热效应对变频牵引电机绝缘特性的影响机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变频牵引电机绝缘系统在方波脉冲条件F不仅要承受更强的电应力,同时还是受到机械力、温度和湿度等因素的影响,造成牵引电机绝缘系统出现过早失效,从而影响机车的安全运行。因此,对变频调速牵引电机绝缘系统失效机理的研究已经迫在眉睫,国内外专家已经在这方面做了大量工作,取得的研究成果也已在工程中得到应用。本论文将在国内外在该领域已取得成果的基础上,研究温度这一因素对变频调速牵引电机用电磁线绝缘特性的影响,通过此研究进一步完善有关变频调速牵引电机绝缘失效机理的理论,为绝缘系统的优化提供了理论根据。
     局部放电是造成电机绝缘失效的主要因素之一,因此局部放电测试是评估绝缘状态的重要手段,本文基于自行研制的方波脉冲电源开发了一套局部放电信号测试系统,并利用该系统对不同温度条件下的电磁线试样进行了局部放电测量并比较了纳米与非纳米材料试样的局部放电特性。试验结果表明,随着温度的升高,在相同的周期内放电次数增多,最大放电量减小;而且在相同的温度条件下,纳米材料试样的局部放电次数较非纳米的要多,但是最大放电量要比非纳米的要小。
     利用delta2000测试仪探讨了变频电机用电磁线介质损耗角正切值(tanδ)在不同老化时间和不同老化频率下的温度谱,从试验结果的分布图可以看出,在低温区,tanδ值随着温度的升高也会逐渐增大,在130。C左右tanδ值达到极值,温度再升高tanδ有小幅度的减小。
     基于IEC60851-5标准搭建了一套变频电机绝缘老化装置,研究了不同温度条件下电磁线试样击穿电压和老化寿命的变化规律。试验结果表明随着温度的升高,试样的击穿电压呈现下降趋势,而且相同温度条件下纳米材料试样比非纳米材料试样的击穿电压值要低,这是由于纳米颗粒改变了材料的内部结构;试样的老化寿命随着温度的升高而逐渐缩短,比较了不同的试验电压和不同的试验频率对老化寿命的影响,根据反幂函数的变化规律,建立了老化寿命随温度变化的数学模型。使用电子扫描电镜(SEM)分析了电磁线击穿点处的微观形貌,剖析了击穿点处绝缘材料的化学成分,试验结果表明击穿处呈现黑色粉末状,这是由于绝缘层被炭化,C元素含量过高造成的。
The insulation system of inverter traction motor does not only have to bear stronger electrical stress, but also have to subject to the influence of mechanical forces, temperature factor and humidity factor in the square-wave pulse condition. It would lead to the premature failure of insulation system, which threaten the safe operation of the locomotive. Therefore, the research on the mechanism of insulation failure is desperately needed. Domestic and foreign experts have done some work about the insulation failure of inverter-fed motor now, and their research results have been used in some projects. Based on the existing results, this paper will study the temperature factor that influences the insulation characteristics of inverter-fed motor magnet wire, which will further improve the failure mechanisms thesis of insulation system.
     Partial discharge (PD) measurement is known as a necessary method to evaluate state insulating, because PD is an important factor leading to insulation failure. The paper built a PD test system on the basis of square-wave pulse power and the PD characteristics of magnet wire under different temperatures were measured. Then it compared with the PD properties of nano material and common material. The test results showed that numbers of discharge increase but the maximum discharge reduces as the temperature increasing at the same cycles.
     The paper explores the temperature spectrum of dielectric loss tangent (tan8) value at different aging time and different aging frequency by using delta2000device. The test results show that tanδ increases gradually as the temperature increasing In the low temperature region, and comes to max value at about130℃and then decreases with a small amplitude.
     In addition, a set of aging device for magnet wire of inverter-fed motor based on the IEC60851-5was designed, which is used to study the breakdown voltage and aging life of magnet wire under different temperature condition. The results show that the breakdown voltage of the sample has a declining trend with the increasing of the temperature and the breakdown voltage of nona material is lower than the common material under the same temperature, which is due to the internal structure of material is changed by the nano particles. The aging life of sample reduced gradually along with the rising of temperature, then compared the influence on aging life of different test voltage and test frequency. According to the inverse power function, the mathematical model of aging life was established. At last, the morphology of magnet wire at the breakdown point was analyzed by the technology of scanning electron microscopy (SEM) and researched the chemical composition of insulation material at the breakdown point. The test result showed that the breakdown point was black powder because insulation layer was carbonized and the C element content is too high.
引文
[1]李鸿岩,王峰,郭磊,等.变频电机的匝间绝缘电老化机理[J].绝缘材料,2005,(2):57-60.
    [2]陆宝琦.交流变频电机的绝缘[J].绝缘材料,2000,(3):29-34.
    [3]刘友梅.现代电力机车的技术特点[J].电力机车技术,1998(1):1-3.
    [4]SNCF.574.8km/h:Le Nouveau Record du Monde de Vitesse Sur Rail. Temps Reel, 2007:40107.
    [5]何恩广,周升,刘学忠,等.PWM变频电机绝缘技术的研究进展[J].绝缘材料,2002,(4):18-25.
    [6]吴广宁,周凯,高波.变频电机绝缘老化机理及表征[M].北京:科学出版社,2009.
    [7]周凯.脉冲电压对变频牵引电机绝缘老化的影响机理研究[D].成都:西南交通大学,2009.
    [8]Von Jouanne A, Enjeti, P, Gray W. Application issues for PWM adjustable speed AC motor drives[J]. IEEE Industry Applications Magazine,1996, (2):10-18.
    [9]D.B.Hyypio. Simulation of Cable and Winding Response to Steep-fronted Voltage Waves[C]. Conference Record of the 1995 Industry Applications Society, Orlando, FL, USA,1995:800-806.
    [10]D.B.Hyypio, Effects of Risetime and Cable Length on Motor Insulation Degradation Resulting from Operation on PWM Voltage Source Inverters[C]. IEEE International Electrical Machine and Drives Conference Record,1997:18-21.
    [11]E.Persson. Transient Effects in Application of PWM Inverters to Induction Motors[J]. IEEE Trans.on Industry Applications,1992,28(5):1095-1101.
    [12]E.P.Dick, B.K.Gupta, P.Pillai, et al. Equivalent Circuits for Simulating Switching Surges at Motor Terminals[C]. IEEE Transactions on Energy Conversion,1988, 3(3):696-704.
    [13]J.M.Bentley. Evaluation of Motor Power Cables for PWM AC drives[J]. IEEE Trans. On Industry Applications,1997,33(2):342-358.
    [14]A.Mbaye, J.P.Bellomo, T.Lebey, et al. Electrical Stresses Applied to Stator Insulation in Low-voltage Induction Motors fed by PWM Drives[J]. IEEE Proc-Electr Power Appl, 1997,144(3):191-197.
    [15]Pierre Bidan, Thierry lebey, Gerard Montseny, et al. Transient Voltage Distribution in Inverter Fed Motor Windings Experimental Study and Modeling[J]. IEEE transactions on power electronics,2001,16(1):92-100.
    [16]D. Fabiani, G. C. Montanari. Relation between Space Charge Accumulation and Partial Discharge act Ivity in Enameled Wires under PWM like Voltage Waveforms[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(3):393-405.
    [17]X. Chen, X. Wang, K. Wu, et al. Space Charge Measurement in LDPE Films under Temperature Gradient and DC Stress[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(6):1797-1806.
    [18]Mizutani T, Nakane E, Kaneko K, et al. Space Charge and Charge Transport in Polypropylene[C]. The 12th International Symposium on Electrets, Salvador, Bahia-Brazil,2005.
    [19]Chong Y L, Chen G, Ho Y F F. Temperature Effect on Space Charge Dynamics in XLPE Insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2007, 14(1):65-76.
    [20]张依强,吴广宁,刘继午,等.超高频法提取方波脉冲下的局部放电信号[J].绝缘材料,2012,45(2):53-57.
    [21]佟来生,吴广宁,温凤香.变频牵引电机端子过电压产生原理及影响因素[J].西南交通大学学报,2005,40(5):673-676.
    [22]M. Kaufhold, H Auinger, M Bert h, et al. Electrical Stress and Failure Mechanism of the Winding Insulation in PWM Inverter-fed Low Voltage Induction Motors[J]. IEEE Transaction on Industrial Electronics,2000, (2):396-402.
    [23]R. J. Beeckman. Studies on Magnet Wire Degradation with Inverter Driven Motors[C]. Proceedings Electrical Electronics Insulation Conference and Electrical Manufacturing and Coil Winding Conference, IEEE, New York, USA,1995:383-387.
    [24]J. P. Bellomo, T. lebey, J. M. Oraision, et al. Electrical Aging of Stator Insulation of Low Voltage Rotating Machines Supplied by Inverters[C]. Conference Record 1996 IEEE international Symposium on Electrical Insulation, New York USA,1996, 1:210-213.
    [25]J. P. Bellomo, P. Castelan, T. Lebey. The Effect of Pulsed Voltages on Dielectric Material Properties[J]. IEEE transactions on Dielectrics and Electrical Insulation,1999, 6(1):20-26.
    [26]T. Tanaka, A. Greenword. Effect of Charge Injection and Extraction on Tree Initiation in Polyethylene[J]. IEEE Transactions on Power Apparatus and Systems,1978:1749-1757.
    [27]K. C. Kao. New Theory of Electrical Discharge and Breakdown in Low-mobility Condensed Insulation[J]. Journal of Applied Physics,55(3):752-755.
    [28]S. S. Bamji, A. T. Bulinske, R. J. Densley. Degradation of Polymeric Insulation due to Photoemission Caused by High Electric Fields[J]. IEEE Transactions on Electrical Insulation,1989,24(1):91-98.
    [29]C. Hudon, N. Amyot. Evidence of Charge Injection Resulting from Fast Pulse Operation of Inverter Drives[C].1998 IEEE Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, Atlanta,1998:714-718.
    [30]N. Foulon, J. P. Lucas, G. Barre, et al. Investigation of the Failure Mechanism of Insulation Subject to Repetitive Fast Voltage Surges[C]. Proceedings of the Electrical/Electronics Insulation Conference,1997:401-406.
    [31]J. P. Bellomo, P. Castelan, T. Lebey. The Effect of Pulsed Voltages on Dielectric Material Properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1999, 6(1):20-26.
    [32]M. Levesque, C. Hudon, M. Belec. Contribution of Humidity to the Evolution of Slot Partial Discharges[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2012, 19(1):61-75.
    [33]M. D. Lorenzo, D. Casale, R. Schifani. Investigation of Temperature Effect on an Epoxy Resin Aging due to Partial Discharges[C].8th. Intern. Conf. Dielectr. Materials Meas. Appl., Edinburgh, UK,2000:509-512.
    [34]R.Schifani, R.Candela, P.Romano. On PD Mechanisms at High Temperature in Voids Included in an Epoxy Resin[J]. IEEE transactions on Dielectrics and Electrical Insulation,2001,8:589-597.
    [35]Weijun Yin. Failure Mechanism of Winding insulations in inverter_fed motors[J]. IEEE Electrical Insulation Magazine,1997,13(6):18-22.
    [36]F.Guastavino, G.Coletti, E.Torello. Medium Term Aging Characterization of Enameled Wires for High Frequency Applications [J]. IEEE transactions on Dielectrics and Electrical Insulation,2005,12(3):524-529.
    [37]D. M. Hepburn, I. J. Kemp, A. J. Shields, et al. Degradation of Epoxy Resin by Partial Discharges[J]. IEE Proc.-Sci. Meas. Technol.,2000,147:97-104.
    [38]N. Foulon-Belkacemi, M. Goldman, A. Goldman, et al. Transformation of nodules into Crystals on Polymers Submitted to Corona Discharges with Streamers[J]. IEE Proc.-Sci. Meas. Technol.,1995,142:477-481.
    [39]C. Hudon, R. Bartnikas, M. R. Wertheimer. Effect of Physico-Chemical Degradation of Epoxy Resin on Partial Discharge Behavior[J]. IEEE Trans. Dielectr. Electr. Insul.,1995, 2:1083-1094.
    [40]E. Binder, A. Draxler, M. Muhr, et al. Effects of Air Humidity and Temperature to the Activities of External Partial Discharges of Stator Windings[C].11th. Intern. Symp. High Volt. Eng. (ISH), London,1999:264-267.
    [41]M.Katz, R.J.Theis. New High Temperature Polyimide Insulation for Partial Discharge Resistance in Harsh Environments[J]. IEEE Electrical Insulation Magazine,1997, 13(4):24-30.
    [42]周力任.连续高压脉冲下空间电荷对变频牵引电机绝缘老化影响的研究[D].成都:西南交通大学,2010.
    [43]IEC Publication 60851-5. Winding Wires-Test methods-Part 5:Electrical properties, Edition 3.2,10-2004.
    [44]朱鹤孙,丁洪志.绝缘固体电介质击穿理论研究进展[J].自然科学进展,1998,8(3):261-269.
    [45]刘学忠,徐传骧.纳米无机粉末填充电磁线漆的介电特性研究[J]_中国电机工程学报,2004,24(10):143-147.
    [46]郭俊,吴广宁,张雪琴,等.局部放电检测技术的现状和发展[J].电工技术学报,2005,20(2):29-35.
    [47]于钦学,任文娥,A.CAVALLINI,等.SPWM变频调速电动机线圈局部放电的测量[J].电工技术学报,2006,21(1):111-114.
    [48]N.Hayakawa, H.Okubo. Partial Discharge Characteristics of Inverter-Fed Motor Coil Samples Under AC and Surge Voltage Conditions[J]. IEEE Electrical Insulation Magazine,2005,21(1):5-10.
    [49]吴广宁.大型发电机故障放电在线监测及诊断技术[M].成都:西南交通大学出版社,2001.
    [50]王鹏,吴广宁,罗杨,等.连续高压脉冲方波下局部放电测试系统设计[J].高电压技术,2012,38(3):587-593.
    [51]周凯,吴广宁,吴建东,等.连续方波脉冲下的局部放电测量分析系统[J].电工电能新技术,2007,26(4):55-59.
    [52]张血琴,吴广宁,郭俊,等.高频连续脉冲作用下电机绝缘局部放电信号的提取[J].电工技术学报,2005,20(9):103-107.
    [53]GB/T20833-2007旋转电机定子线棒及绕组局部放电的测量方法及评定导则[S].
    [54]GB/T7354-2003/IEC 60270:2000局部放电测量[S].
    [55]葛景滂,邱昌容.局部放电测量[M].北京:机械工业出版社,1984.
    [56]刘双宝,王立欣,诸定秋.局部放电模型中的不确定因素[J].高电压杂志,2002,28(3):24-25.
    [57]吴广宁.电气设备状态监测的理论与实践[M].北京:清华大学出版社,2005.
    [58]Andreas Kelen. Critical examination of the dissipation factor tip-up as a measure of partial discharge intensity[J]. IEEE Trans on Electric. Insul,1978,13(1):14-24.
    [59]吴广宁.高电压技术[M].北京:机械工业出版社,2007.
    [60]吴广宁,周力任,郭小霞,等.采用tanδ表征变频电机绞线对绝缘老化特性的研究[J].高电压技术,2010,36(7):1625-1629.
    [61]Wu Kai, Okamoto T, Suzuoki Y. Effects of Discharge Area and Surface Conductivity on Partial Discharge Behavior in Voids under Square Voltages[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(2):461-470.
    [62]K. Zhou, G. N. Wu, T Deng, et al. Aging Time Effect on PD Characteristics under Continuous Pulse Voltage[C]. IEEE ICSD, Southampton, UK,2007.
    [63]M. Fenger, G. C. Stone and B. A. Lloyd, The Impact of Humidity on PD Inception Voltage as a Function of Rise-Time in Random Wound Motors of Different Designs [C]. IEEE Conf. Electr. Insul. Dielectr. Phenomena (CEIDP),2002.
    [64]D. Fabiani, A. Cavallini, G. C. Montanari. The Effect of Environmental Conditions on PD Activity in PWM-Fed Induction Motors[C]. Intern. Electr. Insul. Conf. (INSUCON), 2006:115-119.
    [65]佟来生,吴广宁,林同光,等.一种用于脉冲绝缘老化试验的高压脉冲电源[J].高电压技术,2005,31(10):1-2,14.
    [66]Zhou L R, Wu G N, Gao B, Zhou K, et al. Study on charge transport mechanism and space charge characteristics of polyimide films[J]. IEEE Trans. on Dielectrics and Electrical Insulation,2009,16(4):1143-1149.
    [67]罗扬,吴广宁,王鹏,等.连续方波脉冲电压下温度对聚酰亚胺薄膜局部放电特性的影响[J].中国电机工程学报,2012,32(19):1625-1629.
    [68]E. Odic, E. Jouseau, G. Vivien, et al. Characterization of Medium Voltage Equipment Ageing by Monitoring of Partial Discharges Chemical and Acoustical EmissionfC].10th. Int'l. Electr. Insul Conf. (Insucon), Birmingham, UK,2006:24-29.
    [69]Petrarac C, Egiziano L, Tucci V, et al. Investigation on performances of insulation materials for inverter-fed traction motors [C].1998 Conference on Electrical Insulation and Dielectric Phenomena,1998:564-567.
    [70]蒋仁言.威布尔模型族-特性、参数估计和应用[M].北京:科学出版社,1998.
    [71]M. Di Lorenzo Del Casale, R. Schifani. Investigation of Temperature Effect on an Epoxy Resin Aging due to Partial Discharges [C].8th. Intern. Conf. Dielectr. Materials Meas. Appl., Edinburgh, UK,2000:509-512.
    [72]R. Schifani, R. Candela, P. Romano. On PD Mechanisms at High Temperature in Voids Included in an Epoxy Resin[J]. IEEE Trans. Dielectr. Electr. Insul.,2001,8:589-597.
    [73]郑飞虎,张冶文,肖春.应力对诱发空间电荷击穿的作用[J].电工技术学报,2006,21(2):31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700