真空碳热还原处理含锌氧化矿获得高纯锌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着锌用途范围的扩大,世界各国锌产品消耗量逐年增加,硫化锌矿日渐供应不足,氧化锌矿的开发利用已越来越受到重视。但由于氧化锌矿极易“泥化”和伴生元素Si等含量高,无论是湿法或火法处理,均受到一定的限制。为了在处理含锌氧化矿时,提高能效、提高金属回收率,缩短工艺流程,节约资源、环境友好并获得高品质的金属锌,本文以菱锌矿和异极矿两种含锌氧化矿为研究对象,较系统地研究了真空碳热还原分级冷凝处理含锌氧化矿的新工艺及相关的热力学和动力学,主要研究内容和取得成果如下:
     (1)对含锌氧化矿进行了热力学研究,结果表明:真空条件下碳还原含锌氧化物具有较大的优势,当系统压强不断降低时,所对应氧化锌、硅酸锌的碳还原反应临界温度不断降低,但碳还原硅酸锌的温度较氧化锌的高;真空碳热还原含锌氧化矿时,产物金属锌中的杂质Cd较难通过真空蒸馏与Zn分离,除Cd程度将直接影响产物锌的质量。
     (2)根据真空碳热还原含锌氧化矿的特征,设计了分级冷凝真空炉,利用余热分级冷凝蒸气。由于各物质的性质不同而将在分级冷凝器的不同部位冷凝,达到分离纯化产品的目的。实验研究表明:真空碳热还原分级冷凝处理含锌氧化矿时,反应温度降低,反应时间缩短,产品质量大大提高。
     (3)以煤作为还原剂,对菱锌矿进行真空碳热还原分级冷凝处理。实验考察了菱锌矿的热处理条件,包括烧结时间、烧结温度对试样强度、锌质量的影响,同时也考察了真空碳热还原温度、还原时间、碳矿比和系统压强等因素对锌产率和锌质量的影响。结果表明:试样烧结温度控制在823~873K,烧结时间不少于30min,试样落下强度较好;真空碳热还原菱锌矿时,较佳工艺条件为C/Zn总的物质的量比为3,还原蒸馏温度1173K,系统压强50~2000Pa,真空碳热还原蒸馏60min;在较佳工艺条件下,菱锌矿中约97%的锌被还原蒸馏出来;采用真空碳热还原分级冷凝的方法,可以将铅、砷、镉与锌分离,但镉与锌分离的程度较小;通过改变烧结条件,可将产物锌中杂质Cd含量降低;在适宜的条件下,真空碳热还原分级冷凝处理菱锌矿后,可获得纯度为99.995%的高纯锌。
     (4)对异极矿进行了真空碳热还原的实验研究。通过对异极矿进行热处理,实验考察烧结时间、烧结温度对原料强度、锌产率和锌质量的影响,同时考察真空碳热还原温度、碳矿比、系统压强等因素对锌产率和质量的影响,特别考察添加试剂及其添加量的作用。实验结果表明烧结温度控制在823~873K,烧结时间不少于30min,试样强度较高;真空碳热还原处理异极矿时,较佳工艺条件是:C/Zn总的物质的量比为2.5, CaF2的添加量约为10%,还原蒸馏温度1373K,系统压强50~20kPa,真空碳热还原蒸馏约40min;在较佳工艺条件下,异极矿中约93%的锌被还原蒸馏出来;在此过程中CaF2中的氟离子主要起催化作用;烧结条件的改变可以降低产物锌中杂质Cd的含量,改变系统压强可降低产物锌中杂质Pb的含量;在适宜的条件下,真空碳热还原分级冷凝处理异极矿后,可获得纯度为99.995%的高纯锌。
     (5)在对含锌氧化矿碳还原的动力学研究中,对真空炉进行科学的改造。重点对真空炉的送样器和产物收集器进行改造,使实验在准确的反应时间内在较恒定的温度、稳定的系统压强等的条件下进行。
     (6)在真空条件下,对ZnO-C体系在还原温度1073~1223K下进行研究,发现在真空条件下煤还原菱锌矿中氧化锌的还原反应为一级反应,其还原速率由扩散过程所控制,活化能为177.72~191.31KJ·mol-1。
     (7)对未添加CaF2的Zn2SiO4-C体系在还原温度为1323~1473K下进行研究,得出其反应为一级反应,界面化学反应为控制步骤,活化能为246.16kJ·mol-1;对添加10%CaF2的Zn2SiO4-C体系在还原温度为1273~1423K下进行研究,还原反应为一级反应,界面化学反应仍为控制步骤,但活化能降低至164.82kJ-mol-1;添加试剂CaF2中的氟离子在Zn2SiO4-C还原体系中起催化作用,氟离子能增大硅酸锌晶体的活性,促进硅酸锌中Zn-O键断裂,降低反应活化能。
Consumption of zinc products has been increased each year with the wide application of zinc. As zinc sulphide is in a short supply, exploitation and utilization of zinc oxide ore have attracted more attention. There are some shortcomings in both hydrometallurgical and pyrometallurgical process when zinc oxide ore with clay and high content of silica is used as the starting material. The extraction process of zinc oxide ore was studied thermodynamically and dynamically by the vacuum carbothermic reduction with classification condensation in order to increase the energy efficiency, improve the recovery of metallic zinc, shorten the process flow, attain metal zinc with higher quality, meet the environmentally-friendly and resource-saving requirements. Two representative oxide ores were selected as the starting materials, one is smithsonite, the other is hemimorphite. The main contents studied and the important conclusions are as follows:
     (1)Thermodynamic studies indicate that there are specific advantages in vacuum carbothermic reduction. The critical temperature of zinc oxide or zinc silicate by carbothermic reduction is decreasing obviously, when the pressure of system is dropping, but that of zinc silicate is higher than that of zinc oxide. Cd can not be completely separated from Zn by vacuum distillation, the content of Cd in metal zinc will directly affact the quality of the zinc product.
     (2)The vacuum furnace with classification condensation was designed as experimental facility according to the characteristics of vacuum carbothermic reduction of zinc oxide ore and utilization of the waste heat for the condensation classification of Vapours. The vapour of different metallic products was condensed gradually at different position of the classification condenser with the decrease of temperature due to their different condensing temperature, and the products were therefore separated and purified. The experimental results show that the reaction temperature is decreased, the reduction time is shortened, and the quality of products are greatly improved by vacuum carbothermic reduction with classification condensation.
     (3) Smithsonite was processed by the vacuum carbothermic reduction with coal as the reductant. The effects of sintering time, sintering temperature on the strength of pellet samples and the quality of metallic zinc were investigated. The effects of the reduction temperature, reduction time, initial moles ratio of C/Zntotai and the pressure of system on the zinc yield and the quality of metallic zinc were also studied. It is found that the drop number of the pellets is greater when the suitable sintering temperature is from 823K to 873K and the sintering time is not shorter than 30 min. The optimal process condition for the vacuum carbothermic reduction is obtained as follows:the molar ratio of C/ZnTotal 3, the reaction temperature 1173K, the pressure of system 50~2000Pa, the reaction time around 60 min. At the optimal condition, the zinc yield is about 97%from smithsonite. Pb, As, Cd can be well separated from Zn, but the separation between Cd and Zn is not ideal enough. The content of Cd in metallic zinc could be decreased when the sintering conditions were changed. At suitable experimental conditions, high-purity zinc can be obtained with a purity of 99.995%.
     (4) The vacuum carbothermic reduction of hemimorphite was studied. The effects of sintering time, sintering temperature on the strength of pellet samples and on the quality of metallic zinc were investigated. The effects of reduction temperature, reduction time, initial moles ratio of C/Zntotal, the pressure of system, the mass of CaF2 additive on the zinc yield and the quality of metallic zinc were also studied. Results show that the drop number of the pellets is greater when the suitable sintering temperature is 823-873K and the sintering time is not shorter than 30 mins. CaF2 can catalyze the carbothermic reduction of zinc silicate. The optimal process condition is obtained as follows:the amount of CaF210%, the reaction temperature 1373K, the molar ratio of C/ZnTotal 2.5, the pressure of system lower than 20kPa, the reaction time about 40 min. At the optimal condition, the zinc yield is about 93%from hemimorphite. The content of impurity Cd in metallic zinc could be decreased when the sintering conditions were changed. The content of impurity Pb could be reduced as the pressure of system is raised within certain range. At suitable experimental conditions, the high-purity zinc can be abtained with a purity of 99.995%.
     (5) The vacuum furnace was improved to make the experiment conditions more accurately controlled for the kinetic study of zinc oxide ore by carbothermic reduction. The main designs are the sample transfer device and the collection equipment of the product to maintain a fairly constant temperature and pressure of system at the right reaction time.
     (6) The kinetics of the vacuum reduction of ZnO-C system was investigated. Experimental results indicate that the vacuum carbothermic reduction of zinc oxide from smithsonite is a first-order reaction. The diffusion is the rate-determining step of the overall reduction process, where the activation energy is estimated to be 177.72~-191.31 kJ-mol-1.
     (7) The kinetics of the vacuum reduction of Zn2SiO4-C without CaF2 at temperature 1323~1473K was investigated. Experimental results showed that the vacuum carbothermic reduction of zinc silicate from hemimorphite is a first-order reaction. The interface-chemical reaction is the rate-determining step of the overall reduction process, where the activation energy is estimated to be 246.16 kJ·mol-1. The kinetics of Zn2Si04-C with 10%CaF2 at reduction temperature 1273~1423K was also studied. It was found that the process is controlled by interface-chemical reaction, but the activation energy is decreased to 164.82kJ-mol-1. As F-ion can improve the activity of zinc silicate, the Zn-O bond is broken more easily and the activation energy is decreased. Therefore CaF2 could catalyze the carbothermic reduction of zinc silicate.
引文
[1]《铅锌冶金学》编委会,铅锌冶金学[M].北京:科学出版社,2003
    [2]王振岭,电炉炼锌[M].北京:冶金工业出版社,2001,1-28,690-725
    [3]赵天从,重金属冶金学(下册)[M].北京:冶金工业出版社,1981,76-139
    [4]徐采栋,林蓉,汪大成,锌冶金物理化学[M].上海:上海科学技术出版社,1979:40-66,143-150
    [5]魏昶,王吉坤,湿法炼锌理论与应用[M].昆明:云南科技出版社,2003
    [6]徐鑫坤,魏昶.锌冶金学[M].昆明:云南科技出版社,1996.
    [7]翟玉春,刘喜海,徐家振主编.现代冶金学[M].北京:电子工业出版社,2001.
    [8]梅光贵,王德润,周敬元等,湿法炼锌学.长沙:中南大学出版社,2001
    [9]戴自希,世界铅锌资源的分布、类型和勘查准则[J].世界有色金属,2005(3):15-23,6
    [10]王忠实,蒋继穆,中国锌冶炼现状[J].有色冶炼,1996,(6):1-5
    [11]郎家重,国外锌冶炼工艺发展状况[J].有色矿冶,1999,(4):30-32
    [12]王风琴,国内外氧化锌矿处理方法[J].有色矿冶,1994,10(1):31-35
    [13]张位及,云南异极矿[J].中国宝石,1997,6(2):100
    [14]葛振华.我国铅锌资源现状及未来的供需形势[J].世界有色金属,2003,(9):4-7
    [15]刘三军,欧乐明.中国锌冶炼工业现状[J].矿产保护与利用,2003,(6):36-40.
    [16]雷力,周兴龙,文书明等.我国铅锌矿资源特点及开发利用现状[J].矿业快报,2007,(9):1-4
    [17]冉银华,杨玉珠,内蒙某氧化锌矿的选矿研究[J].云南冶金,2000,29(5):10-13
    [18]周中定,湖北兴山某氧化锌矿石选矿试验研究[J].中南冶金地质,1997,(2):69-71
    [19]吕世海,四川石柱难选氧化锌矿石合理利用的技术经济探讨[J].中南冶金地质1990,(1):62-69
    [20]林柞彦,华一新.高硅氧化锌矿硫酸浸出的工艺及机理研究[J].有色金属(冶炼部分),2003,(5):9-11,23.
    [21]Y.Hua, Z.Lin, Z.Yan, Application of microwave irradiation to quick leach of zinc silicate ore[J]. Minerals Engineering,2002, (15):451-456.
    [22]刘健,苗则生.氨浸法从菱锌矿直接提取活性氧化锌[J].有色金属(冶炼部分),1993,(3):30-31,44
    [23]刘志宏.国内外锌冶炼技术的现状及发展动向[J].世界有色金属,2000,(1):23-26,37
    [24]陈世明,瞿开流.兰坪氧化锌矿处理方法探讨[J].云南冶金,1998,27(5):31-35
    [25]刘纯武,陈世明.氧化锌矿石加工方法浅析[J].云南冶金(县乡矿业版),1993,(4):20-21,24,27
    [26]王赞美.氧化锌矿石的直接湿法处理[J].有色金属设计,1997,24(3):20-26.
    [27]李龙,姚凤霞,冯国军.湿法炼锌中用氧化矿替代部分焙砂的工艺研究[J].有色冶炼,2000,29(1):15-17.
    [28]舒毓璋,宝国峰,张崎,等.氧化锌矿的浸出工艺[P].中国,CN02133663.6,2002-08-25.
    [29]舒毓璋,宝国峰,张崎,等.硫化锌精矿焙砂与氧化锌矿联合浸出工艺[P].中国,CN02133662.8,2002-08-24.
    [30]杨大锦,谢刚,贾云芝,等.低品位氧化锌矿堆浸实验研究[J].过程工程学报,2006,6(1):59-62.
    [31]黄婕,唐基友.利用低品位含锌原料湿法制取氧化锌的研究[J].湖南化工1995,25(1):39-42.
    [32]王国军.氧化铅锌矿制活性氧化锌工艺研究[J].化学工艺与工程,2000,17(1):37-42.
    [33]王国军,熊洁羽,张纪霞.氧化铅锌矿制活性氧化锌湿法工艺及其反应条件研究[J].化学工程,2001,29(6):61-64.
    [34]谢美求,陈志飞,冯剑,等.氧化锌矿湿法浸出提锌工艺研究[J].矿冶工程,2004,24(1):67-69.
    [35]黄可龙,唐爱东,李朝建.氧化锌矿制备活性氧化锌的新工艺[J].矿产综合利用,1998,(3):9-11.
    [36]肖全生.硫酸直接分解氧化锌矿生产硫酸锌的研究和应用[J].硫酸工业,1991,(1):21-25.
    [37]周德林,窦明民,陈世明.高硅氧化锌矿全湿法冶炼厂艺的研究应用与发展[J].有色金属(冶炼部分),1995,(3):1-6.
    [38]李国民.高硅氧化锌矿浸出脱硅工艺的研究[J].中国有色冶金,2005,(4):32-35.
    [39]张显生,石明忠,许永红,等.高硅天然氧化锌矿浸出新工艺的研究[J].有色金属(冶炼部分),2003,(2):14-15.
    [40]李军旗.湿法处理高硅氧化锌矿的工艺研究[J].湿法冶金,1996,(4):32-35.
    [41]常发科.高硅型锌矿直接酸浸的试验研究[J].云南冶金,1995,(1):36-38.
    [42]唐泽日.湿法处理高硅氧化锌矿的试验研究[J].大宝山科技,1994(1):4-9.
    [43]范斌.矿石中锌的浓硫酸熟化浸出[J].湿法冶金,1999,(3):60-62.
    [44]陈永海,覃文庆,黄红军.高硅氧化锌矿酸浸脱硅过程研究进展[J].湖南有色金属,2005,21(1):14-16.
    [45]魏国兴,尚殿辉.采用氨浸法从含锌废渣中提取高纯度氧化锌[J].环境科技,1994,14(5):48-50.
    [46]刘健,苗则生,等.氨浸法从菱锌矿直接提取活性氧化锌[J].有色金属(冶炼部分),1993,(3):25-26,33.
    [47]李志华,薛怀生,姚耀春.兰坪难选氧化锌矿氨浸动力学[J].云南冶金,2003,32(4):22-24.
    [48]姚耀春,王平.难选氧化锌矿氨浸的动力学研究[J].云南冶金,2001,30(3):22-24.
    [49]朱云,胡汉,苏云生,等.难选氧化锌矿氨浸动力学[J].过程工程学报,2002,2(1):81-85.
    [50]姚耀春,朱云,王平.难选氧化锌矿氨浸过程热力学分析[J].有色金属,2004,56(3):49-51.
    [51]沈庆峰,杨显万.Fe2+/Mn2+/Zn2+在NH3-H20系中的溶解度[J].有色金属,2003,55(4):65-67.
    [52]司马冰,何良惠,李自强,等.氨法分解低品位菱锌矿的研究[J].四川有色金属,1991,(1):1-5.
    [53]唐谟堂,欧阳民.硫铵法制取等级氧化锌[J].中国有色金属学报,1998,8(1):118-121.
    [54]陈为亮,李秋霞,宋宁等.氨配合法制备活性氧化锌的研究[J].云南大学学报(自然科学版),2007,29(3):291-296.
    [55]王雅琼,许文林,鲁萍.氨配合法制活性氧化锌除杂净化过程研究[J].化学工业与工程,2002,19(2):197-200.
    [56]王雅琼,许文林.氨浸法制活性氧化锌除杂净化过程研究[J].无机盐技术,2001,(2):16-19.
    [57]唐谟堂,张保平.氧化锌矿的氯化铵-氨浸取研究[A].第八届全国铅锌冶金生产技术及产品应用学术年会论文集[C].韶关,80-84.
    [58]张保平,唐谟堂.NH4Cl-NH3-H2O体系浸出氧化锌矿[J].中南工业大学学报,2001,32(5):483-386.
    [59]李谦.氧化锌矿铵盐浸出动力学的研究[D].硕士学位论文,贵州:贵州工业 大学,2000.
    [60]刘晓丹.铵盐浸出氧化锌矿动力学的研究[J].贵州工业大学学报,2004,33(2):82-84.
    [61]杨声海.Zn(Ⅱ)-NH3-NH4Cl-H2O体系制各高纯锌理论及应用[A].中南大学博士论文,长沙:中南大学,2003.
    [62]张保平.氨法处理氧化锌矿制电锌新工艺及其基础理论研究[D].硕士学位论文,长沙:中南大学,2001.
    [63]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南工业大学学报,2003,34(6):519-623.
    [64]邓良勋,吴保庆.络合物电解制锌[J].有色金属(冶炼部分),1996,(3):16-18.
    [65]张保平,唐谟堂,杨声海.锌氨配合体系电积锌研究[J].湿法冶金,2001,20(4):175-178.
    [66]YANG Sheng-hai, TANG Mo-tang, HE Jing, et al. Preparation of high-Purity Zinc From Zinc Calcine by an Ammonia Proeess[J]. Journal of Jishou Unversity, 2003,24(3):45-49.
    [67]唐谟堂,杨声海.Zn(Ⅱ)-NH3-NH4Cl-H2O体系电积锌工艺及阳极反应机理[J].中南工业大学学报,1999,30(2):153-156.
    [68]YANG Sheng-hai, TANG Mo-tang, et al. Anodic reaction kinetics of electrowinning Zinc in system of Zn(Ⅱ)-NH3-NH4Cl-H2O Trans[J]. Nonferous Met. Soc.China,2004,14(3):626-630.
    [69]张传福,梁杰,李谦.铵盐法处理氧化锌矿的研究[J].贵州工业大学学报,2002,31(1):37-41.
    [70]曹华珍,郑国渠,支波.氨络合物体系电积锌的阴极过程[J].中国有色金属学报,2005,15(4):655-659.
    [71]曾振欧.氯化物水溶液电积锌的电极过程动力学[J].中南矿冶学院学报,1989,20(1):45-51.
    [72]马春,余仲兴.锌氨络离子阴极还原机理的研究[J].上海有色金属,2002,23(3):103-106,132.
    [73]张玉梅.氧化锌矿氨性强化浸出新方法的研究[D].硕士学位论文,长沙:中南大学,2009.
    [74]曹琴园.机械活化对含锌矿物碱法浸出行为的影响[D].硕士学位论文,长沙:中南大学,2009.
    [75]唐谟堂,录君乐.Zn-NH3-(NH4)2SO4-H2O系的氨络合平衡[J].中南矿冶学院学报,1994,25(6):701-705.
    [76]慕思国,彭长宏,黄虹,等.298K时二元体系MeSO4-(NH4)2SO4-H2O的相平衡[J].过程工程学报,2006,6(1):32-36.
    [77]胡汉,朱云.难选氧化锌矿氨浸的热力学[J].云南冶金,2004,33(1):25-31.
    [78]赵廷凯,唐谟堂,梁晶.制取活性锌粉的Zn(II)-NH3-H2O-(NH4)2SO4体系电解法[J].中国有色金属学报,2003,13(3):774-777.
    [79]Tungkaviveshkul T, Thiravetyan P, Tanticharoen M. Mechanism for bioleaching of zinc silicate residue by organic aceid-producing microorganisms [J]. In Vargas T.Jerezc, Wiertz JV eds. Biohydrometallurgical Processing, Vol.1. Santiago University of Chile,1995,385-393.
    [80]L.M.Castre, J.L.R.Fietto, R.X.Viera, etal. Bioleaching of zinc and niekel from silicates using Aspergillus niger culture[J]. Hydrometallurgy,2000.57:39-49.
    [81]杨国栋.韦氏炉生产锌氧粉的工艺实践[J].云南冶金:县乡矿业版,1991,(2):32-33,44
    [82]韩昭炎.氧化锌矿生产氧化锌的实践[J].有色金属(冶炼部分),1988,(4):7-10
    [83]唐贤容.难选氧化锌矿粉直接生产氧化锌[J].有色金属(冶炼部分),1987,(4):8-12
    [84]郭晓军.氧化锌矿石除铅、除镉工艺[P].CN1048891A,1991
    [85]李时晨,朱玉芹.回转窑高温还原挥发处理难选低品位氧化锌矿[J].云南冶金(县乡矿业版),1992,(4):13-15,21
    [86]Gerolf Strohmeler, John E.Bonestell.Steelworks residues and the Waelz kiln treatment of electric arc furnace dust[J]. Iron and Steel Engineer,1996, (4):87-90
    [87]刘特明.电炉炼锌工艺实践与探讨[J].有色冶炼,1998,(5):11-15,63
    [88]李龙生.电炉炼锌工艺及炉龄问题的探讨[J].有色金属(冶炼部分),2001,(1):14-15
    [89]许庆余,李华.富氧化锌原矿生产合金锌粉的方法和设备[P].CN 1058926A,1992
    [90]Dudka, Stanislaw. Environmental impacts of metal ore mining and processing:a review[J]. Journal of Environmental Quality May-Jun,1997,26(3):590-602
    [91]Z.Szczygiel, S.Escobedo.Extracting Zinc from oxidized minerals via an Journal of the Minerals[J]. Metals&Materials Society,1996,48(1):22-24
    [92]张树林.利用中频熔池冶炼有色金属的新方法及中频感应炉[P].CN1256322A,2000.
    [93]伊滕聪,吴继宝.用铁还原挥发法从锌焙砂中回收锌[J].有色矿冶,1992,(1):40-48.
    [94]伊藤聪,吴继宝.氧化锌的铁还原挥发反应[J].有色矿冶,1991,(4):33-40.
    [95]郭兴忠,张丙怀,阳海彬.氧化锌矿火法处理新工艺-铁浴熔融还原法[J].有色冶炼,2002,(2):18-22.
    [96]郭兴忠,张丙怀,阳海彬.熔融还原处理低品位氧化锌矿的研究[J].矿冶工程,2003,23(1):57-60.
    [97]Rankin W J, Wright S. The reduction of zinc frorm alags by an Iron-carbonmelt[J]. Metallurgical and mterials transactions B,1990,21(10):855-897
    [98]D.A.Temple. Zinc Proceeding of International Symposium on Extractive metallurgy of zinc [J]. warrendule,1985:3-16.
    [99]Dawkins, J.M. Zinc Proceeding of International Symposium on Extractive metallurgy of zinc[J]. warrendule,1985:659-674.
    [100]郭青蔚,高纯金属研究的现状及展望[J].世界有色金属,1996,(4):17-18
    [101]易昌桂,高超纯金属材料的现状与应用[J].功能材料,1991,22(4):216-221
    [102]Tyama Kishio, Yamauchi Hajime.Production of high-purity zinc and production device. JP10121160,1998
    [103]Raymond K F Lam, Danil R Marx, Vacuum distillation apparatus for producing ultra high purity material. US patent 5698158,1997
    [104]王瑞恒,王子谦.高纯锌的生产[J].有色金属(冶炼部分),2001,(2):39-41
    [105]Kanda Minoru, Kimura Etsuji. Production of high Purity zinc.JP8295957,1996
    [106]Tanno Fumio, Matsuzaki Kenji. Process for purifying zinc and rectifying column for Purifying zinc, WO0250320,2002
    [107]Nagassaki Hidenori.Production of distilled zinc of high purity. JP58171536, 1983
    [108]王瑞恒,王子谦.高纯锌的生产[J].有色金属(冶炼部分),2001,(2):39-41
    [109]徐鑫坤,王先黔,万倩.用电积精炼法制取高纯锌的研究[J],有色金属(冶炼部分),1992,(4):15-17
    [110]Watanabe Kiyoyoshi. Production of zinc having high purity. JP60017088,1985.
    [111]杨乃恒,真空冶金技术的现状与发展[J].真空与低温,2001,7(1):1-6
    [112]戴永年,杨斌,马文会等,有色金属真空冶金进展[J].昆明理工大学学报(理工版),2004,29(4):1-4
    [113]戴永年,杨斌,有色金属材料的真空冶金[M].北京:冶金工业出版社,2000:7-60
    [114]戴永年,赵忠,真空冶金[M].北京:冶金工业出版社,1998,2-234
    [115]Winkler O, Bakish R.真空冶金学[M].上海:上海科技出版社,1982,137
    [116]张双全主编,煤化学[M].徐州:中国矿业大学出版社,2004,111-154
    [117]虞继舜主编.煤化学[M].北京:冶金工业出版社,2003:172-201
    [118]姚昭章主编,炼焦学[M].北京:冶金工业出版社,1995(2003重印):42-49
    [119]傅永宁编著,高炉焦炭[M].北京:冶金工业出版社,1995:5-80
    [120]肖瑞华编著,煤焦油化工学[M].北京:冶金工业出版社,2002,5:1-15
    [121]苏宜春编,炼焦工艺学[M].北京:冶金工业出版社,1994,5(2003重印):60-68
    [122]王常珍主编,冶金物理化学研究方法[M].北京:冶金工业出版社,1982:5-100
    [123]丘克强,段文军,陈启元.金属在真空状态下的蒸发速率[J].有色金属,2002,54(2):48-52
    [124]J.A.迪安主编.兰氏化学手册(第十三版)[M].北京:科学出版社,1991
    [125]邱竹贤.冶金热化学[M].北京:冶金工业出版社,1985,326-536.
    [126]伊赫桑·巴伦主编,程乃良,牛四通,徐桂英译.纯物质热化学数据手册[M].北京:科技出版社,2003.
    [127]梁英教.无机化合物热力学数据[M].沈阳:东北大学出版社,1990
    [128]熊利芝,陈启元,尹周澜,张平民.真空碳热还原处理低品位氧化铅锌矿热力学分析及实验研究[J].矿冶工程,2009,29(4):64-66.
    [129]熊利芝,陈启元,尹周澜,等. 真空碳热还原氧化锌矿的热力学分析及实验研究[J].真空科学与技术学报,2010,30(3):121-124.
    [130]李存兄.真空下直接还原高铁闪锌矿的研究[D].硕士论文,昆明:昆明理工大学,2005:39-41
    [131]东北工学院有色重金属教研室,锌冶金[M].北京:冶金工业出版社,1987
    [132]Volsky A. and E. Sergievskaya. Theory of Metallurgical Process: Pyrometallurgical Process (Second Edition) [M]. Moscow:MIR Publisher,1978
    [133]F.DENG, Low-Melting-Point Alloy Dies and Zinc Alloy Dies and their Applications[J]. Metalforming Mach (China),1991,26 (1):13-17. (in Chinese)
    [134]Olette M. Physical Chemistry of Process Metallurgy [J].1961,8(2):1065-1087
    [135]Harris R., Metall. Trans[J].1984,15B:251-257
    [136]Hsiang-Yu Chuang, Chun-I Lin, Hsi-Kuei Chen. Carbothermic reduction of zinc sulfide in the presence of sodium carbonate [J]. Journal of the Chinese Institute of Chemical Engineers,2008,39:457-465
    [137]陈雯,胡翠.金属铋在真空蒸发过程中临界压强的研究[J].有色金属,2000,16(3):25-29.
    [138]Ching-Hsiang Huang, Chun-I Lin, Hsi-Kuei Chen. Kinetics of the carbothermic reduction of zinc sulfide in the presence of calcium oxide[J]. Journal of the Chinese Institute of Chemical Engineers,2007, (38):143-149
    [139]HUA-CHING HSU, CHUN-I LIN and HSI-KUEI CHEN. Zinc Recovery from Spent ZnO Catalyst by Carbon in the Presence of Calcium Carbonate[J]. Metallurgical and Materials Transactions B,2004,35B:55-63
    [140]陈晔,陈建华,李玉琼.异极矿氧化锌矿石浮选试验研究[J].金属矿山.2008,379(1):67-69,120
    [141]杨学民,郭占成.含碳球团还原机理研究[J].过程工程学报,1995,16(2):118-126.
    [142]S.SUN, W-K. LU. Mathematical modeling of reactions in iron/coal composites[J]. ISIJ international,1993,33(10):1062-1069
    [143]Y.L.Ding, N.A.Warner. Kinetics and mechanism of reduction of carbon-chromite composite pellets[J]. Ironmaking and Steelmaking.1997,24(3):224-229
    [144]康思琦.内配碳球团等温还原动力学数学模型的研究[J].烧结球团,1992,(1):1-7
    [145]王东彦,陈伟庆,周荣章,等.钢铁厂含锌铅粉尘配碳球团的直接还原工艺[J].北京科技大学学报,1997,19(2):130-133.
    [146]郭兴忠,张丙怀,阳海彬.氧化锌球团还原的机理研究[J].有色金属(冶炼部分),2002,(2):2-5.
    [147]郭兴忠,张丙怀,阳海彬.含碳氧化锌球团还原的动力学[J].重庆大学学报,2002,25(5):86-88.
    [148]熊利芝,陈启元,尹周澜,等. 真空碳热还原氧化锌矿的动力学研究[J].过程工程学报,2010,10(1):133-137.
    [149]莫鼎成,冶金动力学[M].长沙:中南工业大学出版社,1987,413-455.
    [150]Huang C H, Lin C I, Chen H K. Kinetics of the carbothermic reduction of zinc sulfide in the presence of calcium oxide [J]. Journal of the Chinese Institute of Chemical Engineers,2007, (38):143-149.
    [151]Hsu H C, Lin C I, Chen H K. Zinc Recovery from Spent ZnO Catalyst by Carbon in the Presence of Calcium Carbonate [J]. Metallurgical and Materials Transactions B,2004,35B:55-63.
    [152]Hsiang-Yu Chuang, Chun-I Lin, Hsi-Kuei Chen. Carbothermic reduction of zinc sulfide in the presence of sodium carbonate [J]. Journal of the Chinese Institute of Chemical Engineers,2008,39:457-465
    [153]罗世永,张家芸,周土平.固/固反应动力学预测系统[A].中国稀土学报.冶金过程物理化学专辑[C].北京:中国稀土学会,2000.198-201.
    [154]黄典冰,杨学民,杨天钧,等.含碳球团还原过程动力学及模型[J].金属学报,1996,32(6):629-636.
    [155]韩其勇.冶金过程动力学[M].北京:冶金工业出版社,1983.11-116.
    [156]Abramowitz, H. and Y. K. Rao. Direct Reduction of Zinc Sulfide by Carbon and Lime[J]. Trans. Inst. Min. Metall. (Sec. C),1978,87,180.
    [157]Skopov, G. V., G. P. Kharitidi, A. I. Tikhonov.Reduction of Zinc from the Sulfide by Carbon in the Presence of Calcium Oxide or Calcium Carbonate[J]. Izv. Vyssh. Ucheb. Zaved. Tsvet. Metally.1976,4,33.
    [158]郭汉贤.应用化工动力学[M].北京:化学工业出版社,2003,10-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700