换流变压器交直流复合电场和极性反转电场算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换流变压器是高压直流输电系统中的重要设备之一,其阀侧绕组在正常工况下承受含有高次谐波成分的交直流复合电场,在潮流反转时又承担极性反转瞬态电场,准确计算其油纸绝缘结构中的电场是换流变压器绝缘设计的基础,深入研究换流变压器交直流复合电场和极性反转瞬态电场分布特征对换流变压器的设计、制造和维护具有重要意义。本文对换流变压器油纸绝缘结构交直流复合电场和极性反转瞬态电场计算方法进行了深入的研究,主要内容如下:
     (1)交直流复合电场的频域有限元计算方法研究
     换流变压器阀侧绕组承受的交直流复合电压中不仅含有直流分量和基频交流分量,还含有高次谐波分量。目前变压器设计人员普遍采用的分析方法只将直流电场叠加交流电场作为交直流复合电场,忽略了高次谐波的影响。本文采用频域有限元方法分析绝缘介质电导率线性条件下的交直流复合电场,考虑了高次谐波电压分量的影响。对绝缘介质电导率-电场强度非线性条件下的交直流复合电场,提出将定点法和线性化迭代方法相结合,然后采用频域有限元方法进行计算。分别采用频域有限元方法、瞬态法和谐波平衡有限元方法分析了典型油纸绝缘结构的交直流复合电场,对比结果表明频域有限元算法既可以比瞬态法减少计算时间,又可以比谐波平衡有限元法节省计算机内存,适合实际换流变压器的交直流复合电场分析。本文同时对油纸绝缘结构典型模型在电阻率为线性、非线性和非线性各向异性条件下的交直流复合电场进行了计算,对计算结果作了比较分析。
     (2)绝缘介质电导率-电场强度非线性条件下换流变压器极性反转过程持续时间对极性反转完成时刻电场分布的影响
     目前国内外学者在换流变压器极性反转电场分析时没有同时考虑绝缘介质电导率非线性和短时极性反转过程的影响,本文详细研究了绝缘介质电导率-电场强度非线性条件下,短时极性反转过程持续时间对极性反转完成时刻电场分布的影响。分析结果表明,在绝缘介质电导率-电场强度非线性条件下,极性反转过程持续时间对反转完成时刻的电场分布影响很大,尤其是绝缘裕度较低的变压器油中电场强度值变化很大。如果同时考虑电导率-电场强度非线性及2分钟的短时极性反转过程,则反转完成瞬间油中最大电场强度值要比瞬间完成的电场强度值小50%,这对绝缘设计具有重要意义。
     (3)分析换流变压器极性反转电场的节点电荷(密度)-电位有限元方法
     目前国内外学者在分析换流变压器极性反转过程时,往往只是定性地用空间电荷在极性反转前后不能突变或变化量很小来解释电荷及其电场对换流变压器极性反转电场的影响,没有对油纸绝缘结构中的空间电荷做定量地研究。本文提出一种能够直接计算换流变压器极性反转瞬态过程中空间电荷及其电场分布的数值计算方法—节点电荷(密度)-电位有限元法,该方法直接以节点电荷(密度)和电位为待求量,计算精度较高。在得到空间电荷密度的基础上,提取导体表面电荷密度,从而可以准确地计算换流变压器金属结构件(比如静电环)表面法向电场强度,为结构设计提供依据。
     (4)一台±500kV换流变压器极性反转电场和电荷分布的计算
     利用本文提出的节点电荷(密度)—电位有限元方法,对一台±500kV换流变压器在极性反转电压下的瞬态电场、电荷及其电荷电场分布进行了计算分析。对比了绝缘介质电导率各向同性线性/非线性、各向异性线性/非线性条件下的瞬态电场和电荷分布,分析了瞬态过程中绝缘介质典型位置电场、电荷和静电环表面法向电场强度的变化特征。
The valve siding of the converter transformer, which is one of the most important equipment in HVDC (High Voltage Direct Current) project, is imposed on periodic AC-DC hybrid electric fields under the operation condition, which contains higher harmonic voltage, and PR (polarity Reversal) electric field when the power flow reversing. To accurately compute the electric fields in oil-paper insulation structure under the above conditions is the foundation of insulation design and the further study on the distribution characteristics of the AC-DC hybrid electric field and PR electric field has great significance to converter transformer's design, manufacture and maintenance. This thesis is focus on the algorithms of calculating the AC-DC hybrid electric field and PR electric field in oil-paper insulation structure and the main content is as follow:
     (1) Study the algorithm of computing the AC-DC hybrid electric field by FEM in frequency
     The voltage imposed on the valve siding of converter transformer not only contains dc and ac component, but also has higher harmonic components. It is a common method for the designers to obtain the AC-DC hybrid electric field by directly superimposing the dc electric field and static electric field and neglecting the higher harmonic components. In this thesis, the FEM in frequency is adopted to analyze the hybrid electric fields in the linear dielectrics and the FEM in frequency combing the fixed point method and linearization method is proposed to get the periodic electric field distribution in the electric dependent dielectrics. The FEM in frequency is fully compared with transient method and the HBFEM (Harmonic Balance FEM) in analyzing the steady hybrid electric fields in linear and nonlinear dielectrics of a typical oil-paper model. The results show that FEM in frequency can not only reduce computational time compared to transient method, but also save computer memory compared to HBFEM and can be adopted to obtain the AC-DC hybrid electric field distribution of the actual converter transformer. The electric fields in linear, nonlinear and anisotropic nonlinear dielectrics are obtained and analyzed in this paper.
     (2) Study the influence on the electric field distribution at the end of each PR by the duration of the PR process in the electric dependent dielectrics
     Because the current analysis of PR electric fields has not took the electric dependent nonlinearity and the duration of the PR process into consideration at the same time, this paper deeply study the influence on the electric distribution at the end of each PR by the short duration of PR process in the electric dependent nonlinear dielectrics. The computational results show that the duration time of the PR process has great influence on the electric field distributions in the electric dependent dielectrics, especially for the oil, which has low insulation margin. The maximum electric field of oil in the nonlinear dielectrics, which PR duration is2minutes, is about50percent less than the corresponding ones assuming the PR taking place without any delay, and the less electric strength is benefical for the insulation design.
     (3) The node charge density-potential finite element method for the PR's electric field
     It is usually qualitatively pointed out that the charges and their induced electric fields could not change suddenly or have small variations and have influence on the PR electric field when analyzing the PR's transient electric field, and should be quantitatively study the charges and their charge induced electric fields. This paper propose an algorithm to obtain the charge and potential at the same time, which is called node charge (density)-potential finite element method, to study the transient electric field and charge. The method directly uses the node charge and potential as variables and has higher accuracy. The charge densities on the metal structure, such as static ring in converter transformer, are adopt to obtain the normal electric field accurately, which can provide guidelines for the structure design.
     (4) Compute the electric field, charge and charge induced electric field of a±500kV converter transformer under PR voltage
     The transient electric fields and charge distributions of a±500kV converter transformer under PR voltage are obtained by the proposed node charge(density)-potential finite element method. The transient electric fields, charges and charge induced electric fields in isotropic linear dielectrics, isotropic nonlinear dielectrics, anisotropic linear dielectrics and anisotropic nonlinear dielectrics are compared and study the variety characteristics of the electric fields, charge distributions and the normal electric fields of the static ring.
引文
[1]国家电网公司.“三华”同步电网知识手册[M].北京,中国电力出版社,2011:32-44
    [2]赵畹君.高压直流输电工程技术[M].北京,中国电力出版社,2004:7-10
    [3]舒印彪.中国直流输电的现状及展望[J].高电压技术,2004,30(11):1-2
    [4]李立涅.特高压直流输电的技术特点和工程应用[J].电力系统自动化,2005,24: 5-6
    [5]文闿成.高压直流设备的绝缘问题[J].华中电力,1993,5:9-14
    [6]文凯成,王瑞珍.换流变压器阀侧试验对绝缘考核的有效性(上)[J].变压器,1997,34(11):10-15
    [7]宓传龙.超高压换流变压器和平波电抗器绝缘结构简述[J].高压电器,2003,39(1): 7-15
    [8]林正平.高压直流换流变压器引出线的绝缘结构[J].变压器,2003,40(7):8-11
    [9]贺以燕.高压直流换流变压器结构、标准及试验[J].电力设备,2006,7(11):53-57
    [10]Ganger B E. The breakdown voltage of oil gaps with high DC voltage[J]. IEEE Transactions on Power Apparatus and Systems,1986,87(10):1840-1843
    [11]Kawaguchi Y, Murata H, Ikeda M. Breakdown of transformer oil[J]. IEEE Transactions on Power Apparatus and Systems,1972,91(3):9-23
    [12]Ohshima I, Motegi S, Honda M, Yanari T, Ebisawa Y. HVDC breakdown of transformer oil and the effect of space charge on it[J]. IEEE Transactions on Power Apparatus and Systems,1983,102(7):2208-2215
    [13]Takahashi E, Tsutsumi Y, Okuyama K, et al. Patial discharge characteristics of oil-immersed insulation systems under DC, combined DC-AC and DC reversed polarity voltage [J]. IEEE Transactions on Power Apparatus and Systems,1976, 95(1):411-420
    [14]Bletsky Z M, Butkevitch V G, Lokhanin A K, et al. Insulation problems in power transformers for HVDC transmissions. CIGRE,1976,12-04:1-9
    [15]Kurita A, Takahashi E, Ozawa J, etal. DC flashover voltage characteristics and their calculation method for oil-immersed insulation systems in HVDC transformers [J]. IEEE transactions on Power Delivery,1986,1(3):184-190
    [16]Rongsheng L, G Wahlstrom. Measurements of the DC electric field in liquid impregnated pressboard using the pressure wave propagation technique. Conference Record of the 1994 IEEE International Symposium on Electrical Insulation.1994,103-106
    [17]Hikita M, M Matsuoka, et al. Kerr electro-optic field mapping in transformer oil/PET film composite insulation system for DC voltage application. Proceedings of the 4th International Conference on Properties and Applications of Dielectric Materials,1994,71-74.
    [18]Hikita M, M Matsuoka, et al. Kerr electro-optic field mapping and charge dynamics in impurity-doped transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1996,3(1):80-86
    [19]Okubo H, R Shimizu, et al. Kerr electro-optic field measurement in transformer oil/solid dielectrics composite insulation system. Conference Record of the ICDL '96 12th International Conference on Conduction and Breakdown in Dielectric Liquids. Roma, Italy, July 15-19,1996,389-392
    [20]Hikita M, A Sawada, et al. Optical measurement of electric field in transformer oil/pressboard composite insulation system and discussion on charge dynamics. Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials, Seoul Korea, May 25-30,1997,298-302
    [21]Okubo H, R Shimizu, et al. Kerr electro-optic field measurement and charge dynamics in transformer-oil/solid composite insulation systems[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1997,4(1):64-70
    [22]Okubo H, A Sawada, et al. Direct measurement of electric field using Kerr electro-optic method in transformer oil/pressboard composite system at DC polarity reversal[C]. Conference Record of the 1998 IEEE International Symposium on Electrical Insulation, Arlington, Virginia, USA, June 7-10,1998, 486-489
    [23]Kato K, Y Hashiba, et al. Study on charge behavior in flowing transformer oil/pressboard composite insulation system using electro-optic field measurement[C]. Proceedings of the 13th International Conference on Dielectric Liquids(ICDL'99), Nara, Japan, July 20-25,1999,349-352
    [24]Miyao H., E Mori, et al. The electrostatic charging tendency of in-service oils and the investigation of application method to the flow electrification diagnosis of the transformer[C]. Proceedings of the 13th International Conference on Dielectric Liquids(ICDL'99), Nara, Japan, July 20-25,1999,509-512
    [25]Okubo H, Y Hashiba, et al. Investigation of charge behavior in flowing transformer oil/pressboard composite insulation system by electro-optic field measurement[C]. Conference Record of the 2000 IEEE Industry Applications Conference,2000,732-738
    [26]Wakamatsu M., K. Kato, et al. The effects of. insulator structure and insulating oil to charge accumulation in oil-immersed transformers.2003. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials[C], Nagoya, Japan, June 1-5,2003,483-486
    [27]Ohshima I, Maikawa Y, Hamano T, et al. HVDC field characteristics with an without AC superposed in converter transformer[C].International Symposium on High Voltage Engineering. Milan,1979:1-4
    [28]Gafvert U, O Hjortstam, et al. Modeling and Measurements of Electric Fields in Composite Oil/Cellulose Insulation[C].2006 Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2006,154-157
    [29]Nara T., K Kato, et al. Study on dielectric breakdown at DC polarity reversal in oil /pressboard-composite insulation system[C].2009 Annual Report Conference on Electrical Insulation and Dielectric Phenomena(CEIDP'09),2009,588-591
    [30]Raghuveer M R, Z Kolaczkowski, et al. Surface electric strength of processed pressboard under composite AC and DC and conventional stresses [J]. IEEE Transactions on Electrical Insulation,1990,25(2):341-350
    [31]Tulasi Ram S S, M Kamaraju, et al. Flashover behavior of converter transformer insulation subjected to superimposed ac and dc voltages. Annual Report Conference on Electrical Insulation and Dielectric Phenomena,1994
    [32]Sarathi R, G. Koperundevi. Investigation of partial discharge activity of single conducting particle in transformer oil under DC voltages using UHF technique. Science, Measurement & Technology, IET,2009,3(5):325-333
    [33]Sarathi R, G Koperundevi. UHF technique for identification of partial discharge in a composite insulation under AC and DC voltages [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(6):1724-1730
    [34]IEEE working group on dielectric tests for HVDC stressed transformers and reactors. Recommended dielectric tests and test procedures for converter transformers and smoothing reactors [J]. IEEE transactions on Power Delivery, 1986,1(3):161-166
    [35]IEEE Std C57.129TM-2007. IEEE Standard for General Requirements and Test Code for oil-Immersed HVDC Converter Transformers[S], New York,2008
    [36]Takahashi E., Shirasaka Y., Okuyama K., Analysis of anisotropic nonlinear electric field with a discussion of dielectric tests for converter transformer and smoothing reactors[J]. IEEE transactions on PD,1994,9(3):1480-1486
    [37]Uno G, Albert J, Christer T., et al. Electrical Field distribution in transformer oil[J]. IEEE transactions on Electrical insulation,1992,27(2):647-659
    [38]Ola Widlund, Tor Laneryd. Numerical analysis of electric fields in composite oil-cellulose insulation[C].2010 Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2010,27(2):647-659.
    [39]张燕秉,郑劲,聂定珍.大型换流变压器油流带电问题的分析.电网技术,2006,30(23):6-10
    [40]王云衫,周远翔,李光范,等.油纸绝缘介质的空间电荷积聚与消散特性.高电压技术,2008.34(5):873-877
    [41]唐超,油纸绝缘介质的直流空间电荷特性研究[D].重庆:重庆大学,2010
    [42]孙振权,赵学风,李继胜,等.直流电压下油纸绝缘结构气隙模型的局部放电特性.电工技术学报,2010.25(9):
    [43]杨波.直流电压下油纸绝缘模型放电发展过程的研究[D].北京:华北电力大学,2010
    [44]司文荣,李俊浩,袁鹏,等.直流下油中局部放电脉冲波形测量与特性分析.西安交通大学学报,2008.42(4):481-486
    [45]司文荣,李俊浩,袁鹏,等.直流下局部放电试验与测量系统设计.高压电器, 2008.44(4):326-328
    [46]司文荣,李俊浩,袁鹏,等.直流电压下油纸绝缘中局部放电的超高频特性.高电压技术,2008.34(7):1336-1341
    [47]顾朝敏,孙振权,郭治锋,等.交直流复合电压下油纸绝缘内部气隙缺陷局部放电特性.高压电器,2010.46(12):9-13
    [48]王琼,李成榕,齐波,等. 复合电场针板模型下局部放电发展过程中相位的分布.电力设备,2010.27(6):1-6
    [49]李博,程焕超,孙倩,等.交直流电压分量对变压器油中典型模型击穿特性影响.电工技术学报,2011.26(2):34-38
    [50]周远翔,孙清华,李光范,等.空间电荷对油纸绝缘击穿和沿面闪络的影响.电工技术学报,2011.26(2):27-33
    [51]文闿成.复合介质γ、ε中暂态电场的数值解[J].高电压技术,1989,(4):2-7
    [52]Wen K C., Zhou Y.B., et al. A calculation method and some features of transient field under polarity reversal voltage in HVDC insulation [J]. IEEE Transactions on Power Delivery,1994,8(1):223-230
    [53]文闿成.含集中电导和具有非线性、方向性电导率的介质中直流电场的有限元计算[J].高电压技术,1991,(2):13-18
    [54]吕晓德,陈敦利.极性反转时换流变压器绝缘电场特性研究[J].高电压技术,1997,23(1):67-72
    [55]吕晓德,陈世坤.非线性油纸复合绝缘结构中交直流混合电场的数值计算[J].变压器,1997,34(1):20-23
    [56]吕晓德,陈世坤,方治强,等.换流变压器端部极性反转电场的数值算法及其绝缘设计[J].西安交通大学学报,1997,31(11):8-12
    [57]吕晓德,陈世坤,孙定华,等.各向异性非线性直流电场数值算法研究[J].电工技术学报,1998,13(04):60-64
    [58]吕晓德,陈世坤,方治强,等.换流变压器阀侧绕组端部电场的特性分析[J].变压器,1998,35(6):15-20
    [59]Lv Xiaode, Gao Benqing. Numerical Algorithm for Polarity Reversal Electric Field and Its Application [J]. Journal of Beijing Institute of Technology,1999,8(2): 161-166
    [60]吕晓德.换流变压器高压直流套管电场分析与绝缘问题研究[D].西安:西安交通大学,1997
    [61]张艳丽,谢德馨.换流变压器内部暂态电场分析[J].沈阳工业大学学报,2001,23(6): 467-470
    [62]朱占新.换流变压器高压直流套管电场分析与绝缘问题研究[D].沈阳:沈阳工业大学,2008
    [63]王罡.大型换流变压器阀侧电场特性的研究[D].沈阳:沈阳工业大学,2009
    [64]李锦彪,谢德馨.直流输电换流变压器各向异性非线性直流电场的自适应有限元分析[J].变压器,2007,44(12):13-16
    [65]Yanli Qi, Yanli Zhang. Analysis of transient electrical field of barrier system of bushing outlet in converter transformer[C].2010 International Conference on Electrical Machines and Systems (ICEMS), South Korea, Incheon,2010, 1461-1462
    [66]Yan Li, Xiaohui Li, Jiangping Du, etal. The calculation of nonlinear and anisotropic electric field in valve side winding of converter transformer[C].2011 International Conference on Electrical Machines and Systems (ICEMS), China, Beijing,2011,1461-1462
    [67]Yan Li, Cong Tang, Dongxue Li. Calculation and analysis of polarity reversal electric field in valve winding end of converter transformer[C].2011 Asia-Pacific Power and Energy Engineering Conference(APPEEC), China, Wuhan,1-4
    [68]李季,罗隆福,许加柱,等.换流变压器阀侧绝缘电场特性研究[J].高电压技术,2006,32(9):121-124
    [69]李季,罗隆福,许加柱,等.高压直流换流变压器阀侧非线性电场的求解[J].高电压技术,2007,33(03):125-127,143
    [70]王春玲.换流变压器阀侧绕组端部直流电场计算分析[D].北京:华北电力大学,2006
    [71]杨波.直流电压下油纸绝缘模型放电发展过程的研究[D].北京:华北电力大学,2010
    [72]李琳,纪锋,刘刚.油-纸绝缘结构瞬态电场计算的状态空间有限元法[J].中国电机工程学报,2010,30(36):111-116
    [73]李琳,纪锋,李文平,等.换流变压器极性反转试验的数值模拟[J].中国电机工程学报,2011,31(18):107-112
    [74]梁鹏.换流变压器试验研究用极性可反转直流高压发生器的研制[D].哈尔滨:哈尔滨理工大学,2007
    [75]张杰.换流变压器内部电场分析及油纸绝缘试验系统设计[D].哈尔滨:哈尔滨理工大学,2008
    [76]高源.换流变压器油纸绝缘油流带电实验系统设计[D].哈尔滨:哈尔滨理工大学,2009
    [77]丁中民,李光范,李鹏,周文俊.极性反转时典型油纸复合绝缘的电场特性[J].电网技术,2008,32(23):82-90
    [78]王铁街,丁中民.棒-板油纸复合绝缘的电场数值计算[J].高电压技术,2009,35(04):809-813
    [79]傅铁军,王健,钟俊涛等.直流输电±800kV换流变压器的绝缘结构分析[J].变压器,2009,46(3):2-5
    [80]罗青林.关于800kV换流变压器主绝缘研究[J].变压器,2009,11:7-9,31
    [81]李文平,陈志伟,宋秀生等.±800kV直流输电工程用换流变压器主绝缘结构的研究[J].电力建设,2007,8(3):5-7
    [82]宋书才,王建民,张喜乐等.特高压换流变压器电磁场特性的数值应用研究[J].电力建设,2007,28(7):14-18
    [83]孙优良,王清璞,李文平等.±800kV换流变压器的设计工艺技术研究[J].变 压器,2007,44(5):22-29
    [84]王冰,王清璞,孙优良.换流变压器阀侧绕组端部极性反转瞬态电场的计算与分析[J].变压器,2007,44(6):11-15,22
    [85]王建民,张喜乐,吴增泊等.高压直流换流变压器电磁场特性的数值应用研究[J].变压器,2007,44(3):1-5
    [86]李文平,章忠国.直流输电用800kV换流变压器的场域分析[J].变压器,2009,6:1-5
    [87]张喜乐,王建民.超高压直流换流变压器阀侧引出线电场的数值分析[J].变压器,2009,7:1-4,10
    [88]靳淑云,王清璞.换流变压器阀侧直流引线的计算分析[J].变压器,2010,47(03):10-11
    [89]严锋,魏小妹.换流变、平波电抗器套管尾部电场分布浅析[J].电瓷避雷器,2004,3:1-3
    [90]刘鹏,彭宗仁,党镇平等.极性反转试验中±800kV换流变压器套管尾部的电场分布研究[J].电瓷避雷器,2009,3:1-4,8
    [91]张燕秉,郑劲,汪德华,等.特高压直流换流变压器的研制[J].高电压技术,2010,1:255-264
    [92]郑劲,文阎成.换流变压器阀侧套管出线装置绝缘分析[J].高电压技术,2010,36(05):1184-1190
    [93]谢德馨,姚缨英,白保东,李锦彪.三维涡流场的有限元分析[M].北京:机械工业出版社,2001:81-98
    [94]Takehisa -Hara, Tadashi Natio, Juro Umoto. Time-Periodic finite element method for nonlinear diffusion equations [J]. IEEE Transactions on Magnetics,1985,21(6): 2261-2264
    [95]Oszkar Biro, Kurt Preis. An efficient time domain method for nonlinear periodic eddy current problems[J]. IEEE Transactions on Magnetics,2006,42(4): 695-698
    [96]Yamada S., Bessho K.. Harmonic field calculation by the combination of finite element analysis and harmonic balance method[J]. IEEE Transactions on Magnetics,1988,24(6):2588-2590
    [97]Bachinger F., Langer U., Schoberl J.. Efficient solvers for non-linear time-periodic eddy current problems[J]. Comput Visu Sci,2004,9(4):197-207
    [98]赵小军,李琳,程志光,等.应用谐波平衡有限元法的变压器直流偏磁现象分析[J].中国电机工程学报,2010,30(21):103-108
    [99]苑津莎,张金堂.用有限元—快速付里叶变换的方法计算线性磁场的过渡过程[J].华北电力学院学报,1990(03):73-78
    [100]苑津莎.计算线性时变涡流场的有限元—快速傅里叶变换法[J].华北电力学院学报,1991(2):43-50
    [101]苑津莎,张金堂.计算非线性时变涡流场的有限元方程频域算法[J].中国电机工程学报,1994,14(03):7-13
    [102]F. I. Hantila, G. Preda, M. Vasiliu. Polarization method for static field[J]. IEEE transactions on Magnetics,2000, Vol.36(4):672-675
    [103]S. Ausserhofer, O. Biro, K. Preis. An efficient harmonic balance method for nonlinear eddy-current problems[J]. IEEE transactions on Magnetics,2007, Vol. 43(4):1229-1232
    [104]S. Ausserhofer, O. Biro, K. Preis. Frequency and time domain analysis of nonlinear periodic electromagnetic problems[J]. IEEE transactions on Magnetics, 2008, Vol.44(6):1282-1285
    [105]E. Dlala, A. Arkkio. Analysis of the Convergence of the Fixed-Point Method Used for Solving Nonlinear Rotational Magnetic Field Problems[J]. IEEE transactions on Magnetics,2008, Vol.44(6):473-478
    [106]G. Koczka, S. Ausserhofer, O. Biro, K. Preis. Optimal Convergence of the Fixed-Point Method for Nonlinear Eddy Current Problems[J]. IEEE transactions on Magnetics,2009, Vol.44(6):948-951
    [107]G. Koczka, S. Ausserhofer, O. Biro, K. Preis. Optimal fixed-point method for solving 3D nonlinear periodic eddy current problems[J]. The International Journal for Computational and Mathematics in Electrical and Electronic Engineering(COMPEL),2009, Vol.28(4):1059-1067
    [108]H.A.豪斯,J.R.梅尔彻.电磁场与电磁能[M].江家麟,周佩白,钱秀英,王瑞禹,马西奎,译,北京:高等教育出版社,1992:9-26
    [109]纪锋.换换流变压器油纸绝缘结构瞬态电场的计算方法研究[D].保定:华北电力大学,2010
    [110]盛剑霓.工程电磁场数值分析[M].西安:西安交通大学,1991:56-126
    [111]崔翔.信号分析与处理[M].北京:中国电力出版社,2005:6-30
    [112]杨汾艳,徐正.直流输电系统典型暂态响应特性分析[J].电工技术学报,2005,20(3):45-52
    [113]谢德馨,杨仕友.工程电磁场数值分析与综合[M].北京:机械工业出版社,2009:104-108
    [114]王冰,王清璞,孙优良.换流变压器阀侧绕组端部极性反转瞬态电场的计算与分析[J].变压器,2007,44(6):11-15,22
    [115]Wiliam H P, Saul A.T,et al.Numerical Recipes in C:The Art of Scientific Computating[M].2nd Edition. Cambridge University Press.1992:714-722
    [116]傅为农,江建中.异步电机高频杂耗的自适应时步法有限元计算[J].电工技术学报,1996,11(6):1-9,16
    [117]汤涌,宋新立,刘文焯,等.电力系统全过程动态仿真的数值方法—电力系统全过程动态仿真软件开发之一[J].电网技术,2002,26(9):7-12,28
    [118]汪蕙,王志华.电子电路的计算机辅助分析与设计方法[M].北京:清华大学出版社,1996
    [119]Zsolt Badics. Charge Density-Scalar Potential Formulation for Adaptive Time-Integration of Nonlinear Electroquasistatic Problems [J]. EEE Transactions on Magnetic.2011,47(5):1138-1141
    [120]Mizutani, T. Space charge measurement techniques and space charge in polyethylene [J]. IEEE Transactions on Dielectrics and Electrical Insulation, Vol.1, No.5,1994:923-933
    [121]王云杉,周远翔,李光范,等.油纸绝缘介质的空间电荷积聚与消散特性[J]. 高电压技术,2008,34(5):873-877.
    [122]张艳丽,刘洋,谢德馨,等.耦合改进矢量磁滞模型的变压器磁场分析及实验研究[J].中国电机工程学报,2010,30(21):108-113
    [123]李泓志,崔翔,卢铁兵,等.变压器直流偏磁的电路-磁路模型[J].中国电机工程学报,2009,29(27):119-125
    [124]盛剑霓.工程电磁场数值分析[M],西安,西安交通大学出版社,1991,28-36
    [125]李文平.特高压换流变压器空间电荷分布的计算[J].变压器,2011,48(5):6-7
    [126]孔明礼,胡仁喜,崔海蓉,等.Ansys10.0电磁学有限元分析实例指导教程[M].北京:机械工业出版社,2007:17-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700