基于散射轮廓傅立叶变换各向异性随机表面参量的反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机表面是自然界重要的组成部分,随机表面及其散射光场的研究在材料生长、精密加工和医学诊断等许多领域具有重要的基础研究意义和实际应用意义,由随机表面散射产生的随机光场不仅是研究表面的重要手段,而且是探索光场本身特性即统计光学的重要内容,因此随机表面的特性一直是备受关注的研究课题。自仿射分形表面是一种能够更精确描述各种实际表面的模型,这种模型能同时描述随机表面长程内的颗粒状结构和短程内的自相似性,成为近年来被广泛接受和采用的表面模型。自仿射分形表面模型主要由三个统计参量来描述,即方均根粗糙度w、横向相关长度ξ和粗糙指数α,其中α描述的是随机表面短程内的分形特征。
     本文针对各向异性随机表面的散射光强分布的特点,根据光波衍射的基尔霍夫理论,计算出各向异性随机表面的光散射方位曲线,并用门积分平均的散射光强轮廓采集系统沿方位曲线测量了Si(100)晶片这一典型的各向异性随机表面的散射光场,采用傅立叶变换法,通过fortran编程计算,对光的散射轮廓进行傅立叶逆变换,从而同时得到自仿射分形表面的三个统计参量,并与经原子力显微镜测量随机表面高度计算所得到的参量相比较,验证了所得数据的正确性,说明傅立叶变换法可以正确确定各向异性随机表面。本文完成的主要工作概括如下:
     第一章为绪论,论述了研究随机表面及其散射光场特性的意义和随机表面的主要测量方法。
     第二章介绍了自仿射随机表面模型的光散射理论,探讨了自仿射分形随机表面的散射轮廓函数的近似计算,以及如何从光的散射轮廓中提取随机表面参量。
     第三章为自仿射分形随机表面的光散射特性实验研究。以Si(100)晶片的粗糙背面作为反射式随机表面样品,分别用原子力显微镜和光散射方法测量了样品表面统计参量。在光散射实验测量中,采用光电倍增管作为探测器,测量了在入射角为40°、45°、50°、55°、60°、65°、70°、75°、80°、83°和85°时样品表面的散射光强,由数学上的对称下降函数计算得到散射光强轮廓函数。
     第四章利用傅立叶变换法对光的散射轮廓进行变换,从而同时得到自仿射分形表面的三个统计参量,还用原子力显微镜对实验测量中的表面样品进行了测量和分析,并且把光散射方法和原子力显微镜测量确定的样品表面统计参量的实验结果进行了比较,实验结果表明:本方法所获得的随机表面参量值与原子力显微镜的接触法测量所得到的随机表面参量值两者符合的很好。
     第五章对全文进行了客观地总结,并对下一步有关随机表面的光散射研究工作进行了展望。
The random surfaces as important parts make up of nature and random surfaces as well as their scattering light measurements are of great importance in many scientific and technological fields such as material growth, precision machining and medicine diagnosis etc. The study of optical fields scattered from random surfaces is the main content of statistical optics, so many people have payed attention to studying about random surfaces for a long time. The surface model of the self-affine fractal is demonstrated to be more adequate for the comprehensive description of a wide category of random surfaces at present. Besides the traditional parameters of root-mean-square roughness w and correlation lengthξ, a new parameter of the roughness exponentαis introduced in this model to characterize the short-range fractal properties of the surfaces.
     The paper calculate the curve of the scattered light and lay out a new way to measure scattered profiles according to Kirchhoff's diffration theory. We also measured the light intensity scattered from Si(100) wafer by The average technique with gated integration and then analyze the scattering profiles of light intensity quantificationally using self—affine fractal surface model and inverse Fourier transformation ,and determinate there parameters of anisotropy surface, compare with the data obtained from AFM and verify that parameters are correct. We can determine the anisotropic random surfaces using Fourier transformation. The main contents and results of this thesis can be summarized as follows.
     Chapter 1 gives a summary and review of the description of random surfaces and its measurements.
     In chapter 2 We introduce the theory of self—affine fractal surface model, discuss the approximate calculation of the scattering light intensity and how to attain the parameters of random surfaces.
     In chapter3,We discuss the scattered light properties of self—affine fractal surface model. In the experiment to measure the light scattering from the reflection-mode random surface, we adopt the roughness backside of Si(110) wafer as the sample of self-affine fractal random surface. CCD detects the light intensities scattered from the sample surface at the incidence angles of the 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 83°and 85°. The scattering light intensity profiles at different incident angles are calculated by the symmetric decline function in mathematics.
     In chapter4,the scattering profiles of light intensity quantificationaly using self—affine fractal surface model and inverse Fourier transformation and parameters of anisotropy surface are determined. Comparing with the data obtained from AFM, We verify that parameters are correct.
     In chapter 5,we give the summary of this paper and put forward the further goal.
引文
[1] S. J. Steinmuller, C. A. F. Vaz, V. Str?m, C. Moutafis, C. M. Gürtler, M. Kl?ui, and J. A. C. Bland, Influence of substrate roughness on the magnetic properties of thin fcc Co films, J. Appl. Phy. 2007, 101(9): 09D113.
    [2] Minghui Hu, Suguru Noda, and Hiroshi Komiyama, Amorphous-to-crystalline transition during the early stages of thin film growth of Cr on SiO2, J. Appl. Phy., 2003, 93(11): 9336-9344.
    [3] German Drazer and Joel Koplik, Permeability of self-affine rough fractures, Phys. Rev. E, 2000, 62(6): 8076-8085.
    [4] Arjen Amelink, Henricus J. C. M. Sterenborg, Martin P. L. Bard and Sjaak A. Burgers, In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy, Opt. Lett., 2004, 29(10): 1087-1089.
    [5]王运华,郭立新,吴振森,改进的二维分形模型在海面电磁散射中的应用,物理学报,2006, 55(10): 5191-5199.
    [6] Jin-Yuan Liu, Chen-Fen Huang and Ping-Chang Hsueh, Acoustic plane-wave scattering from a rough surface over a random fluid medium, Ocean Engineering, 2002, 29(8): 915-930.
    [7] Kouveliotis N. K., Trakadas P. T., Stefanogiannis A. I., Capsalis C. N., Field prediction describing scattering by a one-dimensional smooth random rough surface, Electromagnetics, 2002, 22(1): 27-35.
    [8] A. Khenchaf, Bistatic reflection of electromagnetic waves from random rough surfaces: Application to the sea surface and snowy-covered, Eur. Phys. J. AP, 2001, 14(1): 45-62.
    [9] JoséRicardo Arias-González, Manuel Nieto-Vesperinas, and Alberto Madrazo, Morphology-dependent resonances in the scattering of electromagnetic waves from an object buried beneath a plane or a random rough surfaces, J. Opt. Soc. Am. A., 1999, 16(12): 2928-2934.
    [10] Raúl García-Llamas and César Márquez-Beltran, Scattering of s-polarized electromagnetic plane waves from a film with a shallow random rough surfaces on a perfect conductor, Appl. Opt. 2000, 39(25): 4698-4705.
    [11] Mady Elias and Michel Menu, Experimental characterization of a random metallic rough surfaces by spectrophotometric measurements in the visible range, Opt. Communications, 2000,
    [12] Yiping Zhao, Gwo-Ching Wang, and Toh-Ming Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications, London: Academic Press, 2001.
    [13] Chuanfu Cheng, Deli Liu, Dongping Qi, Light scattering microscopy of surface and its computational simulation, Chinese Physics Letters, 1999, 16(6): 397-399.
    [14] D. J. Whitehouse, J. F. Archard, The properties of random surfaces of significance in their contact. Proc. Roy. Soc., 1970, A316(1524): 97-121.
    [15] M. L. Boyd, R. L. Deavenport, Forward and specular scattering from a rough surface: theory and experiment, J. Acoust. Soc. Am., 1993, 53(5): 791-801.
    [16] P. J. Chandley, Surface roughness measurements from coherent light scattering, Opt. and Quan. Elec, 1976, 8(2): 323-327.
    [17] D. J. Whitehouse, M. J. Phillips, Two-dimensional discreat properties of random surfaces. Proc. Roy. Soc., 1982, A305: 441-468.
    [18] Weiss V., Bohne W., Rohrich J., Strub E., Bloeck U., Sieber I., Ellmer K., Mientus R., Porsch F., Reactive magnetron sputtering of molybdenum sulfide thin films: In situ synchrotron x-ray diffraction and transmission electron microscopy study[J]. Appl. Phys., 2004, 95(12): 7665~7673.
    [19] J. M. Bennett, J. H. Dancy. Stylus profiling instrument for measuring statistical properties of smooth optical surface. Appl. Opt., 1981, 20(10): 1785-1802.
    [20]白春礼,扫描隧道显微术及其应用,上海:上海科学技术出版社,1994.
    [21] Saint-Lager M. C., Baudoing-Savois R., De Santis M.,Dolle P., Gauthier Y., Thickness effect on alloying of ultra thin Co films on Pt(111): a real time and in situ UHV study with synchrotron x-ray diffraction, Sur. Sci., 1998, 418(3): 485-492.
    [22] Iwata Y., Kobayashi H., Kikuchi S., Hatta E., Mukasa K., In situ reflection high-energy electron diffraction (RHEED) observation of Bi2Te3/Sb2Te3 multilayer film growth, J. Crystal Growth, 1999, 203(1-2): 125-130.
    [23] P. Z. Wong, A. J. Bray. Scattering by rough surfaces. Phys. Rev. B, 1988, 37(13): 7751-7758.
    [24] Raspanti M., Protasoni M., Manelli A., Guizzardi S., Mantovani V., Sala A., The extracellular matrix of the human aortic wall: Ultrastructural observations by FEG-SEM and by tapping-mode AFM, Micron, 2006, 37(1): 81~86.
    [25] Patil S., Matei G., Dong H., Hoffmann P. M., Karakose M., Oral A., A highly sensitive atomic force microscope for linear measurements of molecular forces in liquids, Review of Scientific Instruments, 2005, 76(10): 103705.
    [26] Weiss V., Bohne W., Rohrich J., Strub E., Bloeck U., Sieber I., Ellmer K., Mientus R., Porsch F., Reactive magnetron sputtering of molybdenum sulfide thin films: In situ synchrotron x-ray diffraction and transmission electron microscopy study[J]. Appl. Phys., 2004, 95(12): 7665~7673.
    [27] Ohashi H., Tanigaki K., Kumashiro R., Sugihara S., Hiroshiba S., Kimura S., Kato K., Takata M., Low-glancing-angle x-ray diffraction study on the relationship between crystallinity and properties of C-60 field effect transistor[J], Appl. Phys. Lett., 2004, 84(4): 520522.
    [28] Morz V., Rajs K., Masek K., RHEED and EELS study of Pd/Al bimetallic thin film growth on differentα-Al2O3 substrates[J], Sur. Sci., 2002, 507~510(1-3): 300~304.
    [29] Shigeta Y., Fukaya Y., Study of structure changes on the Si surface using reflection high-energy electron diffraction[J], Int. J. Mod. Phys. B, 2004, 18(3): 289
    [30] D. E. Aspnes. Optical properties of solids. Amsterdam: North-Holland Publishing Company, 1975.
    [31] E. Fontana, R. H. Pantell, Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy[J], Phys. Rev. B, 1988, 37(7): 3164~3181.
    [32]邓里文,王恭明,测量金属膜粗糙度的表面等离子激元光谱方法[J],光学学报,1998, 18(4): 474~480
    [33] Petr Beckmann and AndréSpizzichino, The scattering of electromagnetic waves from rough surfaces, New York: The Macmillan Company / Pergamon Press, 1963.
    [34] T. R. Thomas, Rough Surfaces, New York: Longman, 1982.
    [35] J. A. Ogilvy, Wave Scattering from Rough Surfaces, Rep. Prog. Phys., 1987, 50(12): 1553-1608.
    [36] J. R. Willis, Mathematical aspects of scattering from rough cracks, Mathematical Modelling in Non-destructive Testing, Oxford: Clarendon Press, 1988.
    [37] A. L. Barabasi and H. E. Sanley, Fractal Concepts in Surfaces Growth, Cambridge: Cambridge University Press, 1995.
    [38] P. Meakin, Fractals, Scaling, and Growth Far from Equilibrium, Cambridge: Cambridge University Press, 1998.
    [39] Yiping Zhao, Gwo-Ching Wang, and Toh-Ming Lu, Characterization of Amorphous andCrystalline Rough Surface: Principles and Applications, London: Academic Press, 2001.
    [40] Ingve Simonsen, Damien Vandembroucq and Ste′phane Roux, Electromagnetic wave scattering from conducting self-affine surfaces: an analytic and numerical study, J. Opt. Soc. Am. A, 2001, 18(5): 1101-1111.
    [1] H.-N. Yang, T.-M. Lu, G.-C. Wang, Diffraction from Rough Surfaces and Dynamic Growth, Singapore: World Scientific, 1993.
    [2] J. C. Stover, S. A. Serati, and C. H. Guillespie, Calculation of surface statistics from light scatter, Opt. Eng., 1984, 23(4): 406-412.
    [3]程路,张炳泉,激光束在漫射表面上的散射,物理学报,1980, 29(12): 1570-1580.
    [4] J. C. O' Donnel and E. R. Mendez, Experimental study of scattering from characterized random surface, J. Opt. Soc. Am. A, 1987, 4(7): 1194-1205.
    [5] H.-N. Yang, T.-M. Lu, G.-C. Wang, Diffraction from surface growth fronts, Phys. Rev. B, 1993, 47(7): 3911-3922.
    [6] I. Simonsen, D. Vandembroucq, and S. Roux, Wave scattering from self-affine surfaces, Phys. Rev. E, 2000, 61(5): 5914-5917.
    [7] Y. -P. Zhao, H.-N. Yang, T. -M. Lu, and G. -C. Wang, Extraction of real-space correlation function of a rough surface by light scattering using diode array detectors, Appl. Phys. Lett., 1996, 68(22): 3063-3065.
    [8] Y.-P. Zhao, C.-F. Cheng, G. -C. Wang, T. -M. Lu, Power law behavior in diffraction from fractal surfaces, Surface Science, 1998, 409(1): L703~L708.
    [9] K. Fang, R. Adame, T.-M. Lu, G.-C. Wang, Measurement of roughness exponent for scale-invariant rough surfaces using angle resolved light scattering, Appl. Phys. Lett., 1995, 66(16): 2077-2079.
    [10] A.-L. Barabasi, H. E. Stanley, Fractal concepts in surface growth, New York: Cambridge University Press, 1995.
    [11] J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surface, New York: Adam Hilger, 1991.
    [12] S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, X-ray and neutron scattering from rough surfaces. Phys. Rev. B, 1988, 38(4): 2297-2311.
    [13] H. -N. Yang, T. -M. Lu, and G. -C. Wang, Diffraction from surface growth fronts, Phys. Rev. B, 1993, 47: 3911-3922.
    [14] Yiping Zhao, Gwo-Ching Wang, and Toh-Ming Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications, London: Academic Press, 2001.
    [15] E. L. Church, Fractal surface finish, Appl. Opt., 1988, 27(8): 1518-1526.
    [1]J.M.Lopez. Scaling approach to calculate critical exponents in anomalous surface roughing[J].Phys Rev lett.1999,83,(22):4594
    [2]陈佳圭等.微弱信号检测[M].北京:中国广播电视大学出版社,1987:152
    [1] GUO Lixin, WU Zhensen. Moment Method with Wavelet Expansions for Fractal Rough Surface Scattering[J]. Chin Phys Lett.,2002, 19(11): 1617-1620.
    [2] P.-Z. Wong and A. J.Bray. Scattering by rough surfaces[J]. Phys. Rev. B, 1988,37(13), 7751-7758.
    [3]邹倩,杨诚,魏显起,等.激光溅射沉积制备的氮化镓表面形貌分析[J].山东师范大学学报(自然科学版),2007,22(2):44~47
    [4]李大伟,程传福.超快动态散斑相关函数的理论研究[J].山东师范大学学报(自然科学版),2005,20(2):34~36
    [5]李继凯,李林功,刘秀平,等.Gaussian分布表面超声背向散射的研究[J].河南师范大学学报(自然科学版),1999,27(1):30-32
    [6]宋铮,梁宏.金(Ⅲ)与血清白蛋白的共振散射光谱研究[J].广西师范大学学报(自然科学版),2002,20(4):68-70
    [7] J. A. Ogilvy.Theory of Wave Scattering from Random Rough Surface[J].New York:Adam Hilger, 1991.
    [8] H.-N. Yang, G.-C.Wang, T.-M.Lu. Diffraction from rough surfaces and dynamic growth fronts[J].Singapore: World Scientific, 1993.
    [9] S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley. X-ray and neutron scattering from rough surfaces[J]. Phys. Rev. B, 1988, 38(4): 2297-2311.
    [10]吕文华.MATLAB在信息光学教学中的应用[J].潍坊学院学报(自然科学版),2007,7(6):153-155
    [11]谭浩强,田淑清,FORTRAN77结构化程序设计[M],北京:高等教育出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700