高真空多层绝热中接触导热数值计算和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
被称为“超级绝热”的高真空多层绝热技术的研究热浪始于上个世纪六十年代。此后,由于层间固体接触导热及残余气体传热等问题难以得到满意的解决,研究步伐开始逐渐放慢。
     本文尝试着突破以上所提到的研究瓶颈,并在前人研究的基础之上,提出了多层材料中理想传热模型,用牛顿迭代法计算了国外和本文实验中测量的高真空多层绝热材料,数值计算出绝热层最小比热流,从而能够更好比较工程应用中不同高真空多层绝热层的绝热性能。文章首先简介了高真空多层绝热技术研究的历史和现状,然后讨论了高真空多层绝热计算中理论模型、接触导热的理论模型和高真空多层绝热层中的固体接触导热,进而针对层间固体接触导热计算这一难点,提出一个层间固体接触导热、残余气体传热和辐射传热三种传热途径相分离的逐层实际传热模型,通过将层间固体接触导热计算中众多不可精确测量的因素的影响归于接触面积比f的方法,间接的解决了层间固体接触导热计算的难题。利用所建立的模型,可以很方便的得到三种层间传热途径的传热量在总传热量中所占的比重,这对于生产实际无疑是十分有意义的。计算模型分析实验数据表明,模型计算的比热流和层间温度分布与实验测量结果相吻合,比热流计算误差可控制在10%以内。这表明本文提出的数值计算模型用于分析高真空多层材料中的传热是可行的。为探索改善工程应用中高真空多层绝热层绝热性能的方法,本文实验研究中首先测量了包扎在实际低温储罐上不同结构的高真空多层绝热层的绝热性能,并分析了环境温度、环境压力,层数、不同隔热材料的组合等因素对工程应用中的高真空多层材料绝热性能的影响;然后利用多层绝热层中的低温真空环境测量5层干法纸在不同温度区间内的表观导热系数,在有限实验数据的基础上用牛顿迭代数值拟和出计算5层干法纸表观导热系数的经验公式,对比经验公式计算值和实验测量值,发现二者的误差在10%以内,因此在工程应用中可用本文的经验公式计算干法纸在低温下的导热系数。最后在忽略5层干法纸间残余气体导热和单层薄干法纸本身固体导热基础上,计算和分析多层干法纸接触界面在低温真空下的接触热阻,其大小与国外实验测量值接近。
The peak of R&D movement of multi-layer insulation (MLI), the so-called“super insulation”, began in 1960s. However, due to the hardness of solving questions of interlayer solid heat conduction and residual gas conduction, the pace of research has been slowed.
     This thesis tries to solve the two questions mentioned above, so the breakthrough in theoretical research could facilitate the utilization of MLI in practical engineering. Firstly, an ideal heat transfer model is proposed,(namely,in this model,only radiation heat transfer occurs in ideal multilayer insulation which the reflector is installed without spacerand contact)by using this model,the smallest limit of real multilayer insulation can be numerically calculated through Newton interative method,so the better comparison of insulating efficiency among different real multilayer insulation becomes feasible; Secondly a layer-by-layer heat transfer model based on separation of three ways of heat transfer inside layers (that is, solid contact conduction, residual gas conduction and radiation) is built. Through summing up all the unknown influences of diversified factors related with solid contact conduction to a coefficient of“f”, which stands for the ratio between actual contact area and nominal contact area between two contacting solids, the model gets the calculated total heat flux and corresponding heat flux of solid thermal contact conductance, radiation and residual gas conduction, the results indicate that the errors are within 10%, which undoubtedly proves the validity of this model. At the same time, the calculated temperature distribution of shields is coincided with the experimental results.
     Next focus is experimental study of different multilayer insulation and effective thermal conductivity of fiber sheets .First by testing the practical multilayer insulation in a cryogenic tanker, which is the carilometer in my paper,some affecting factors on multilayer insulation are analysed, then by using the low-temperature and vacuum environment caused by multilayer insulation, the effective thermal conductivity of multiple fiber paper with 5 layers is tested.Through Newton interativemethod,an empirical formula is deduced to computer the thermal conductivity of fiber paper,The errors between experimental thermal conductivity and the calculated conductivity by empirical formula are below10%,so the formula of fiber conductivity can be applied to practical enginnering. Finally, based on the assumption that the thermal contact resistance is much larger than other thermal resistance caused by gas conduction and bulk solid conduction among the fiber sheets, the thermal contact resistance at the interface of two layers of fiber paper is calculated, the results are comparable with other experimental results in the literature.
引文
[1] 任亚杰,多层隔热体的设计,汉中师范学院学报(自然科学)Vol.18 No.1 June, 2000
    [2] 周充,上海交通大学硕士学位论文,2-4
    [3] 汪荣顺,上海交通大学博士论文第二章,高真空多层绝热层内温度与压强分布研究
    [4] 符锡理,真空多层绝热夹层真空度研究,低温工程,1991.6
    [5] 汪荣顺,吴剑林,顾安忠,6m3 高真空多层绝热液氧容器真空性能,低温工程,1999.4
    [6] 朱公先,金才宏,林美英,多层绝热中减小层间残余气体传热的有效途径,深冷技术,1979.3
    [7] T.L Halaczek, J.Rafalowicz. Heat transport in self-pumping multilayer insulation, Cryogenics, 26(1986), 373-376
    [8] 徐烈,朱卫东,汤晓英,低温绝热与贮运技术,机械工业出版社,1999.5
    [9] 汪荣顺,鲁雪生,顾安忠,周充,层间压强对多层绝热性能的影响,低温工程,1999.4
    [10] 周充,汪荣顺,鲁雪生,顾安忠,高真空多层绝热的主要影响因素,真空与低温,1998.3
    [11] 符锡理,真空多层绝热理论研究和传热计算,低温工程,1989.2
    [12] 朱公先,多层绝热中一个新的比热流理论计算公式的建立和实验,低温工程,1983(3)
    [13] Toshiyuki Amano. Thermal Performance of Multilayer Insulation. Part 1. Derivation of a Prediction-Based Heat-Flux Equation. Heat Transfer-Japanese Research, 22(8),1993,747-762
    [14] Toshiyuki Amano. Thermal Performance of Multilayer Insulation. Part 2. Heat Transfer-Japanese Research, 23(4),1994,381-398
    [15] A.Matsuda, H. Yoshikiyo. Simple structure insulation material preperties for multilayer insulation,Cryogenics,March,1980,135-138
    [16] S.Jacob, et. al., Investigations into the thermal performance of Multilayer Insulation (300-77K), Part2 :Thermal analysis, Cryogenics, 1992, 32(12),1147-1153
    [17] Tien,C.L. and Cunnington, G.R. Cryogenic insulation heat transfer, Adv. Heat Transfer ,1993,(9), 349~917
    [18] Streed,E.R.,Cunnington, G.R. and Zierman, C.A. Performance of multilayerinsulation system for 300-800K temperature range. Prog Astro Aero ,18,1965,735-772
    [19] Bell G.A., Nast T.C. and Wedel R.K. Thermal performance of multilayer insulations applied to small cryogenic tankage, Adv. Cryog. Eng. , 1975 (22), 265~273
    [20] C.K.Krishnaprakas, et al. Heat transfer correlations for multi-layer insulation systems, Cryogenics, 40(2000), 431-435
    [21] S.L.Bapat, Performance prediction of Multilayer Insulation, Cryogenics, 1990,30(8),700-710
    [22] Cooper M G, Mikic B B, Yovanovich M M. Thermal conductance. Int.J. Heat Mass Transfer, No.12,1969: 279-300
    [23] D.J. Whitehouse, J.F. Archard. The properties of random surface of significance in their contact. Proc. R. Soc, London, A316,1970:97-121
    [24] A.W. Bush, R.D. Gibson, T.R. Thomas. The elastic contact of a rough surface. Wear, No.35, 1975:87-111
    [25] M.R. Sridhar, M.M. Yovanovich. Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments, ASME J. Heat Transfer, No.118,1996: 3-9
    [26] Majumdar A, Tien, C L. Fractal Network Model for Contact Conductance. J.Heat Transfer,No.113,1991: 516-525
    [27] 黄志华,韩玉阁,王如竹.用分热阻讨论接触热阻问题.上海交通大学学报,V35 (No.8), 2001
    [28] 赵兰萍.低温固体界面间接触传热的研究.上海交通大学博士学位论文,2000.
    [29] 钟明,程曙霞,孙承纬,何立群.接触热阻的蒙特卡罗法模拟.高压物理学报,V16 (No.4),2002
    [30] Michael A.Stubblefield, Su-Seng Pang,Vic A.Cundy. Heat loss insulated pipe-the influence of thermal contact resistance:a case study. Composite:PartB, V27(B),1996:85-93
    [31] C.V. Madhusudana. Thermal contact conductance. Mechanical Engineering Series Spring-Verlay, New York Inc,1996
    [32] 概率论与数理统计.高等教育出版社.1996
    [33] Mikic BB. Thermal contact conductance, theoretical considerations. Int J Heat Mass transfer 12,1969,205-214
    [34] R.S. Mikhalchenko, V.F.Getmanets, N.P. pershin, Yu. V. Batozskil. Theoreticaland experimental investigation of radiative-conductive heat transfer in multilayer insulation. Cryogenics,V25,1985:275-278
    [35] Mikhalchenko, R.S. N.P. pershin, Getmanets,A.G. Inzh Fiz J,V11(5),1966:634
    [36] S.Jacob, et. al., Investigations into the thermal performance of Multilayer Insulation (300-77K), Part1 :Calorimetric studies, Cryogenics, 1992, 32(12),1137-1146
    [37] 白云,钱培德,Fortran 90 程序设计,华东理工大学出版社,2006
    [38] 彭国伦,Fortran 95 程序设计,中国电力出版社,2004
    [39] 陈国邦,张鹏,低温绝热与传热技术,科学出版社,2004.2
    [40] R.G. Scurlock, Saull. Development of multilayer insulations with thermal conductivities below 0.1μ w·cm-1K-1.Cryogenics ,No.5,1976:303-311
    [41] R.H. kropschot. Multiple layer insulation for cryogenic application. Cryogenics,March,1961,171-177
    [42] S.L.Bapat, et. al., Experimental Investigations of Multilayer Insulation, Cryogenics, Vol.30, No.8,1990,P711~719
    [43] 肖志宏,上海交通大学硕士论文,2004 年
    [44] A. Hofmann. The thermal conductivity of cryogenic insulation materials and its temperature dependence. Cryogenics,46,2006,815-824
    [45] [美]S.A.沙夫,P.L.钱伯,气体动力学基本原理 H 编 稀薄气体的流动,科学出版社,1988.1
    [46] S.Song, M.M.Yovannovich, Correlation of Thermal Accommodation Coefficient for Engineering Surfaces, in Fundamentals of Conduction and Recent Developments in Contact Resistance, Imber M,eds., ASME, United Engineering Center, New York, 1987: 107-116
    [47] 王如竹,王荣顺,低温系统,上海交通大学出版社,2000
    [48] 李庆扬等,数值分析,华中科技大学出版社,2004
    [49] Q.S.Shu, R.W.Fast and H.L.Hart. Heat flux from 277 to 77K through a few layers of multilayer insulation. Cryogenics, Vol26,1986,671-677
    [50] Q.S.Shu. Systematic study to reduce the effects of cracks in multilayer insulation, Part 1:theoretical model. Cryogenics, vol 27, May,1987,249-256
    [51] I.S.Zhitomirskij,A.M.Kislov and V.G. Romanenko. A theoretical model of the heat transfer processes in multilayer insulation. Cryogenics,May,1979,265-268
    [52] Peng li,Huier Cheng.Thermal analysis and performance study for multilayer insulation material used in space. Applied ThermalEngineering,26(2006),2020-2026
    [53] H. Reiss.A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks,Part I: Stationary conditions. Cryogenics,44(2004),259-271
    [54] H. Reiss.A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks,Part II: Unsteady-state conditions(cool down period). Cryogenics,46(2006),864-872
    [55] H. Reiss.A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks,Part II: Unsteady-state conditions(cool down period). Cryogenics,46(2006),864-872
    [56] H. Reiss.A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks,Part II: Unsteady-state conditions(evacuation period). Cryogenics,46(2006),873-880
    [57] 曹玉璋等译,热辐射传热,科学出版社,1990
    [58] Price J W. Measuring the gas pressure within high-performance insulation blacket. Adv.Cryg.Eng,1967(13):66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700