不对称有机催化α,β-不饱和醛的Michael加成反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Michael加成反应是一类应用非常广泛的重要的亲核加成反应,α,β-不饱和醛是一类用途广泛的Michael受体,通过与各种亲核试剂进行不对称Michael加成反应,可得到手性β-功能化的醛类衍生物,这些衍生物中有许多是具有多种用途的重要手性中间体或合成用的手性砌块,有些本身就是具有生物活性的物质。
     本论文第一部分研究了甘氨酸席夫碱镍络合物与α,“p-不饱和醛的不对称有机催化Michael加成反应。通过对反应的催化剂、辅助催化剂、溶剂的优化筛选确定反应的最优条件,最后按此优化条件进行底物拓展。在二氯甲烷与甲醇的混合溶剂中,室温下使用10 mo1%的J(?)rgensen-Hayashi催化剂以及20 mo1%的苯甲酸锂,能高效、高对映选择性地催化甘氨酸席夫碱镍络合物与α,β-不饱和醛的不对称Michael加成反应。加成反应后直接用硼氢化钠进行还原,反应产物收率最高可达98%,dr值高达49:1,ee值基本上均大于90%,最高达99%。加成还原产物进一步反应可得到两个手性中心六元内酯杂环。该模版法为制备各种手性a-取代氨基酸以及手性六元杂环提供了一种新的合成方法。
     本论文第二部分研究呋喃酮与α,β-不饱和醛的不对称Michael加成反应,为制备呋喃酮衍生物提供了一种新的合成方法。通过对反应条件的优化实验,确定了反应的最优条件。利用10 mo1%的J(?)rgensen-Hayashi催化剂以及20 mmo1%的醋酸锂,成功实现了呋喃酮与α,p-不饱和醛的不对称Michael加成反应。反应产物收率最高可达94%,dr值高达2.8:1,反应对映选择性高,产物的ee值基本上均大于95%,最高可达99%。
     本论文第三部分研究了二苯氧膦与α,β-不饱和醛的直接不对称有机催化Michael加成反应,解决了反应的区域选择性和立体选择性问题,从而为有效构建不对称C—P键提供一种新的有效合成方法。在二氯甲烷溶剂中,-20℃下,使用20 mo1%的J(?)rgensen-Hayashi催化剂,首次成功实现了二苯氧膦与α,β-不饱和醛的直接不对称Michael加成反应。反应的对映选择性高,ee值基本上均大于90%,最高可达99%,反应产物收率最高可达98%。
Michael addition reaction is an important nucleophilic reaction.α,β-Unsaturated aldehyde is a valuable Michael acceptor, which reacts with various electron donors to affordβ-functionalization aldehyde derivatives. These derivatives are key chiral intermediates, building blocks or biologic active substances.
     In the first part, we studied the asymmetric organocatalytic Michael addition reactions of Ni (Ⅱ) complexes of glycine Schiff base toα,β-unsaturated aldehydes. After condition screening, the optimal reaction condition was obtained and applied to different enals. The reaction was carried out efficiently in the mixed solvent of MeOH and CH2Cl2 using 10 mol% of J(?)rgensen-Hayashi catalyst and 20 mol% of PhCOOLi, followed by reduction using NaBH4. The desired products were produced in up to 98% yield and 49:1 dr value. The enantioselectivity was up to 99% and all the ee values were>90%. The product was further treated to give a six-member lactone heterocycle with two adjacent chiral centers. This study offered an alternative approach to chiralα-amino acid derivatives and six-member heterocycles.
     Next, the asymmetric vinylogous Michael reactions ofα,β-unsaturated aldehydes withγ-butenolide was explored, which served as a powerful tool for the synthetically chiralγ-butenolide skeleton. The reaction of 2(5H)-furan to differentα,β-unsaturated aldehydes were proceeded successfully in MeOH by 10 mol% of J(?)rgensen-Hayashi catalyst and 20 mol% of LiOAc, in up to 94% yield and 2.8:1 dr value. The enantioselectivity was excellent (up to 99%), and all the ee values were>94%.
     Finally, the enantioselective organocatalytic phospha-Michael reaction ofα,β-unsaturated aldehydes with diaryl phosphine oxides was investigated, which provides a new and easy method to construct chiral P-C bond and chiral phosphine oxide derivitives with excellent chemo- and enantioselectivity. The reaction of diaryl phosphine oxides and differentα,β-unsaturated aldehydes was firstly conducted efficiently catalyzed by 20 mol% of J(?)rgensen-Hayashi catalyst at -20℃in CH2Cl2 with excellent enantioselectivity. Most of the ee values were>90%. The desired products were produced in up to 98% yield.
引文
[1]K. Stromland, E. Philipson, M. A. Gronlund. Offspring of male and female parents with thalidomide embryopathy:birth defects and functional anomalies. Teratology.2002,66 (3):115-121.
    [2]H. U. Blaser, The Chiral Switch of (S)-metolachlor:a personal account of an industrial odyssey in asymmetriccatalysis. Adv. Syn. Cat.2006,344 (1):17-31.
    [3]P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli. Asymmetric Aminocatalysis-Gold Rush in Organic Chemistry. Angew. Chem. Int. Ed.2008,47 (33):6138-6171.
    [4]K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan. New strategies for organic catalysis:the first highly enantioselective organocatalytic Diels-Alder reaction. J. Am. Chem. Soc.2000, 122 (17):4243-4244.
    [5]R. Naef, D. Seebach. Herstellung enantiomerenreiner cis- oder trans-konfigurierter 2-(tert-Butyl)-3-methylimidazolidin-4-one aus den Aminosauren (S)-Alanin, (S)-Phenyl-alanin, (R)-Phenylglycin, (S)-Methionin und (S)-Valin. Helv. Chim. Acta.1985,68 (1):135-143.
    [6]A. Erkkila, I. Majander, P. M. Pihko. Iminium Catalysis. Chem. Rev.2007,107 (12): 5416-5470.
    [7]A. Erkkila, P. M. Pihko, M.-R. Clarke, Simple Primary Anilines as Iminium Catalysts for the Epoxidation of a-Substituted Acroleins. Adv. Syn. Cat.2007,349 (6):802-806.
    [8]A. Sakakura, K. Suzuki, K. Nakano, K. Ishihara, Chiral 1,1-Binaphthyl-2,2-diammonium Salt Catalysts for the Enantioselective Diels-Alder Reaction with a-Acyloxyacroleins. Org. Lett.2006,8 (11):2229-2232.
    [9]A. Sakakura, K. Suzuki, K. Ishihara, Enantioselective Diels-Alder Reaction of a-Acyloxyacroleins Catalyzed by Chiral 1,1-Binaphthyl-2,2-diammonium Salts. Adv. Syn. Cat.2006,348 (16-17):2457-2465.
    [10]K. Ishihara, K. Nakano, Design of an Organocatalyst for the Enantioselective Diels-Alder Reaction with a-Acyloxyacroleins. J. Am. Chem. Soc.2005,127 (30): 10504-10505.
    [11]B. List, R. A. Lerner, C. F. Barbas III. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc.2000,122 (10):2395-2396.
    [12](a) M. C. Etter, T. W. Panunto. 1,3-Bis(m-nitrophenyl)urea:An Exceptionally Good Complexing Agent for Proton Acceptors. J. Am. Chem. Soc.1988,110 (17):5896-5897; (b) D. P. Curran, L. H. Kuo. Altering the Stereochemistry of Allylation Reactions of Cyclic a-Sulfinyl Radicals with Diarylureas. J. Org. Chem.1994,25 (51):3259-3261; (c) D. P. Curran, L. H. Kuo. Acceleration of a Dipolar Claisen Rearrangement by Hydrogen Bonding to a Soluble Diaryl Urea. Tetrahedron Lett.1995,36 (37):6647-6650.
    [13]M. P. Lalonde, Y. Chen, E. N. Jacobsen. A Chiral Primary Amine Thiourea Catalyst for the Highly Enantioselective Direct Conjugate Addition of a,a-Disubstituted Aldehydes to Nitroalkenes. Angew. Chem., Int. Ed.2006,45 (38):6366-6370.
    [14]T. D. Beeson, A. Mastracchio, J. Hong, K. Ashton, D. W. C. MacMillan. Enantioselective Organocatalysis Using SOMO Activation. Science.2007,316 (5824): 582-584.
    [15](a) M. Amatore, T. D. Beeson, S. P. Brown, D. W. C. MacMillan. Enantioselective linchpin catalysis by SOMO catalysis:an approach to the asymmetric a-chlorination of aldehydes and terminal epoxide formation. Angew. Chem. Int. ed.2009,121 (28): 5121-5124; (b) J. J. Devery, J. C. Conrad, D. W. C. MacMillan, F. Robert. A 2nd Mechanistic complexity in organo-SOMO activation. Angew. Chem. Int. ed.2010,122 (35):6106-6110; (c) H.-Y. Jang, J.-B. Hong, D. W. C. MacMillan. Enantioselective Organocatalytic Singly Occupied Molecular Orbital Activation:The Enantioselective-Enolation of Aldehydes. J. Am. Chem. Soc.2007,129 (22):7004-7005; (d) H. Kim, D. W. C. MacMillan. Enantioselective Organo-SOMO Catalysis:The a-Vinylation of Aldehydes. J. Am. Chem. Soc.2008,130 (2):398-399; (e) T. H. Graham, C. M. Jones, J. T. Nathan, D. W. C. MacMillan. Enantioselective Organo-Singly Occupied Molecular Orbital Catalysis:The Carbo-oxidation of Styrenes. J. Am. Chem. Soc.2008,130 (49):16494-16495; (f) M. Amatore, T. D. Beeson, S. P. Brown, D. W. C. MacMillan. Enantioselective Linchpin Catalysis by SOMO Catalysis:An Approach to the Asymmetric-Chlorination of Aldehydes and Terminal Epoxide Formation. Angew. Chem. Int. Ed.2009,121(28):5223-5226; (g) J. E. Wilson, A. D. Casarez, D. W. C. MacMillan. Enantioselective Aldehyde-Nitroalkylation via Oxidative Organocatalysis. J. Am. Chem. Soc.2009,131(32):11332-11334; (h) J. C. Conrad, J. Kong, B. N. Laforteza, D. W. C. MacMillan. Enantioselective-Arylation of Aldehydes via Organo-SOMO Catalysis. An Ortho-Selective Arylation Reaction Based on an Open-Shell Pathway. J. Am. Chem. Soc.2009,131(33):11640-11641; (i) S. Rendler, D. W. C. MacMillan. Enantioselective Polyene Cyclization via Organo-SOMO Catalysis. J. Am. Chem. Soc. 2010,132(14):5027-5029; (j) O. Gutierrez, F. Schoenebeck, K. N. Houk, D. W. C. MacMillan. Nature of Intermediates in Organo-SOMO Catalysis of a-Arylation of Aldehydes. J. Am. Chem. Soc.2010,132(17):6001-6005; (k) N. T. Jui, E. C. Y. Lee, D. W. C. MacMillan. Enantioselective Organo-SOMO Cascade Cycloadditions:A Rapid Approach to Molecular Complexity from Simple Aldehydes and Olefins. J. Am. Chem. Soc.2010,132(29):10015-10017; (1) J. F. V. Humbeck, S. P. Simonovich, R. R. Knowles, D. W. C. MacMillan. Concerning the Mechanism of the FeCl3-Catalyzed-Oxyamination of Aldehydes:Evidence for a Non-SOMO Activation Pathway. J. Am. Chem. Soc.2010, 132(29):10012-10014; (m) J. J. Devery, J. C. Conrad, D. W. C. MacMillan, R. A. Flowers. Mechanistic Complexity in Organo-SOMO Activation. Angew. Chem. Int. Ed. 2010,122(35):6242-6246.
    [16]S. Mayer, B. List. Asymmetric counteranion-directed catalysis. Angew. Chem., Int. Ed. 2006,45(25):4193-4195.
    [17]文石钢.不对称有机催化二苯氧膦/2-吲哚酮与烯酮的Michael加成反应研究.华东理工大学硕士论文.2010.
    [18](a) C. Pidathala, L. Hoang, N. Vignola, B. List. Direct Catalytic Asymmetric Enolexo Aldolizations. Angew. Chem. Int. Ed.2003,115(24):2891-2894.
    (b)R. Thayumanavan, F. Tanaka, C. F. Barbas, Direct Organocatalytic Asymmetric Aldol Reactions of a-Amino Aldehydes:Expedient Syntheses of Highly Enantiomerically Enriched anti-β-Hydroxy-a-amino Acids. Org. Lett.2004,6(20):3541-3544.
    [19]N. S. Chowdari, D. B. Ramachary, A. Cerdova, C. F. Barbas, Proline-catalyzed asymmetric assembly reactions:enzyme-like assembly of carbohydrates and polyketides from three aldehyde substrates. Tetrahedron Lett.2002,43(52):9591-9595.
    [20](a) C. Allemann, R. Gordillo, F. R. Clemente, P. H. Y.Cheong, K. N. Houk, Theory of Asymmetric Organocatalysis of Aldol and Related Reactions:Rationalizations and Predictions. Ace. Chem. Res.2004,37(8):558-569. (b) S. Bahmanyar, K. N. Houk, H. J. Martin, B. List. Quantum Mechanical Predictions of the Stereoselectivities of Proline-Catalyzed Asymmetric Intermolecular Aldol Reactions. J. Am. Chem. Soc.2003,125(9):2475-2479.
    [21]B. List, P. Pojarliev, H. J. Martin, Efficient Proline-Catalyzed Michael Additions of Unmodified Ketones to Nitro Olefins. Org. Lett.2001,3 (16):2423-2425.
    [22]B. List. Proline-catalyzed asymmetric reactions. Tetrahedron.2002,58 (28):5573-5590.
    [23]D. Enders, D. Seki. A Proline-Catalyzed Enantioselective Michael Additions of Ketones to Nitrostyrene. Synlett.2002 (1):26-28.
    [24]I. K. Mangion, D. W. C. MacMillan. Total Synthesis of Brasoside and Littoralisone. J. Am. Chem. Soc.2005,127(11):3696-3697.
    [25](a) B. List. Direct Catalytic Asymmetric a-Amination of Aldehydes. J. Am. Chem. Soc. 2002,124(20):5656-5657. (b) H. Lwamura, D. H. Wells, S. P. Mathew, M. Klussmann, A. Armstrong, D. G. Blackmond, Lewis Acid-Base Interactions between Metal Atoms and Their Applications for the Synthesis of Bimetallic Cluster Complexes. J. Am. Chem. Soc.2002,124(20): 5628-5629.
    [26]S. Saito; H. Yamamoto. Design of Acid-Base Catalysis for the Asymmetric Direct Aldol Reaction. Acc. Chem. Res.2004,37 (8):570-579.
    [27]M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A.. J(?)rgensen, Enantioselective Organocatalyzed a-Sulfenylation of Aldehydes. Angew. Chem., Int. Ed.2005,44(5): 794-797.
    [28]Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angew. Chem., Int. Ed.2005,44(27):4212-4215.
    [29]S. Brandau, A. Landa, J. Franzen, M. Marigo, K. A. J(?)rgensen, Organocatalytic Conjugate Addition of Malonates to α,β-Unsaturated Aldehydes:Asymmetric Formal Synthesis of (-)-Paroxetine, Chiral Lactams, and Lactones. Angem Chem., Int. Ed.2006, 45(26):4305-4309.
    [30]A. Ma, S. Zhu, D. Ma. Enantioselective organocatalytic Michael addition of malonates to α,β-unsaturated aldehydes in water. Tetrahedron Lett.2008,49(19):3075-3077.
    [31]Y. Wang, P. Li, X. Liang, J. Ye. Base-base bifunctional catalysis:A practical strategy for asymmetric Michael addition of malonates to α,β-unsaturated aldehydes. Adv. Synth. Catal.2008,350(9):1383-1190.
    [32]Y. Wang, P. Li, X. Liang,T. Y. Zhang, J. Ye. An efficient enantioselective method for asymmetric Michael addition of nitroalkanes to α,β-unsaturated aldehydes. Chem. Commun.2008,44(10):1232-1234.
    [33](a) K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, New Strategies for Organic Catalysis:The First Highly Enantioselective Organocatalytic Diels-Alder Reaction. J. Am. Chem. Soc.2000,122(17):4243-4244.
    [34](b) W. S. len, J. T. M. Wiener, D. W. C. MacMillan, New Strategies for Organic Catalysis:The First Enantioselective Organocatalytic 1,3-Dipolar Cycloaddition. J. Am. Chem. Soc.2000,122(40):9874-9875.
    [35]N. A. Paras, D. W. C. MacMillan, New Strategies in Organic Catalysis:The First Enantioselective Organocatalytic Friedel-Crafts Alkylation. J. Am. Chem. Soc.2001, 123(18):4370-4371.
    [36]J. F. Austin, D. W. C. MacMillan, Enantioselective Organocatalytic Indole Alkylations. Design of a New and Highly Effective Chiral Amine for Iminium Catalysis. J. Am. Chem. Soc.2002,124(7):1172-1173.
    [37]C. Bolm, T. Rantanen,I. Schiffers, L. Zani. Protonated Chiral Catalysts:Versatile Tools for Asymmetric Synthesis. Angew. Chem. Int. Ed.2005,44(12):1758-1763.
    [38]M. T. H. Fonseca, B. List. Catalytic Asymmetric Intramolecular Michael Reaction of Aldehydes. Angew. Chem. Int. Ed.2004,43 (30):3958-3960.
    [39]H. D. King, Z. Meng, D. Denhart, R. Mattson, R. Kimura, D. Wu, Q. Gao, J. E. Macor. Enantioselective Synthesis of a Highly Potent Selective Serotonin Reuptake Inhibitor. An Application of Imidazolidinone Catalysis to the Alkylation of Indoles with an α,β-Disubstituted α,β-Unsaturated Aldehyde. Org Lett.2005,7 (16):3437-3440.
    [40]M. S. Sigman, E. N. Jacobsen, Schif Base Catalysts for the Asymmetric Strecker Reaction Identified and optimizd from Parallel Synthetic Libraries. J. Am. Chem. Soc. 1998,120(19):4901-4902.
    [41]M. S. Sigman, P. Vachal, E. N. Jacobsen. A General Catalyst for the Asymmetric Strecker Reaction. Angew. Chem.2000,112(7):1336-1338.
    [42]J. T. Su, C. P. Vachal, E. N. Jacobsen. Practical Synthesis so a Soluble Schiff Base for the Asymmetric Strecker Reaction. Adv. Syn. Cat.2001,343(2):197-200.
    [43]P. Vachal, E. N. Jacobsen. Enantioselective Catalytic of HCN to Ketoimines. Catalytic Synthesis of Quaternary Amino Acids. Org. Lett.2000,2(6):867-870.
    [44]A. G.Wenzel, E. N. Jacobsen. Asymmetric Catalytic Mannich Reactions Catalyzed by Urea Derivatives:Enantioselective Synthesis of β-Aryl-β-Amino Acids. J. Am. Chem. Soc.2002,124(44):12964-12965.
    [45]T. Okino. Y. Hoashi. Yoshiji Takemoto. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. J. Am. Chem. Soc.2003,125 (42):12672-12673.
    [46]J. Xie, W. Chen. R. Li, M. Zeng, W. Du, L. Yue, Y. Chen, Y. W, J. Zhu, J. Deng. Highly Asymmetric Michael Addition to α,β-Unsaturated Ketones Catalyzed by 9-Amino-9-deoxyepiquinine.Angew. Chem. Int. Ed.2007,46(3):389-392.
    [1]V. A. Soloshonok, H. Ueki, T. K. Ellis. New Generation of Modulor Nucleophilic Glycine Equivalents for the general Synthesis of a-Amino Acids. Synlett.2009,5:704-715.
    [2]J. Wang, T. Shi, G. Deng, H. Jiang, H. Liu. Highly Enantio- and Diastereoselective Mannich Reactions of Chiral Ni(II) Glycinates with Amino Sulfones. Efficient Asymmetric Synthesis of Aromatic α,β-Diamino Acids. J. Org. Chem.2008,73(21): 8563-8570.
    [3]V. A. Soloshonok, D. V. Avilov, V. P. Kukhar, V. I. Tararov, et al. Asymmetric Aldol Reactions of Chiral Ni(II)-Complex of Glycine with Aliphatic Aldehydes. Stereodivergent Synthesis of syn-(2S)-and syn-(2R)-β-Alkylserines. Tetrahedron: Asymmetry.1995,6(7):1741-1756.
    [4]Y. N. Belokon, N. B. Bespalova, T. D. Churkina, et al. Synthesis of y-Amino Acids via Asymmetric PhaseTransfer-Catalyzed Alkylation of Achiral Nickel(II) Complexes of Glycine-Derived Schiff Bases. J. Am. Chem. Soc.2003,125(42):12860-12871.
    [5]B. Hao, G. Zhao, K. T. Patrick, et al. Reactivity and Chemical Synthesis of L-Pyrrolysine-the 22(nd) Genetically Encoded Amino Acid. Chem. Biol.,2004,11(9): 1317-1324.
    [6]V. A. Soloshonok, C. Cai, T. Yamada, H. Ueki, et al. Michael Addition Reactions between Chiral Equivalents of a Nucleophilic Glycine and (S)-or (R)-3-[(E)-Enoyl]-4-phenyl-1,3-oxazolidin-2-ones as a General Method for Efficient Preparation of β-Substituted Pyroglutamic Acids. Case of Topographically Controlled Stereoselectivity. J. Am. Chem. Soc.2005,127(43):15296-15303.
    [1]K. Izawa, T. Onishi. Industrial Syntheses of the Central Core Molecules of HIV Protease Inhibitors. Chem. Rev.2006,106(7):2811-2827.
    [2]N. B. Carter, A. E. Nadany, J. B. Sweeney. Recent Developments in the Synthesis of Furan-2(5H)-Ones. J. Chem. Soc., Perkin Trans.1.2002(21):2324-2342.
    [3]Y.-Q. Jiang, Y.-L.Shi, M. Shi. Chiral Phosphine-Catalyzed Enantioselective Construction of y-Butenolides Through Substitution of Morita-Baylis-Hillman Acetates with 2-Trimethylsilyloxy Furan. J. Am. Chem. Soc.2008,130(23):7202-7203.
    [4]B. M. Trost, J. Hitce. Direct Asymmetric Michael Addition to Nitroalkenes:Vinylogous Nucleophilicity under Dinuclear Zinc Catalysis. J. Am. Chem. Soc.2009,131(13): 4572-4573.
    [5]J. Wang, C. Qi, Z. Ge, T. Cheng, R. Li. Efficient Direct Asymmetric Vinylogous Michael Addition Reactions of y-Butenolides to Chalcones Catalyzed by Vicinal Primary-Diamine Salts. Chem. Commun.2010,46(12):2124-2126.
    [6]H. Huang, F. Yu, Z. Jin, W. Li, W. Wu, X. Liang, J. Ye. Asymmetric Vinylogous Michael Reaction of α,β-Unsaturated Ketones with y-Butenolide under Multifunctional Catalysis. Chem. Commun.2010,46(32):5957-5959.
    [7]S. P. Brown, N. C. Goodwin, D. W. C., MacMillan. The First Enantioselective Organocatalytic Mukaiyama-Michael Reaction:A Direct Method for the Synthesis of Enantioenriched γ-Butenolide Architecture. J. Am. Chem. Soc.2003,125(5):1192-1194.
    [1]D. Enders, L. Tedeschi, J. W. Bats. Asymmetric Synthesis of a-Substituted β-Nitrophosphonic Acid By Phospha-Analogous Michael Addition to Amoratic Nitroalkenes. Angew. Chem., Int. Ed. 2000,39(24):4605-4607.
    [2]G. Castelot-Deliencourt, E. Roger, X. Pannecoucke, J.-C. Quirion. Diastereoselective Synthesis of Chiral Amidophosphonates by 1,5-Asymmetric Induction. Eur. J. Org. Chem.2001, (16):3031-3038.
    [3](a) B. Wiese, G. Knuhl, D. Flubacher, J. W. PrieB, B. Ulriksen, K. Brodner, and G. Helmchen. Syntheses of New Chiral Phosphane Ligands by Diastereoselective Conjugate Addition of Phosphides to Enantiomerically Pure Acceptor-Substituted Olefins from the Chiral Pool. Eur. J. Org. Chem.2005, (15):3246-3262. (b) Y. Li, S. D. Aubert, E. G. Maes, F. M. Raushel. Enzymatic Resolution of Chiral Phosphinate Esters. J. Am. Chem. Soc.2004,126(29):8888-8889.
    [4]D. Enders, A. Saint-Dizier, M.-I. Lannou, A. Lenzen. The Phospha-Michael Addition in Organic Synthesis. Eur. J. Org. Chem.2006, (1):29-49.
    [5]V. P. Kukhar, H. R. Hudson, Aminophosphonic and Aminophosphinic Acids. Wiley & Sons:New York,2000.
    [6]W. Tang, X. Zhang. New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chem. Rev.2003,103(8):3029-3069.
    [7]G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, A. Mazzanti, L. Sambri, P. Melchiorre. Organocatalytic asymmetric hydrophosphination of nitroalkenes. Chem. Commun.2007, 7:722-724.
    [8]K. Issleib, P. V. Malotki, J. Prakt. For the addition of alkali-phosphorus compounds to nitrostyrene. Chem. (Leipzig).1973,315:463.
    [9]D. Enders, L. Tedeschi, J. W. Bats. Asymmetric Synthesis of a-Substituted β-Nitrophosphonic Acids by Phospha-Analogous Michael Addition to Aromatic Nitroalkenes. Angew. Chem., Int. Ed.2000,39(24):4605-4607.
    [10]D. K. Wicht, D. S. Glueck. "Hydrophosphination and related reactions":in Catalytic Heterofunctionalizations (Eds.:A. Togni, H. GrKtzmacher), Wiley-VCH, Weinheim, 2001,8.
    [11]M. Terada, T. Ikehara, H. Ube. Enantioselective 1,4-Addition Reactions of Diphenyl Phosphite to Nitroalkenes Catalyzed by an Axially Chiral Guanidine. J. Am. Chem. Soc. 2007,129(46):14112-14113.
    [12]X. Fu, Z. Jiang, C.-H. Tan. Bicyclic guanidine-catalyzed enantioselective phospha- Michael reaction:synthesis of chiral β-aminophosphine oxides and β-aminophosphines. Chem. Commun.2007,21(47):5058-5060.
    [13]Y. Zhu, J. P. Malerich, V. H. Rawal. Squaramide-Catalyzed Enantioselective Michael Addition of DiphenylPhosphite to Nitroalkenes. Angew. Chem. Int. Ed.2010,49(1), 153-156.
    [14]G. D. Joly, E. N. Jacobsen. Thiourea-Catalyzed Enantioselective Hydrophosphonylation of Imines:Practical Access to Enantiomerically Enriched y-Amino Phosphonic Acids. J. Am. Chem. Soc.2004,126(13):4102-4103.
    [15]T. Akiyama, H. Morita, J. Itoh, K. Fuchibe. Chiral Br(?)nsted Acid Catalyzed Enantioselective Hydrophosphonylation of Imines:Asymmetric Synthesis of y-Amino Phosphonates. Org. Lett.2005,7(13):2583-2585.
    [16]D. Pettersen, M. Marcolini, L. Bernardi, F. Fini, R. P. Herrera, V. Sgarzani, A. Ricci. Direct Access to Enantiomerically Enriched y-Amino Phosphonic Acid Derivatives by Organocatalytic Asymmetric Hydrophosphonylation of Imines. J. Org. Chem.2006, 71(16):6269-6272.
    [17]D. Zhao, Y. Yuan, A. S. C. Chan, R. Wang. Highly Enantioselective 1,4-Addition of Diethyl Phosphite to Enones Using a Dinuclear Zn Catalyst. Chem. Eur. J.2009,15(12): 2738-2741.
    [18]J.-Ju. Feng, X.-F. Chen, M. Shi, W.-L. Duan. Palladium-Catalyzed Asymmetric Addition of Diarylphosphines to Enones toward the Synthesis of Chiral Phosphines. J. Am. Chem. Soc.2010,132(16):5562-5563.
    [19]S. Wen, P. Li, H. Wu, F. Yu, X. Liang, J. Ye. Enantioselective organocatalytic phospha-Michael reaction of a,(3-unsaturated ketones. Chem. Commun.2010,46(26): 4806-4808.
    [20]E. Maerten, S. Cabrera, A. Kj(?)rsgaard, K. A. J(?)rgensen. Organocatalytic Asymmetric Direct Phosphonylation of α,β-Unsaturated Aldehydes:Mechanism, Scope, and Application in Synthesis. J. Org. Chem.2007,72(23):8893-8903.
    [21]I. Ibrahem, R. Rios, J. Vesely, P. Hammar, L. Eriksson, F. Himo, A. Cordova. Enantioselective Organocatalytic Hydrophosphination of a,P-Unsaturated Aldehydes. Angew. Chem. Int. Ed.2007,46(24):4507-4510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700