wong and N. Zhu J. Am. Chem. Soc. 2002, 124, 6506.
    [120] K. M. C. Wong, W. S. Tang, B. W. K. Chu, N. Zhu and V. W. W. Yam Organometallics 2004, 23, 3459.
    [121] D. Zhang, L. Z. Wu, Q. Z. Yang, X. H. Li, L. P. Zhang and C. H. Tung Org. Lett. 2003, 5, 3221.
    [122] Y. Yang, D. Zhang, L. Z. Wu, B. Chen, L. P. Zhang and C. H. Tung J. Org. Chem. 2004, 69, 4788.
    [123] Q. Z. Yang, Q. X. Tong, L. Z. Wu, Z. X. Wu, L. P. Zhang and C. H. Tung Eur. J. Inorg. Chem. 2004,1948.
    [124] K. M. C. Wong, W. S. Tang, X. X. Lu, N. Zhu and V. W. W. Yam Inorg. Chem. 2005, 44, 1492.
    [125] W. S. Tang, X. X. Lu, K. M. C. Wong and V. W W. Yam J. Mater. Chem. 2005, 15, 2714.
    [126] X. Han, L. Z. Wu, G. Si, J. Pan, Q. Z. Yang, L. P. Zhang and C. H. Tung Chem. Eur. J. 2007, 13, 1231.
    [127] Y. Fan, Y. M. Zhu, F. R. Dai, L. Y. Zhang and Z. N. Chen Dalton Trans. 2007, 3885.
    [128] (a) S. Chakraborty, T. J. Wadas, H. Hester, R. Schmehl and R. Eisenberg Inorg. Chem. 2005, 44, 6865. (b) P. Du, J. Schneider, P. Jarosz and R. Eisenberg J. Am. Chem. Soc. 2006, 128, 7726. (c) P. Du, J. Schneider, P. Jarosz, J. Zhang, W. W. Brennessel and R. Eisenberg J. Phys. Chem. B 2007, 111, 6887. (d) P. Wu, K. Knowles and R. Eisenberg J. Am. Chem. Soc. 2008, 130, 12576.
    [129] C. Yu, K. M. C. Wong, K. H. Y. Chan and V. W. W. Yam Angew. Chem. Int. Ed. 2005, 44, 791.
    [130] V. W. W. Yam, K. H. Y. Chan, K. M. C. Wong and N. Zhu Chem. Eur. J. 2005, 11, 4535.
    [131] V. W. W. Yam, K. H. Y. Chan, K. M. C. Wong and B. W. K. Chu Angew. Chem. Int. Ed. 2006, 45, 6169.
    [132] (a) C. Yu, K. H. Y. Chan, K. M. C. Wong and V. W. W. Yam Proc. Natl. Acad. Sci. USA 2006, 103, 19652. (b) C. Yu, K. H. Y. Chan, K. M. C. Wong and V. W. W. Yam Chem. Commun. 2009, 3756.
    [133] H. S. Lo, S. K. Yip, K. M. C. Wong, N. Zhu and V. W. W. Yam Organometallics 2006, 25, 3537.
    [134] M. X. Zhu, W. Lu, N. Zhu and C. M. Che Chem. Eur. J. 2008, 14, 9736.
    [135] M. Y. Yuen, V. A. L. Roy, W. Lu, S. C. F. Kui, G. S. M. Tong, M. H. So, S. S. Y. Chui, M. Muccini, J. Q. Ning, S. J. Xu and C. M. Che Angew. Chem. Int. Ed. 2008, 47, 9895.
    [136] C. Yu, K. H. Y. Chan, K. M. C. Wong and V. W. W. Yam Chem. Eur. J. 2008, 14, 4577.
    [137] M. N. Roberts, J. K. Nagle, J. G. Finden, N. R. Branda and M. O. Wolf Inorg. Chem. 2009, 48, 19.
    [138] P. Jarosz, K. Lotito, J. Schneider, D. Kumaresan, R. Schmehl and R. Eisenberg 2 Inorg. Chem. 2009, 45, 2420.
    [139] F. Camerel, R. Ziessel, B. Donnio, C. Bourgogne, D. Guillon, M. Schmutz, C. Iacovita and J. P. Bucher Angew. Chem. Int. Ed. 2007, 46, 2659.
    [140] W Lu, Y. C. Law, J. Han, S. S. Y. Choi, D. L. Ma, N. Zhu and C. M. Che Chem.Asian J. 2008, 3, 59.
    [141] A. Kishimura, T. Yamashita and T. Aida J. Am. Chem. Soc. 2005, 127, 179.
    [142] T. Klawonn, A. Gansauer, I. Winkler, T. Lauterbach, D. Franke, R. J. M. Nolte, M. C. Feiters, H. Borner, J. Hentschel and K. H. Dotz Chem. Commun. 2007, 1894.
    [143] (a) K. Wang, M. Haga, H. Monjushiro, M. Akiba and Y. Saski Inorg. Chem. 2000, 39, 4022. (b) V. G. Vaidyanatha and B. U. Nair Eur. J. Inorg. Chem. 2005, 3756.
    [144] (a) L. J. Grove, J. M. Rennekamp, H. Jude and W. B. Connick J. Am. Chem. Soc. 2004, 126, 1594. (b) E. J. Rivera, C. Figueroa, J. K. Colón, L. Grove and W. B. Connick Inorg. Chem. 2007, 46, 8569.
    [145] A.Y.Y. Tam, K.M.C. Wong, V.W.W. Yam, J. Am. Chem. Soc. 2009, 131, 6253.
    [146] A.Y.Y. Tam, K.M.C. Wong, V.W.W. Yam, Chem. Eur. J. 2009, 15, 4775.
    [147] Ulman, A. Chem. Rev. 1996, 96, 1533.
    [148] Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335.
    [149] Langmuir, I. J. Am. Chem. Soc. 1917, 39, 1848.
    [150] Blodgett, K. A. J. Am. Chem. Soc. 1935, 57, 1007.
    [151] Wright, J. D. Progress in surface Science 1989, 31, 1.
    [152] Corpenter, M. M.; Prasad, P. N.; Griffin, A. C. Thin Solid Films 1988, 161, 315.
    [153] Hasegawa, T.; Ushiroda, Y.; Kawaguchi, M.; Kiazawa, Y.; Nishiyama, M.; Hiraoka, A.; Nishijo, J. Langmuir 1996, 12, 1566.
    [154] Dhanabalan, A.; Kudrollia, H.; Major, S. S. Solid State Commun. 1996, 99, 859.
    [155] Tian, C. Y.; Wu, J. C.; Fendler, J. H. J. Phys. Chem. 1994, 98, 4913.
    [156] Tian, C. Y.; Fendler, J. H. Chem. Mater. 1996, 8, 969.
    [157] Schwartz, D. K. Surface Science Reports 1997, 27, 241.
    [158] Pope, M. T., Müller, A. Angew. Chem. Int. Ed. Engl. 1991, 30, 34.
    [159]王恩波等,多金属氧簇化学导论,化学工业出版社,2002.
    [160] Special issue on polyoxometalates, Chem. Rev. 1998, 98, 1.
    [161]王恩波等,多酸化学概论,东北师范大学出版社,2009.
    [162] Pope, M. T., Müller, A. Polyoxometalate chemistry: From Topology via Self-assembly to Application, Kluwer, Dordrecht, Netherlands, 2001.
    [163] Long, D., Burkholder, E., Cronin, L. Chem. Soc. Rev. 2007, 36, 105.
    [164] Long, D., Tsunashima, R., Cronin, L. Angew. Chem. Int. Ed. 2010, 49, 1736.
    [165] Kozhecnikov, I. V.著,唐培堃,李祥高,王世荣译,精细化学品的催化合成:多酸化合物及其催化,化学工业出版社,2005.
    [166] Katsoulis, D. Chem. Rev. 1998, 98, 359.
    [167] AlDamen, M. A., Clemente-Juan, J. M., Coronado, E., Marti-Gastaldo, C., Gaita-Arino, A. J. Am. Chem. Soc. 2008, 130, 8874.
    [168] Xu, M., Li, Y. C., Li, W., Sun, C. Q., Wu, L. X. J. Colloid Interface Sci. 2007, 315, 753.
    [169] Xu, M., Liu, C. L., Xu, Y., Li, W., Wu, L. X. Colloids Surf., A 2009, 333, 46.
    [170]齐伟,多金属氧簇杂化反胶束在二氧化硅基质中的超分子组装及功能化,吉林大学博士论文, 2009.
    [171] Kurth, D. G., Lehmann, P., Volkmer, D., C?lfen, H., Koop, M. J., Müller, A., Du Chesne, A. Chem. Eur. J. 2000, 6, 385.
    [172] Volkmer, D., Du Chesne, A., Kurth, D.G., Schnablegger, H., Lehmann, P., Koop, M. J. and Müller. A J. Am. Chem. Soc. 2000, 122, 1995.
    [173]卜伟锋,通向超分子软材料:表面活性剂包埋的杂多酸复合物,吉林大学博士论文, 2004.
    [174] Bu, W. F., Li, H. L., Sun, H., Yin, S. Y., Wu, L. X. J. Am. Chem. Soc. 2005, 127, 8016.
    [175] Sun, H., Li, H. L., Bu, W. F., Xu, M., Wu, L. X. J. Phys. Chem. B 2006, 110, 24847.
    [176] Sun, H., Li, H. L., Wu, L. X. Polymer 2009, 50, 2113.
    [177] Li, W., Bu, W., Li, H., Wu, L., Li, M. Chem. Comm. 2005, 3785.
    [178] Li, W., Yin, S., Wu, Y., Wu, L. J. Phys. Chem. B 2006, 110, 16961.
    [179] Li, W., Yin, S., Wang, J., Wu, L. Chem. Mater. 2008, 20, 514.
    [180] Yin, S. Y., Li, W., Wang, J. F., Wu, L. X. J. Phys. Chem. B 2008, 112, 3983.
    [181] Yin, S. Y., Sun, H., Yan, Y., Li, W., Wu, L. X. J. Phys. Chem. B 2009, 113, 2355.
    [182] Wang, Y. L., Li, W., Wu, L. X. Langmuir 2009, 25, 13194.
    [183] Zhang, H., Lin, X., Yan, Y., Wu, L. Chem. Commun. 2006, 4575.
    [184] Li, H., Qi, W., Li, W., Sun, H., Wu, L. Adv. Mater. 2005, 17, 2688.
    [185] Li, H., Qi, W., Sun, H., Li, P., Yang, Y., Wu, L. Dyes Pigm. 2008, 79, 105.
    [186] Li, H., Li, P., Yang, Y., Qi, W., Sun, H., Wu, L. Macromol. Rapid Commun. 2008, 29, 431.
    [187] Qi, W., Li, H. L., Wu, L. X. Adv. Mater. 2007, 19, 1983.
    [188] Qi, W., Li, H. L., Wu, L. X. J. Phys. Chem. B 2008, 112, 8257.
    [189] Qi, W., Wang, Y., Li, W., Wu, L. Chem. Eur. J. 2010, 16, 1068.
    [190] Li, H.; Sun, H.; Qi, W.; Xu, M.; Wu, L. Angew. Chem. Int. Ed. 2007, 46, 1300.
    [191] Yan, Y.; Li, B.; Li, W.; Li, H. L.; Wu, L. X. Soft Mater 2009, 5, 4047.
    [1] K. W. Jennette, S. J. Lippard and G. A. Vassiliades and W. R. Bauer Proc. Nat. Acad. Sci. USA 1974, 71, 3839.
    [2] (a) D.M. Roundhill, H.B. Gray, C.M. Che, Acc. Chem. Res. 1989, 22, 55; (b) G. Magnus, Pogg. Ann. 1928, 14, 239; (c) C.L. Exstrom, J.R. Sowa Jr., C.A. Daws, D. Janzen, K.R. Mann, G.A. Moore, F.F. Stewart, Chem. Mater. 1995, 7, 15; (d) C.E. Buss, C.E. Anderson, M.K. Pomije, C.M. Lutz, D. Britton, K.R. Mann, J. Am. Chem. Soc. 1998, 120, 7783; (e) C.E. Buss, K.R. Mann, J. Am. Chem. Soc. 2002, 124, 1031.
    [3] (a) R.S. Osborn, D. Rogers, J. Chem. Soc. Dalton Trans. 1974, 1002; (b) R.H. Herber, M. Croft, M.J. Coyer, B. Bilash, A. Sahiner, Inorg. Chem. 1994, 33, 2422; (c) W.B. Connick, R.E. Marsh, W.P. Schaefer, H.B. Gray, Inorg. Chem. 1997, 36, 913.
    [4] (a) H. Kunkely, A. Vogler, J. Am. Chem. Soc. 1990, 112, 5625; (b) V.M. Miskowski, V.H. Houlding, Inorg. Chem. 1989, 28, 1529; (c) V.M. Miskowski, V.H. Houlding, Inorg. Chem. 1991, 30, 4446; (d) C.W. Chan, L.K. Cheng, C.M. Che, Coord. Chem. Rev. 1994, 132, 87.
    [5] (a) H.K. Yip, L.K. Cheng, K.K. Cheung, C.M. Che, J. Chem. Soc., Dalton Trans. 1993, 2933; (b) J.A. Bailey, M.G. Hill, R.E. Marsh, V.M. Miskowski, W.P. Schaefer, H.B. Gray, Inorg. Chem. 1995, 34, 4591.
    [6] (a) V.W.W. Yam, R.P.L. Tang, K.M.C. Wong, K.K. Cheung, Organometallics 2001, 20, 4476; (b) V.W.W. Yam, K.M.C. Wong, N. Zhu, J. Am. Chem. Soc. 2002, 124, 6506; (c) V.W.W. Yam, K.H.Y. Chan, K.M.C. Wong, N. Zhu, Chem. Eur. J. 2005, 11, 4535; (d) K.M.C. Wong, W.S. Tang, B.W.K. Chu, N. Zhu, V.W.W. Yam, Organometallics 2004, 23, 3459.
    [7] (a) C. Yu, K.M.C. Wong, K.H.Y. Chan, V.W.W. Yam, Angew. Chem. Int. Ed. 2005, 44, 791; (b) C. Yu, K.H.Y. Chan, K.M.C. Wong, V.W.W. Yam, Chem.Eur. J. 2008, 14, 4577; (c) C. Yu, K.H.Y. Chan, K.M.C. Wong, V.W.W. Yam, Proc Natl Acad Sci USA 2006, 103, 19657; (d) V.W.W. Yam, K.H.Y. Chan, K.M.C. Wong, B.W.K. Chu, Angew. Chem. Int. Ed. 2006, 45, 6169; (e) A.Y.Y. Tam, K.M.C.Wong, G. Wang, V.W.W. Yam, Chem. Commun. 2007, 2028; (f) A.Y.Y. Tam, K.M.C. Wong, G. Wang, N. Zhu, V.W.W. Yam, Langmuir 2009, 25, 8685. (g) K.H.Y. Chan, J.W.Y. Lam, K.M.C. Wong, B.Z. Tang, V.W.W. Yam, Chem. Eur. J. 2009, 15, 2328.
    [8] (a) A.Y.Y. Tam, K.M.C. Wong, V.W.W. Yam, J. Am. Chem. Soc. 2009, 131, 6253; (b) A.Y.Y. Tam, K.M.C. Wong, V.W.W. Yam, Chem. Eur. J. 2009, 15, 4775.
    [9] (a) W.S. Tang, X.X. Lu, K.M.C. Wong, V.W.W. Yam, J. Mater. Chem. 2005, 15, 2714; (b) K.M.C. Wong, W.S. Tang, X.X. Lu, N. Zhu, V.W.W. Yam, Inorg. Chem. 2005, 44, 1492; (c) H.S. Lo, S.K. Yip, K.M.C. Wong, N. Zhu, V.W.W. Yam, Organometallics 2006, 25, 3537.
    [10] (a) K.W. Jennette, S.J. Lippard, G.A. Vassiliades, W.R. Bauer, Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 3839; (b) K.W. Jennette, J.T. Gill, J.A. Sadownick, S.J. Lippard, J. Am. Chem. Soc. 1976, 98, 6159; (c) M. Cusumano, M.L.D. Pietro, A. Giannetto, Inorg. Chem. 1999, 38, 1754; (d) K. Becker, C. Herold-Mende, J.J. Park, G. Lowe, R.H. Schirmer, J. Med. Chem. 2001, 44, 2784; (e) D.L. Ma, C.M. Che, Chem. Eur. J. 1999, 5, 6133. (f) E.M.A. Ratilla, H.M., II Brothers, N.M. Kostic, J. Am. Chem. Soc. 1987, 109, 4592.
    [11] (a) K. Wang, M.A. Haga, H. Monjushiro, M. Akiba, Y. Sasaki, Inorg. Chem. 2000, 39, 4022; (b) L. J. Grove, J.M. Rennekamp, H. Jude, W.B. Connick, J. Am. Chem. Soc. 2004, 126, 1594; (c) E.J. Rivera, C. Figueroa, J.L. Colón, L. Grove, W.B. Connick, Inorg. Chem. 2007, 46, 8569; (d) V.G. Vaidyanathan, B.U. Nair, Eur. J. Inorg. Chem. 2005, 3756.
    [12] (a) S C. Yu, S. Hou, W.K. Chan, Marcomolecules 1999, 32, 5251; (b) M.A. Haga, H. G. Hong, Y. Shiozawa, Y. Kawata, H. Monjushiro, T. Fukuo, R. Arakawa, Inorg. Chem. 2000, 39, 4566.
    [13] (a) C. Piguet, G. Bernardinelli, A. F. Williams, Inorg. Chem. 1989, 28, 2920; (b) C. Piguet, B. Bocquet, E. MWller, A. F. Williams, Helv. Chim. Acta 1989, 72, 323; (c) S.R. Wttimann, C. Piguet, G. Bernardinelli, B. Bocquet, A. F. Williams, J. Am. Chem. Soc. 1992, 114, 4230.
    [14] (a) A.W. Addison, S. Burman, C.G. Wahlgren, J. Chem. Soc., Dalton Trans. 1987, 2621; (b) S. Obara, M. Itabashi, F. Okuda, S. Tamaki, Y. Tanabe, Y. Ishii, K. Nozaki, M. A. Haga, Inorg. Chem. 2006, 45, 8907–8921.
    [15] (a) M.A. Halcrow, Coord. Chem. Rev. 2005, 249, 2880; (b) S.A. Willison, H. Jude, R. M. Antonelli, J.M. Rennekamp, N. A. Eckert, J. A. K. Bauer, W. B. Connick, Inorg. Chem. 2004, 42, 2548.
    [16] P. Gamez, R. H. Steensma, W. L. Driessen, J. Reedijk, Inorg. Chim. Acta. 2002, 333, 51.
    [17] H.L. Casal, D.G. Cameron, H.H. Mantsch, J. Phys. Chem. 1985, 89, 5557.
    [18] R.A. MacPhail, H.L. Strauss, R.G. Snyder, C.A. Elliger, J. Phys. Chem. 1984, 88, 334.
    [19] H. Hagemann, R.G. Snyder, A.J. Peacock, L. Mandelkern, Macromolecules 1989, 22, 3600.
    [20] J.J. Benítez, S. Kopta, D.F. Ogletree, M. Salmeron, Langmuir 2002, 18, 6096.
    [21] K. Onitsuka, N. Ohara, F. Takei, S. Takahashi, Dalton Trans. 2006, 3693.
    [22] (a) C.M. Che, K.Y. Wong, F.C. Anson, J. Electroanal. Chem. Interfacial Electrochem. 1987, 226, 221; (b) N.G. Connelly, W.E. Geiger, Chem. Rev. 1996, 96, 877.
    [23] Written with the cooperation of the program authors Z. Otwinowski, W. Minor: D. Gewirth DENZO:“The HKL Manuals-A description of programs DENZO, XDISPLAYF, and SCALEPACK”, Yale University, New Haven, 1995.
    [24] SHELXS97, G.M. Sheldrick, Programs for Crystal Structure Analysis (release 97-2); University of G?ttingen, G?ttingen, Germany, 1997.
    [25] SHELXL97, G. M. Sheldrick, Programs for Crystal Structure Analysis (release 97–2); University of G?ttingen, G?ttingen, (Germany), 1997.
    [26] Lange's Chemistry Handbook Version 15th.
    [27] Umemura, J.; Cameron, D. G.; Mantsch, H. H. Biochim. Biophys. Acta. 1980, 602, 32.
    [28] Sapper, H.; Cameron, D. G.; Mantsch, H. H. Can. J. Chem. 1981, 59, 2543.
    [29] Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J. Am. Chem. Soc. 1987, 109, 3559.
    [30] Clemente-León, M.; Agricole, B.; Mingotaud, C.; Gómez-Garcóa, C. J.; Coronado, E.; Delhaes, P. Langmuir 1997, 13, 2340.
    [31] Clemente-León, M.; Mingotaud, C.; Agricole, B.; Gómez-Garcóa, C. J.; Coronado, E.; Delhaes, P. Angew. Chem., Int. Ed. 1997, 36, 1114.
    [32] Benítez, J. J.; Kopta, S.; Ogletree, D. F.; Salmeron, M. Langmuir 2002, 18, 6096.
    [33] Li Liu, Ling-Xiang Qiao, Shi-Zhong Liu, Dong-Mei Cui, Chun-Mei Zhang, Zeng-Ji Zhou, Zu-Liang Du, Wai-Yeung Wong, J. Polymer Science: Part A: Polymer Chemistry, 2008, 46, 3193.
    [1] G. Magnus Pogg Ann. 1828, 14, 239.
    [2] D. M. Roundhill, H. B. Gray and C. M. Che Acc. Chem. Res. 1989, 22, 55.
    [3] (a) W.S. Tang, X.X. Lu, K.M.C. Wong, V.W.W. Yam, J. Mater. Chem. 2005, 15, 2714; (b) K.M.C. Wong, W.S. Tang, X.X. Lu, N. Zhu, V.W.W. Yam, Inorg. Chem. 2005, 44, 1492; (c) H.S. Lo, S.K. Yip, K.M.C. Wong, N. Zhu, V.W.W. Yam, Organometallics 2006, 25, 3537.
    [4] (a) Krohnke, F. Synthesis 1976, 1. (b) Chelucci, G.; Thummel, R. P. Chem. ReV. 2002, 102, 3129. (c) Fallahpour, R.-A. Synthesis 2003, 155. (d) Newkome, G. R.; Patri, A. K.; Holder, E.; Schubert, U. S. Eur. J. Org. Chem. 2004, 235. (e) Potts, K. T.; Winslow, P. A. J. Org. Chem. 1985, 50, 5405. (f) Newkome, G. R.; Gross, J.; Patri, A. K. J. Org. Chem. 1997, 62, 3013. (g) Smith, A. P.; Corbin, P. S.; Fraser, C. L. Tetrahedron Lett. 2001, 41, 2787. (h) Heller, M.; Schubert, U. S. Eur. J. Org. Chem. 2003, 947.
    [5] (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int.Ed. 2001, 40, 2004. (b) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. (c) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596. (d) Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 5, 1.
    [6] (a) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. Org. Lett. 2004, 6, 2853.
    [7] (a) Li, Y.; Huffman, J. C.; Flood, A. H. Chem. Commun. 2007, 2692. (b) Meudtner, R. M.; Ostermeier, M.; Goddard, R.; Limberg, C.; Hecht, S. Chem. Eur. J. 2007, 13, 9834.
    [8] For reviews, see: a) H. C. Kolb, K. B. Sharpless Drug Discovery Today 2003, 8, 1128; b) V. D. Bock, H. Hiemstra, J. H. van Maarseveen, Eur. J. Org. Chem. 2006, 51.
    [9] For prominent examples using in situ“click chemistry”, see: a) inhibition ofHIV-1 protease: M. Whiting, J. Muldoon, Y.-C. Lin, S. M. Silverman, W. Lindstrom, A. J. Olson, H. C. Kolb, M. G. Finn, K. B. Sharpless, J. H. Elder, V. V. Fokin Angew. Chem. 2006, 118, 1463; Angew. Chem. Int. Ed. 2006, 45, 1435; b) cell surface labeling of Escherichia coli: A. L. James, D. A. Tirrell, J. Am. Chem. Soc. 2003, 125, 11164; c) bioconjugation to cowpea mosaic virus: Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless, M. G. Finn, J. Am. Chem. Soc. 2003, 125, 3192.
    [10] Li Liu, Ling-Xiang Qiao, Shi-Zhong Liu, Dong-Mei Cui, Chun-Mei Zhang, Zeng-Ji Zhou, Zu-Liang Du, Wai-Yeung Wong, J. Polymer Science: Part A: Polymer Chemistry, 2008, 46, 3193.
    [11] James T. Fletcher, Benjamin J. Bumgarner, Nicole D. Engels and David A. Skoglund Organometallics, 2008, 27, 5430.
    [12] B. B. Zhou, H. Z. Li, G. Q. Li功能材料2004增刊,35.
    [13] Lange's Chemistry Handbook Version 15th.
    [14] (a) C.M. Che, K.Y. Wong, F.C. Anson, J. Electroanal. Chem. Interfacial Electrochem. 1987, 226, 221; (b) N.G. Connelly, W.E. Geiger, Chem. Rev. 1996, 96, 877.
    [15] (a) H.K. Yip, L.K. Cheng, K.K. Cheung, C.M. Che, J. Chem. Soc., Dalton Trans. 1993, 2933; (b) J.A. Bailey, M.G. Hill, R.E. Marsh, V.M. Miskowski, W.P. Schaefer and H.B. Gray, Inorg. Chem. 1995, 34, 4591.
    [16] (a) V.W.W. Yam, R.P.L. Tang, K.M.C. Wong, K.K. Cheung, Organometallics 2001, 20, 4476; (b) V.W.W. Yam, K.M.C. Wong, N. Zhu, J. Am. Chem. Soc. 2002, 124, 6506; (c) V.W.W. Yam, K.H.Y. Chan, K.M.C. Wong, N. Zhu, Chem. Eur. J. 2005, 11, 4535; (d) K.M.C. Wong, W.S. Tang, B.W.K. Chu, N. Zhu, V.W.W. Yam, Organometallics 2004, 23, 3459.
    [17] (a) C. Yu, K.M.C. Wong, K.H.Y. Chan, V.W.W. Yam, Angew. Chem. Int. Ed. 2005, 44, 791; (b) C. Yu, K.H.Y. Chan, K.M.C. Wong, V.W.W. Yam, Chem. Eur. J. 2008, 14, 4577; (c) C. Yu, K.H.Y. Chan, K.M.C. Wong, V.W.W. Yam, Proc Natl Acad Sci USA 2006, 103, 19657; (d) V.W.W. Yam, K.H.Y. Chan,K.M.C. Wong, B.W.K. Chu, Angew. Chem. Int. Ed. 2006, 45, 6169; (e) A.Y.Y. Tam, K.M.C.Wong, G. Wang, V.W.W. Yam, Chem. Commun. 2007, 2028; (f) A.Y.Y. Tam, K.M.C. Wong, G. Wang, N. Zhu, V.W.W. Yam, Langmuir 2009, 25, 8685. (g) K.H.Y. Chan, J.W.Y. Lam, K.M.C. Wong, B.Z. Tang, V.W.W. Yam, Chem. Eur. J. 2009, 15, 2328.
    [18] (a) A.Y.Y. Tam, K.M.C. Wong, V.W.W. Yam, J. Am. Chem. Soc. 2009, 131, 6253; (b) A.Y.Y. Tam, K.M.C. Wong, V.W.W. Yam, Chem. Eur. J. 2009, 15, 4775.
    [19] Le Zhao, Keith Man-Chung Wong,* Bao Li, Wen Li, Nianyong Zhu, Lixin Wu,* Vivian Wing-Wah Yam* Chem. Eur. J. 2010, 16, 6797.
    [20] R.A. MacPhail, H.L. Strauss, R.G. Snyder, C.A. Elliger, J. Phys. Chem. 1984, 88, 334.
    [21] Umemura, J.; Cameron, D. G.; Mantsch, H. H. Biochim. Biophys. Acta. 1980, 602, 32.
    [22] Sapper, H.; Cameron, D. G.; Mantsch, H. H. Can. J. Chem. 1981, 59, 2543.
    [23] Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J. Am. Chem. Soc. 1987, 109, 3559.
    [24] H. Hagemann, R.G. Snyder, A.J. Peacock, L. Mandelkern, Macromolecules 1989, 22, 3600.
    [25] J.J. Benítez, S. Kopta, D.F. Ogletree, M. Salmeron, Langmuir 2002, 18, 6096.
    [26] Clemente-León, M.; Agricole, B.; Mingotaud, C.; Gómez-Garcóa, C. J.; Coronado, E.; Delhaes, P. Langmuir 1997, 13, 2340.
    [27] Clemente-León, M.; Mingotaud, C.; Agricole, B.; Gómez-Garcóa, C. J.; Coronado, E.; Delhaes, P. Angew. Chem., Int. Ed. 1997, 36, 1114.
    [28] Benítez, J. J.; Kopta, S.; Ogletree, D. F.; Salmeron, M. Langmuir 2002, 18, 6096.
    [29] a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. 2002, 114, 2708; Angew. Chem. Int. Ed. 2002, 41, 2596; b) C.W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
    [30] Please note that the non-catalyzed, thermal [4+2] cycloaddition reactions of various 1,3-dipoles have been pioneered by Huisgen, see: R. Huisgen in 1,3-Dipolar Cycloaddition Chemistry (Ed.: A. Padwa), Wiley, New York, 1984, pp. 1.
    [31] The concept of“click chemistry”is described in: H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. 2001, 113, 2056; Angew. Chem. Int. Ed. 2001, 40, 2004.
    [1] (a)Yersin, H. J. Chem.Phys.1978, 68, 4707. (b) van Slageren, J., Klein, A., Zfilig, S. Coord. Chem. Rev. 2002, 230, 193. (c) Klein, A., vail Slageren, J.; Zfilig, S. J. Organomet.Chem. 2001, 620, 202.
    [2] (a)Connick, W. B., Gray, H. B. J. Am. Chem. Soc. 1997, 119,11620. (b)Pettijohn, C. N., Jochnowitz, E. B., Chuong, B., Nagle, J. K., Vogler, A. Coord. Chem. Rev. 1998, 171, 85. (c)Connick, W. B., Geiger, D., Eisenberg, R. Inorg. Chem. 1999, 38, 3264.
    [3] Connick, W .B., Marsh, R. E., Schaefer, W. P., Gray, H. B. Inorg. Chem. 1997. 6. 913.
    [4] (a)Wong, E., Giandomenico, C. M. Chem. Rev.1999, 99, 2451.(b)Hambley, T. W. Coord. Chem. Rev. 1997, 166, l81.
    [5] (a)Buss, C.E., Mann, K. R. J. Am. Chem. Soc. 2002, 124, 1031. (b)Grove, L. J., Rennekamp, J. M., Jude,H., Connick, W. B. J. Am. Chem.Soc. 2004, 126. 1594.
    [6] McMillin, D. R.; Moore, J. J. Coord. Chem. Re1.2002, 229, l13.
    [7] K. Nakamoto and A. E. Martell, J . Cham. Phys., 1960, 82, 588; K.Nakamoto, P. J. McCarthy, A. Ruby, and A. E. Martell, J . Am. Chem. Soc., 1961, 88, 1066.
    [8] J. Lewis, Nature. 1964,202, 588.
    [9] R. A. D. Wentworth and C. H. Brubaker, Jr., Inoug. Chem., 1964, 3, 1472..
    [10] (a)George T, Behnke and K. Nakamoto, Inorganic Chemistry. 1967, 6. (b) J.Best, I. V. Sazanovich, H. Adams, R. D. Bennett, E. S. Davies, Anthony J.H. M. Meijer, M. Towrie, S. A. Tikhomirov, O. V. Bouganov, M. D. Ward and J. A. Weinstein Inorg. Chem. DOI: 10.1021/ic101344t
    [11] J. L. Pratihar, B. Shee, P. Pattanayak, D. Patra, A. Bhattacharyya, V. G. Puranik, C. H. Hung, and S. Chattopadhyay Eur. J. Inorg. Chem. 2007, 4272.
    [12] (a) Hui Li,Junqiao Ding,Zhiyuan Xie, Yanxiang Cheng ,Lixiang Wang Journal of Organometallic Chemistry 2009, 694, 2777,(B) Gui-Jiang Zhou,Xing-Zhu Wang,Wai-Yeung Wong, Xiao-Ming Yu,Hoi-Sing Kwok, Zhenyang Lin Jour.Organometallic Chem. 2007, 692, 3461(c) Ze He, Wai-Yeung Wong, Xiaoming Yu, Hoi-Sing Kwok and Zhenyang Lin Inorganic Chemistry, 2006. 45, 26.
    [13] (a) V. H. Houlding and V. M. Miskowski Coord. Chem. Rev. 1991, 111, 145. (b) C. B. Pettijohn, E. B. Jochnowitz, B. Chuong, J. K. Nagle and A. Vogler Coord. Chem. Rev. 1998, 171, 85.
    [14] F. N. Castellano, I. E. Pomestchenko, E. Shikhova, F. Hua, M. L. Muro and N. Rajapakse Coord. Chem. Rev. 2006, 250, 1819.
    [15] J. A. Gareth Williams Top. Curr. Chem. 2007, 281, 205.
    [16] G. T. Morgan and F. H. Burstall J. Chem. Soc. 1934, 965.
    [17] R. S. Osborn and D. Rogers J. Chem. Soc. Dalton Trans. 1974, 1002.
    [18] A. Vogler and H. Kunkely J. Am. Chem. Soc. 1981, 103, 1559.
    [19] J. A. Zuleta, C. A. Chesta and R. Eisenberg J. Am. Chem. Soc. 1989, 111, 8916.
    [20] V. M. Miskowski and V. H. Houlding Inorg. Chem. 1989, 28, 1529.
    [21] C. M. Che, L. Y. He, C. K. Poon and T. C. W. Mak Inorg. Chem. 1989, 28, 3081.
    [22] C. M. Che, K. T. Wan, L. Y. He, C. K. Poon and V. W. W. Yam J. Chem. Soc. Chem. Commun. 1989, 943.
    [23] J. Biedermann, G. Gliemann, U. Klement, K. J. Range and M. Zabel Inorg. Chem. 1990, 29, 1884.
    [24] H. Kunkely and A. Vogler J. Am. Chem. Soc. 1990, 112, 5625.
    [25] K. T. Wan, C. M. Che and K. C. Cho J. Chem. Soc. Dalton Trans 1991, 1077.
    [26] V. M. Miskowski and V. H. Houlding Inorg. Chem. 1991, 30, 4446.
    [27] J. A. Zuleta, J. M. Bevilacqua, D. M. Proserpio, P. D. Harvey and R. Eisenberg Inorg. Chem. 1992, 31, 2396.
    [28] V. M. Miskowaski, V. H. Houlding, C. M. Che and Y. Wang Inorg. Chem. 1993, 32, 2518.
    [29] R. H. Zherber, M. Croft, M. J. Coyer, B. Bilash and A. Sahiner Inorg. Chem. 1994, 33, 2422.
    [30] M. M. Mdleleni, J. S. Bridgewater, R. J. Watts and P. C. Ford Inorg. Chem.1995, 34, 2334.
    [31] W. B. Connick, L. M. Henling, R. E. Marsh and H. B. Gray Inorg. Chem. 1996, 33, 6261.
    [32] W. B. Connick, R. E. Marsh, W. P. Schaefer and H. B. Gray Inorg. Chem. 1997, 36, 913.
    [33] S. D. Cummings and R. Eisenberg Inorg. Chem. 1995, 34, 2007.
    [34] S. D. Cummings and R. Eisenberg J. Am. Chem. Soc. 1996, 118, 1949.
    [35] W. B. Connick, D. Geiger and R. Eisenberg Inorg. Chem. 1999, 38, 3264.
    [36] (a) C. W. Chan, L. K. Cheng and C. M. Che Coord. Chem. Rev. 1994, 132, 87. (b) M. Hissler, W. B. Connick, D. K. Geiger, J. E. McGarrah, D. Lipa, R. J. Lachicotte and R. Eisenberg Inorg. Chem. 2000, 39, 447.
    [37] C. Ed Whittle, J. A. Weinstein, M. W. George and K. S. Schanze Inorg. Chem. 2001, 40, 4053.
    [38] J. E. McGarrah, Y. J. Kim, M. Hissler and R. Eisenberg Inorg. Chem. 2001, 40, 4510.
    [39] J. E. McGarrah and R. Eisenberg Inorg. Chem. 2003, 42, 4355.
    [40] W. Lu, M. C. W. Chan, N. Zhu, C. M. Che, Z. He and K. Y. Wong Chem. Eur. J. 2003, 9, 6155.
    [41] S. C. Chan, M. C. W. Chan, Y. Wang, C. M. Che, K. K. Cheung and N. Zhu Chem. Eur. J. 2001, 7, 4180.
    [42] I. E. Pomestchenko, C. R. Luman, M. Hissler, R. Ziessel and F. N. Castellano Inorg. Chem. 2003, 42, 1394.
    [43] T. J. Wadas, R. J. Lachicotte and R. Eisenberg Inorg. Chem. 2003, 42, 3772.
    [44] N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner and M. D. Ward Chem. Eur. J. 2003, 9, 5283.
    [45] O. S. Wenger, S. G. Revilla, H. U. Güdel, H. B. Gray and R. Valiente Chem. Phys. Lett. 2004, 384, 190.
    [46] E. A. Gilk, S. Kinayyigit, K. L. Ronayne, M. Towrie, I. V. Sazanovich, J. A. Weinstein and F. N. Castellano Inorg. Chem. 2008, 47, 6974.
    [47] F. Hua, S. Kinayyigit, J. R. Cable and F. N. Castellano Inorg. Chem. 2005, 44, 471.
    [48] F. Hua, S. Kinayyigit, J. R. Cable and F. N. Castellano Inorg. Chem. 2006, 45, 4304.
    [49] J. K. W. Lee, C. C. Ko, K. M. C. Wong, N. Zhu and V. W. W. Yam Organometallics 2007, 26, 12.
    [50] S. Goeb, A. A. Rachford and F. N. Castellano Chem. Commun. 2008, 814.
    [51] N. M. Shavaleev, E. S. Davies, H. Adams, J. Best and J. A. Weinstein Inorg. Chem. 2008, 47, 1532.
    [52] E. A. M. Geary, L. J. Yellowless, L. A. Jack, I. D. H. Oswald, S. Parsons, N. Hirata, J. R. Durrant and N. Robertson Inorg. Chem. 2005, 44, 242.
    [53] Q. D. Liu, W. Li Jia and S. Wang Inorg. Chem. 2005, 44, 1332.
    [54] J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau and M. E. Thompson Inorg. Chem. 2002, 41, 3055.
    [55] F. Hua, S. Kinayyigit, A. A. Rachford, E. A. Shikhova, S. Goeb, J. R. Cable, C. J. Adams, K. Kirschbaum, A. A. Pinkerton and F. N. Castellano Inorg. Chem. 2007, 46, 8771.
    [56] J. H. Price, A. N. Williamson, R. F. Schramm and B. B. Wayland Inorganic Chemistry, 1972, 11, 6.(DMSO)
    [57] Lange's Chemistry Handbook Version 15th.Cross J.
    [58] A. Kuncaka, A. Electronoanal. Chem. 1992, 338, 213

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700