复合结构基座减振特性的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
军、民船舶的振动与噪声的预报与控制是船舶工程中一个重要的技术领域。该领域相关技术的研究与应用对改进民船的质量与安全性,提高舰船的作战与生存能力有重要的意义。机械激励引起船舶振动与水中声辐射的控制技术的研究在国内外已有悠久的历史和丰富的成果。为进一步提高船舶减振降噪的成效,发展基于复合材料结构动力学特征的新型隔振技术成为一个有吸引力的研究方向。
     机械设备的基座结构是设备振动传递到船体结构的最重要通道。为更好地发挥该通道在减振降噪中的作用,本文突破了船舶机械设备钢质基座的传统形式,设计了复合结构基座,并从理论和实验两方面研究了其隔振效果。本文的结构及主要研究内容如下:
     (1)课题相关研究领域的综述——从声学的角度,分析了机械噪声控制的整体框架和思路。在该框架内,从轮机设计的角度,综述了船舶柔性隔振系统的研究方法;从结构设计的角度,综述了船体基座及船体结构中声传递的研究方法;最后,综述了纤维增强树脂基复合材料阻尼的研究进展。
     (2)基本元件动力学特性的矩阵描述法——在元件坐标系下,分别推导了连续元件(欧拉—伯努利梁、杆)和离散元件(质量、弹簧、阻尼、刚体)输入端状态向量与输出端状态向量之间的关系。在状态向量正方向的定义相同时,给出了向前传递矩阵、向后传递矩阵、阻抗矩阵和导纳矩阵的解析公式,研究了四种矩阵的特性。结合欧拉梁和杆的相关公式,得到了一般二维梁的传递矩阵和广义阻抗矩阵的解析公式。数值算例表明:在激励频率较低时,本文方法与有限元法的结果基本相同。当激振频率趋近于零时,获得了位移阻抗矩阵和静力学有限元刚度矩阵之间的关系。讨论了动力学中的矩阵描述法(阻抗矩阵法、导纳矩阵法和传递矩阵法)与静力学中的矩阵描述法(位移法、力法和混合法)的对应关系。
     (3)组合结构动力学特性的阻抗综合法——给出了机械阻抗的基本定义和广义定义。给出了无源线性振动系统的四端参数矩阵的一般形式,给出了四端系统的串联和并联运算法则。介绍了阻抗综合法的基本原理,采用传递矩阵法推导了单层隔振模型的振动方程。本文分别采用传递矩阵法和导纳矩阵法推导了加固型阻振基座的纵向振动方程,得到了纵向力传递率的解析公式,两种方法得到的结果相同,但传递矩阵法的推导过程更简洁。本文还采用传递矩阵法推导了悬臂型阻振基座的横向振动方程,得到了横向力传递率的解析公式。矩阵描述法有利于利用计算机编程计算动力学问题,本文所导得的公式可用于指导阻振基座的动力学设计,计算工作量不大且精度较高。
     (4)复合材料杆件动力学实验及分析——推导了杆在不同边界下原点阻抗和传递阻抗的公式,分析了阻尼和材料对杆阻抗数值的影响。在机械阻抗测试平台上,采用常用的单点激振法进行实验,得到频域内复合材料杆件的机械阻抗数据,频率高于100Hz时,理论预测值和实验值基本吻合,证明了该实验方法的正确性。用实验方法、解析方法和混合方法进行了模态参数的初步识别,并用非线性最小二乘方法中的Levenberg-Marquardt和Trust region算法分别求得了模态参数的最优值,比较了两种算法的结果。由采用优化参数的单自由度离散模型求得的机械阻抗值与实验值吻合良好,该模型可以较好地描述复合材料试件的动力学特性。
     (5)复合材料T型胶接接头动力学实验及分析——设计了典型的船用T型胶接接头,利用前一章的实验及分析方法,借助设计的夹具,在阻抗测试平台上测得了正装和反装的机械阻抗数据,获得了T型接头的离散系统数学模型。
     (6)胶接元件的动力学特性——采用理论结合实验的方法研究了T型接头的胶接结合部在法线方向上的线性动力学特性。根据粘弹性力学原理,推导了由3个bush单元的组合来模拟阻抗矩阵的公式。算例表明:在Nastran中采用该方法可以从数值上模拟阻抗矩阵。利用该方法求得的模拟胶接结合部的bush参数将用于下一章的动力学计算。
     (7)基座动力学特性的实验研究与仿真计算——通过实验和有限元计算两种方法研究了加肋圆柱壳中安装复合结构基座或钢基座的动力学特性,比较了两者的减振和隔振效果。结果表明:复合结构基座的有限元建模方法是合理的。复合结构基座比钢基座具有更好的减振效果。无论采用加速度振级落差还是功率流传递率作为评价指标,复合结构基座都比钢基座具有更好的隔振效果。隔振效果的具体数值与激励位置和激励频率有关。
     (8)总结与展望——总结了本文的研究内容和成果,并对下一步的研究内容进行了展望。
     本文创新性的工作主要体现在:
     (1)为了提高机械隔振效率,提出了以不同材料组成的复合结构基座替代钢基座的新思路。
     (2)提出了一种复合材料腹板与钢质阻振质块相结合的新型机械设备振动隔离基座形式。
     (3)基于波动理论,采用与频率相关的形函数,推导了梁、杆结构的四端参数矩阵,结合数值算例编制了计算程序,该程序与常规有限元程序的计算结果基本相同,但计算量较小。对于简化的基座理论模型,应用已推导的梁、杆、刚体和质量等的四端参数矩阵,导出了带有阻振质量的基座的系统方程,为设计阻振质量基座提供了简便的工具。
     (4)基于计算机—实验辅助建模思想,提出了复合结构基座的动力学建模方法。对非胶接部分的部件采用常规有限元程序模拟;针对胶接结合部的动力学特性难以建模的困难,采用非线性拟合方法对阻抗测试平台上测得的频域实验数据进行了参数识别,得到杆和T型接头试件的系统方程,从中提取出胶接部分的阻抗矩阵,并用有限元程序Nastran中的3个bush单元的组合从数值上模拟了该阻抗矩阵。
     (5)对于复合结构基座和钢基座进行了实验研究和有限元计算,结果表明复合结构基座的建模方法是合理的,且与钢基座相比,经过精心设计的复合结构基座的隔振效果十分明显。
The prediction and control of noise and vibration is a very important field in ship engineering. The research and application of related technology in this field is very significant to improve the quality and safety of merchant ship, or battle effectiveness and survival capability of military ship. The research on the control of ship vibration and sound radiation in the water caused by mechanical excitation has a long history and a lot of results all over the world. In order to improve the effect of vibration and noise reduction, it is very attractive to develop new vibration isolation technology based on composite structures dynamic characteristics.
     Marine mechanical equipment foundation is the most important mechanical vibration transferring route to ship hull structures. In order to improve the effect of foundation on vibration and noise reduction, the composite foundation, which is different from traditional steel foundation, is designed in this paper. And its vibration properties are studied by theoretical and experimental methods. The paper consists of the following aspects:
     (1) A literature review of the related researches—The whole frame of mechanical noise control are given based on acoustic concepts. The theories of flexible vibration isolation systems are presented based on mechanical design concepts. The theories of structure-borne sound propagation are also presented based on structure design concepts. Finally, the researches on damping of fiber reinforced polymer composite are reviewed.
     (2) Investigation on dynamic characteristics of two pole elements by matrix description approach—Relationships between input state vectors and output state vectors of continuous elements (Euler-Bernoulli beam, rod) and discrete elements (mass, spring, damper, rigid body) are deduced respectively in element coordinating system. Analytical formulae of forward transfer matrix, reverse transfer matrix, impedance matrix and mobility matrix are derived separately when the positive definition of state vectors are assumed the same. The characteristics of the four matrices are studied. Analytical formulae of the four matrices of a general beam are given by combining the corresponding formulae of Euler-Bernoulli beam with those of the rod. Numerical examples show that the results respectively by the present method and those of the finite element method are nearly the same. When frequency is close to zero, the relationship between the displacement impedance matrix and the static stiffness matrix are established. The relationship between dynamic matrix description method and static matrix description method is discussed.
     (3) The impedance synthesis method of built-up structures—The basic and generalized definitions of mechanical impedance are given. The four poles parameters matrices and algorithm of passive linear vibration mechanical systems are also given. The impedance synthesis method is introduced. The analytical formulae of simple model are deduced by transfer matrix method. The longitudinal vibration equations of the anti-vibration foundation are achieved both by transfer matrix method and mobility matrix method. The analytical formula for the longitudinal force transmissibility is given. Two approaches yields similar results, but the process of transfer matrix method is simpler. The transverse vibration equations of the anti-vibration foundation are also deduced using transfer matrix method. The analytical formula for the transverse force transmissibility is consequently given. It is showed that matrix description methods facilitate solving dynamic questions using computer programming. Analytical formulae in this paper can be applied in dynamic design of the anti-vibration foundation to achieve good precision with less computation.
     (4) Dynamic experiment and analysis of a composite rod—The formulae of driving point impedance and transfer impedance of the rod under different boundary conditions are deduced. The influences of damping and material parameters to the impedance are analyzed. The composite rod is tested on an impedance platform facility with single point excitation and the mechanical impedance data are obtained. It shows that theoretical results agree with the experimental data when excitation frequency is higher than 100Hz, which also validate the measurement method. The initial modal parameters are then identified with the experiment method, analytical method and hybrid method. After these, the optimal modal parameters are identified by two nonlinear least square methods called Levenberg-Marquardt and Trust region algorithms respectively. Research work show that the mechanical impedance data, which are calculated from the discrete system modal with single degree of freedom and based on optimal modal parameters, coincide well with the experimental result, and this modal can describe the dynamic properties of the composite rod within testing frequency range very well.
     (5) Dynamic experiment and analysis of a composite T joint—The typical marine T joint is designed. The T joint is tested on the impedance platform facility with the help of special designed tools and the positive and negative mechanical impedance data are obtained. The discrete system mathematical modal of T joint is obtained using the method developed in the fourth chapter.
     (6) Dynamic properties of the adhesive joint—The linear dynamic properties of the adhesive joint in normal direction are studied with theoretical and experimental compound method. The impedance matrix can be numerically simulated using the combination of three“bush”elements based on viscoelastic theory. Numerical example shows that the results from FEM method coincide with those from transfer matrix method. The parameters of“bush”elements are used in the seventh chapter.
     (7) Experimental and simulation researches on dynamic properties of the composite foundation—The dynamic properties of two systems, that is, the composite foundation installed in a framed cylinder, and equivalent steel foundation installed the same cylinder, are studied respectively with experimental and FEM method. Results show that the computer and test aided modeling method of the composite foundation are reasonable. The vibration isolation effect of the composite foundation is better than that of the equivalent steel foundation.
     (8) Summary and forecast—The research contents in the dissertation are summarized. The future research contents of related fields are proposed.
     The innovation research works in the dissertation are primarily as follows:
     (1) To improve the efficiency of mechanical vibration isolation, a new idea of using composite foundation in place of steel foundation is presented.
     (2) The composite mechanical equipment vibration isolation foundation, which is a combination of composite web plate and steel anti-vibration mass, is presented.
     (3) Based on the wave theory, the four poles parameters matrices of the Euler-Bernoulli beam and rod are deduced using the shape functions related to frequency. The computer programs are made to calculate special numerical examples. The results of the programs are almost the same with those of ordinary FE programs. For the simplified theoretical model, with the deduced four poles parameters matrices of the Euler-Bernoulli beam, rod, rigid body and mass, the system formulae of anti-vibration foundation are deduced, which provide simple tools for the design of anti-vibration foundation.
     (4) Based on the computer and test aided modeling idea, the dynamic modeling method of the composite foundation is presented. The ordinary FE programs are used to model non adhesive parts. The experimental data in frequency domain are obtained from an impedance platform facility. Then two nonlinear least square methods called Levenberg-Marquardt and Trust region algorithms are used to carry out parameter identification. The reasonable system formulae of specimen are achieved. The impedance matrixes of the adhesive parts, which are obtained from the system formulae of rod and T joint, are numerically simulated using a combination of three“bush”elements in Nastran program.
     (5) The composite foundation and steel foundation are researched using experimental and FEM methods. The results show that the dynamic modeling method of the composite foundation is reasonable. Compared with steel foundation, the vibration isolation effect of the composite foundation is very good.
引文
[1]Adams RD, Bacon DGC.(1973) Effect of fiber-orientation and laminate geometry on properties of CFRP. Journal of Composite Material, 7:402-428.
    [2]Adams RD, Fox Mao, Flood RJL, etc.(1969) The dynamic properties of unidirectional carbon and glass fiber-reinforced plastics in torsion and flexure. Journal of Composite Material, 3:594-603.
    [3]Adams RD, Maheri MR(1994) Dynamic flexural properties of anisotropic fibrous composite beams. Composites Science and Technology, 50(4):497-514.
    [4]Adams RD, Maheri MR.(2003) Damping in advanced polymer–matrix composites. Journal of Alloys and Compounds, 355:126-130.
    [5]American Bureau of Shipping.(2005) Rules for building and classing reinforced plastics vessels.
    [6]Bai Yu, Keller Thomas.(2008) Modal parameter identification for a GFRP pedestrian bridge. Composite Structures, 82(1):90-100.
    [7]Bishop, RED, Johnson, DC.(1979) The mechanics of vibration. Cambridge University Press.
    [8]Bondark JE.(1997) Vibration of truss structures. Journal of the Acoustical Society of America, 102(4):2167-2175.
    [9]Cabos C, Jokat J.(1998) Computation of structure-borne noise propagation in ship structures using noise-FEM, Proceeding of the Seventh International Symposium on Practical Design of Ships and Mobile Units, Hague, Elsevier, 927-934.
    [10]Cao J, Grenestedt JL, Maroun WJ.(2006) Testing and analysis of a 6-m steel truss/composite skin hybrid ship hull model. Marine Structures, 19:23-32.
    [11]?eli? D, Bolte?ar M.(2008) Identification of the dynamic properties of joints using frequency-response functions, Journal of Sound and Vibration, 317:158-174.
    [12]?eli? D, Bolte?ar M.(2009) The influence of the coordinate reduction on the identification of the joint dynamic properties. Mechanical Systems and Signal Processing, 23(4):1260-1271.
    [13]Chandra R, Singh SP, Gupta K.(1999) Damping studies in fiber-reinforced composites–a review. Composite Structures, 46:41-51.
    [14]Cho PE.(1993). Energy flow analysis of coupled structures. Ph.D. Dissertation, Purdue University.
    [15]Cox HL.(1952) The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 3:72-79.
    [16]Crane RM, Gillespe Jr.(1992) Analytical model for prediction of the damping loss factor ofcomposite materials. Polymer Composites, 13(3):179-190.
    [17]Cremer l, Heckl M, Ungar E.(1988) Structure-borne sound. Springer Verlag, Berlin.
    [18]Cui, WC, Liu, T, Liu, JH(1994) Experimental research on the representative connections used for MCMVs made in GRP. China Ship Scientific Research Center Report.
    [19]Det Norse Veritas.(1985) Rules for the classification of high speed light craft.
    [20]Dharmawan Ferry.(2004) Geometry and damage effects in a composite marine T-joint. Composite Structures, 66:181-199.
    [21]Dokanish MH.(1972) A new approach for plate vibration: combination of transfer matrix and finite element technique. Journal of Mechanical Design, 94:526-530.
    [22]Finegan IC, Gibson RF.(1999) Recent research on enhancement of damping in polymer composites. Composite Structures, 44:89-98.
    [23]Fritzen CP.(1986) Identification of mass, damping and stiffness matrices of mechanical systems. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 108(1):9-16.
    [24]Gardonio P, Brennan MJ.(2002) On the origins and development of mobility and impedance methods in structural dynamics. Journal of Sound and Vibration, 249(3):557-573.
    [25]Gibbs and Cox.(1960) Marine design manual for GRP. McGraw-Hill Book Company.
    [26]Goyder HGD, White RG.(1980) Vibration power flow from machine into built-up structures, part I: introduction and approximate analysis of beam and plate-like foundation. Journal of Sound and Vibration, 68(1):59-75.
    [27]Goyder HGD, White RG.(1980) Vibration power flow from machine into built-up structures, part II: wave propagation and power flow in beam-stiffened plates. Journal of Sound and Vibration, 68(1):77-96.
    [28]Goyder HGD, White RG.(1980) Vibration power flow from machine into built-up structures, part III: power flow through isolation systems. Journal of Sound and Vibration, 68(1):97-117.
    [29]Grice RM, Pinnigton RJ.(2000) A method for the vibration analysis of built-up structures, part I: introduction and analytical analysis of the plate-stiffened beam. Journal of Sound and Vibration, 230(4):825-849.
    [30]Grice RM, Pinnigton RJ.(2000) A method for the vibration analysis of built-up structures, part II: analysis of the plate-stiffened beam using a combination of finite element analysis and analytical impedances. Journal of Sound and Vibration, 230(4):851-875.
    [31]Harris CM.(1995) Shock and vibration handbook. New York: Mcgraw-Hill.
    [32]Hashin Z.(1970a) Complex moduli of viscoelastic composites: I. General theory and application to particulate composites. International Journal of Solids and Structures, 6:539-552.
    [33]Hashin Z.(1970b) Complex moduli of viscoelastic composites: II. Fiber-reinforced materials. International Journal of Solids and Structures, 6:797-807.
    [34]Hawkins GL.(1995) The behaviour of bonded out-of-plane joints in fibre reinforced plastic structures. Ph.D. Dissertation, Department of ship science, University of Southampton.
    [35]Horner GC, Pilkey WD.(1978) The riccati transfer matrix method. Journal of Mechanical Design, 1(2):297-302.
    [36]Horsmon AW.(2001) Lightweight composites for heavy-duty solutions. Marine Technology, 38(2):112-115.
    [37]Hsieha Sheng-Chung, Chen Juhn-Horng, Lee An-Chen.(2006) A modified transfer matrix method for the coupling lateral and torsional vibrations of symmetric rotor-bearing systems. Journal of Sound and Vibration, 289:294-333.
    [38]Hwang SJ, Gibson RF.(1987) Micromechanical modeling of damping in discontinuous fiber composites using a strain energy/finite element approach. Journal of Material Science and Technology, 109:47-52.
    [39]Hwang SJ, Gibson RF.(1991) The effects of three dimensional states of stress on damping of laminated composites. Composites Science and Technology, 41:379-393.
    [40]Ibrahim RA, Pettit CL.(2005) Uncertainties and dynamic problems of bolted joints and other fasteners. Journal of Sound and Vibration, 279:857–936.
    [41]ISO10846-1, Acoustics and vibration-Laboratory measurement of vibro-acoustic transfer properties of resilient elements-part 1. ISO 1997.10
    [42]ISO10846-3, Acoustics and vibration-Laboratory measurement of vibro-acoustic transfer properties of resilient elements-part 3. ISO 2002.6
    [43]Ito Y, Masuko M.(1971) Study on the horizontal bending stiffness of bolted joint. Bulletin of JSME, 14:876-889.
    [44]Kaliske M, Rother H.(1995) Damping characterization of unidirectional fiber-reinforced composite. Composites Engineering, 5(5):551-567.
    [45]Kinsler, LE.(1982) Fundamentals of acoustics. John Wiley & Sons.
    [46]Kuno James K.(1979) Structural adhesives continue to gain foothold in aerospace and industrial use. Structural Adhesives and Bonding, Proc. Structural Adhesives Bonding Conference, arranged by Technology Conferences Associates, E I Segundo, California.
    [47]Lee Usik.(2000) Vibration analysis of one-dimensional structures using the spectral transfer matrix method. Engineering Structures, 22:681-690.
    [48]Li TY, Zhang XM, Zuo YT.(1997) Structural power flow analysis for a floating raft isolation systemconsisting of constrained damped beams. Journal of Sound and Vibration, 202(1):47–54.
    [49]Lin DX, Ni RG, Adams RD.(1984) Prediction and measurement of the vibrational damping parameters of carbon-glass fiber-reinforced plastic plates. Journal of composite materials, 18:132-152.
    [50]Lin RM, Zhu J.(2007) Finite element model updating using vibration test data under base excitation. Journal of Sound and Vibration, 303:596–613.
    [51]Liu W.(2000) Structural dynamic analysis and testing of coupled structures, PhD Dissertation, Imperial College of Science, London.
    [52]Lloyd’s Register of Shipping.(1983) Rules for yachts and small craft.
    [53]Lyon RH.(1975) Statistics Energy analysis of dynamical systems: theory and application, M.I.T .Press.
    [54]Maheri MR, Adams RD.(1995) Finite-element prediction of modal response of damped layered composite panels. Composite science and technology, 55(1):13-23.
    [55]Maheri MR, Adams RD.(2003) Modal vibration damping of anisotropic FRP laminates using the Rayleigh–Ritz energy minimization scheme. Journal of Sound and Vibration, 259(1):17–29.
    [56]Mandal NK, Biswas S.(2005) Vibration power flow: a critical review. The Shock and Vibration Digest, 37(3):3-11.
    [57]McGeorge D, Echtermeyer AT, Leong KH, etc.(2009) Repair of floating offshore units using bonded fibre composite materials. Composites: Part A, 40:1364-1380.
    [58]Mouring SE.(1998) Composites for naval surface ships. Marine Technology Society Journal, 32(2):41-46.
    [59]Mouritz AP, Gellert E, Burchill P, etc.(2001) Review of advanced composite structures for naval ships and submarines. Composite Structures, 53:21-41.
    [60]Muggleton JM, Waters TP, Mace BR(2007) Approaches to estimating the reflection and transmission coefficients of discontinuities in waveguides from measured data. Journal of Sound and Vibration, 307:280–294.
    [61]Nayak AK.(2002) On dynamic analysis of laminated composite and sandwich plates using finite element method. Ph.D. Dissertation, University of Southampton.
    [62]Nefske DJ, Sung SH.(1989) Power flow finite element analysis of dynamic systems: basic theory and applications to beams. ASME Transactions, Journal of Vibration, Acoustics, Stress and Reliability, 111:94-106.
    [63]Ni RG, Lin DN, Adams RD.(1984a) The dynamic properties of carbon-glass fiber sandwich laminated composites: Theoretical, experimental and economic consideration. Composites, 15(4):297-304.
    [64]Ni RG, Adams RD.(1984b) Damping and dynamic moduli of symmetric laminated composite beams: Theoretical and experimental results. Journal of composite materials, 18:104-121.
    [65]Niu JC, Song KJ, Lim CW.(2005) On active vibration isolation of floating raft system. Journal of Sound and Vibration, 285:391–406.
    [66]Pei JunHou, Shenoi RA.(1996) Examination of key aspects defining the performance characteristics of out-of-plane joints in FRP marine structures. Composites part A, 27A:89-103.
    [67]Pestel EC, Leckie FA.(1963) Matrix method in elastic mechanics. New York: McGraw Hill.
    [68]Phillips HJ, Shenoi RA.(1998) Damage tolerance of laminated tee joints in FRP structures. Composites Part A, 29(4):465–478.
    [69]Ren Y.(1992) The analysis and identification of friction joint parameters in the dynamic response of structures, PhD Dissertation, Imperial College of Science, London.
    [70]Ren Y, Beards C.F.(1995) Identification of joint properties of a structure using FRF data. Journal of Sound and Vibration, 186:567–587.
    [71]Renji K, Nair PS, Narayanan S.(2001) Non-resonant response using SEA. Journal of Sound and Vibration, 241(2):253-270.
    [72]Renos A. Votsis, Marios K. Chryssanthopoulos.(2009) Assessment of debonding in GFRP joints using damage identification techniques. Construction and Building Materials 23(4):1690-1697.
    [73]Rubin S.(1967) Review of mechanical immittance and transmission matrix concepts. Journal of the Acoustical Society of America, 41(5):1171-1179.
    [74]Rui Xiaoting, He Bin, Lu Yuqi, et al. (2005) Discrete time transfer matrix method for multibody system dynamics. Multibody System Dynamics, 14(3-4):317-344.
    [75]Saravanos DA, Chamis CC.(1990) Unified micromechanics of damping for unidirectional and off-axis fiber composites. Journal of Composite Technology Research, 12(1):31-40.
    [76]Saravanos DA, Chamis CC.(1991) Integrated mechanics for passive damping of polymer matrix composites and composite structures. In: Mechanics and Mechanisms of Material Damping, Conference sponsored by ASTM, Baltimore, Maryland, 13-15 March, 1-25.
    [77]Scott A. Sands, Peter Camilleri, Rebecca A. Breuer. et al.(2009) A novel method for the measurement of mechanical mobility. Journal of Sound and Vibration, 320:559-575.
    [78]Sheng MP, Wang MQ, Sun JC.(1998) Effective internal loss factors and coupling loss factors for non-conservatively coupled systems. Journal of Sound and Vibration, 209(4):685-694.
    [79]Sj?vall Per, Abrahamsson Thomas.(2008) Substructure system identification from coupled system test data. Mechanical Systems and Signal Processing, 22(1):15-33.
    [80]Smith CS.(1990) Design of marine structures in composite materials. Elsevier Applied Science,London.
    [81]Srikantha Phani A, Woodhouse J.(2007) Viscous damping identification in linear vibration. Journal of Sound and Vibration, 303:475–500.
    [82]Steenackers G, Devriendt C, Guillaume P.(2007) On the use of transmissibility measurements for finite element model updating. Journal of Sound and Vibration, 303:707–722.
    [83]Talbot JP, Woodhouse J.(1997) The vibration damping of laminated plates. Composites Part A, 28(A):1007-1012.
    [84]Tesár Alexander, Fillo Ludovit.(1988) Transfer matrix method. Springer.
    [85]Tsai J S, Chou T F.(1988) The identification of dynamic characteristics of a single bolt joint. Journal of Sound and Vibration, 125(3):487-502.
    [86]Ungar EE, Kerwin Jr. EM.(1962) Loss factor of viscoelastic systems in terms of energy concepts. Journal of Acoustical Society of America, 34(2):954-958.
    [87]Vlahopoulos N., Garza-Rios L. O., Mollo C.(1999) Numerical implementation, validation and marine applications of an energy finite element formulation. Journal of Ship Research, 43(3):143-156.
    [88]Wang JH. Chuang SC.(2004) Reducing errors in the identification of structural joint parameters using error functions. Journal of Sound and Vibration 273:295–316.
    [89]White RG, Abdin EMY.(1985) Dynamic properties of aligned short carbon fiber-reinforced plastics in flexure and torsion. Composites, 16(4):293-306.
    [90]Willway TA, White RG.(1989) The effect of matrix complex modulus on damping properties of CFRP laminae. Composite Science and Technology, 36:77-94.
    [91]Xiong YP, Xing JT, Price WG.(2003) A general linear mathematical model of power flow analysis and control for integrated structure-control systems. Journal of Sound and Vibration, 267:301-334.
    [92]Yang KT, Park YS.(1993) Join structural parameter identification using a subset of frequency response function measurement, Mechanical Systems and Signal Processing, 7:509-530.
    [93]Yang T, Fan HS, Lin SC.(2003) Joint stiffness identification using FRF measurements. Computers and Structures, 81:2549-2556.
    [94]GB/T 2298-1991,机械振动、冲击名词术语.国家技术监督局.
    [95]GB/T 10084-1988,振动、冲击数据分析和表达方法.国家技术监督局.
    [96]GB/T 11349.1~11349.2-1989,机械导纳的试验确定.国家技术监督局.
    [97]陈念众,张圣坤,孙海虹.(2001)复合材料船体纵向极限承载能力分析.船舶工程, (5):51-53.
    [98]陈铁云,陈伯真.(1984)船舶结构力学.北京:国防工业出版社.
    [99]陈新,周济,余俊.(1993)组合结构结合部动态参数实验识别.实验力学, 8(4):369-374.
    [100]崔维成,刘水庚,顾继红等.(2000)国外潜艇设计和性能研究的一些新动态.船舶力学,4(2):65-80.
    [101]邓海华.(2006)整舱浮筏功率流测试初步分析研究.舰船科学技术, 28(S2):81-85.
    [102]傅志方,华宏星.(2000)模态分析理论与应用.上海:上海交通大学出版社.
    [103]桂洪斌,金咸定.(2004)大质量隔振的机械阻抗法分析. 2004年全国振动工程及应用学术会议,振动工程学报增刊, 17:1032-1035.
    [104]蒋书运,陈照波,须根法等.(1998)用整体传递矩阵法计算航空发动机整机临界转速特性.哈尔滨工业大学学报, 30(1):32-35.
    [105]金咸定,赵德有.(2000)船体振动学.上海:上海交通大学出版社.
    [106]高立冬,喻浩,王暖.(2002)减振降噪技术的应用设计.中国造船, 43(2):44-49.
    [107]冷文浩.(1996)带有复合结构的多层隔振系统振动传递及声辐射研究.中国船舶科学研究中心博士论文.
    [108]李江涛,王纬波,吴有生.(2007)阻振质量对基座纵横向振动传递的影响. 2007年船舶力学学术会议暨《船舶力学》创刊十周年纪念学术会议论文集, 425-433.
    [109]李天匀,张小铭,徐慕冰.(1997)梁—梁浮筏隔振的功率流分析.振动与冲击, 16(1):30-34.
    [110]李维嘉,曹青松.(2007)船舶振动主动控制的研究进展与评述.中国造船, 48(2):68-79.
    [111]李雅萍,刘庆潭.(2005)多跨弹性支座圆弧梁计算的传递矩阵法.中国铁道科学, 26(3):48-52.
    [112]李永胜.(2009)复合材料连接接头的研究与设计.中国船舶科学研究中心硕士论文.
    [113]廖道训,黄孝成,陆永忠. (1999 )多层隔振系统的动力学方程.中国机械工程, 10(12):1321-1324.
    [114]刘洪林,王德禹.(2003)阻振质量块对板结构振动与声辐射的影响.振动与冲击, 22(4):76-79.
    [115]刘见华.(2003a)舰船结构声传递的阻抑机理及应用研究.上海交通大学博士论文.
    [116]刘见华,金咸定,李喆.(2003b)阻振质量阻抑结构声的传递.上海交通大学学报, 37(8):1201-1204.
    [117]刘见华,金咸定,李喆.(2003c)多个阻振质量阻抑结构声的传递.上海交通大学学报, 37(8):1205-1208.
    [118]刘忠族,孙玉东,吴有生(.2002)空间管路振动频率计算的精确传递矩阵法.计算力学学报, 19(2):207-211.
    [119]尼基福罗夫.(1998)船体结构声学设计.北京:国防工业出版社.
    [120]倪振华.(1989)振动力学.西安:西安交通大学出版社.
    [121]诺顿. MP.(1993)工程噪声和振动分析基础.北京:航空工业出版社.
    [122]乔爱科,孙洪鹏,高斯等.(2008)基于传递矩阵法的连续梁内力计算.北京工业大学学报,34(8):806-810.
    [123]瞿祖清,华宏星,傅志方.(1998)浮筏隔振装置的超单元建模方法.中国造船, (4):81-86.
    [124]任勇生,刘立厚.(2004)纤维增强复合材料结构阻尼研究进展.力学与实践, 26(1):9-16.
    [125]芮筱亭,隋文海,邵允中.(1993a)刚体的场传递矩阵及其在多体动力学中的应用.宇航学报, 14(4):82-87.
    [126]芮筱亭,刘亚飞.(1993b)梁系统振动的传递矩阵法.力学与实践, 15(5):66-67.
    [127]芮筱亭,陆毓琪.(1995a)多体系统振动的传递矩阵法.宇航学报, 16(3):41-47.
    [128]芮筱亭,党双喜,张金奎.(1995b)多体系统传递矩阵法在火炮动力学中的应用.力学与实践, 17(4):42-44.
    [129]苏铁熊,杨世文,崔志琴等(.2001)复杂结构结合部动力学仿真模型研究.华北工学院学报, 22(3):218-222.
    [130]孙建刚等.(2009) T形接头及杆件复合结构机械阻抗测试报告.中国船舶科学研究中心.
    [131]孙建刚等.(2009)复合结构基座模型振动试验大纲.中国船舶科学研究中心.
    [132]尚国清,李巍.(1999)关于舰船浮筏系统的特征演化.舰船科学技术, (1):21-23.
    [133]尚国清,邱伯华.(1999)关于浮筏系统的动力学建模分析.舰船科学技术, (4):24-28.
    [134]沈建平,周璞.(2006)隔振器机械阻抗测量方法.舰船科学技术, 28(S2):98-106.
    [135]盛美萍,王敏庆,孙进才.(2001)噪声与振动控制技术基础.北京:科学出版社.
    [136]沈荣瀛.(1999)船舶轮机振动噪声控制综述.机电设备, (3):22-25.
    [137]孙丽萍,聂武.(2003)船舶结构振动噪声分析及其进展.船舶力学, 7(1):116-121.
    [138]孙玲玲,宋孔杰.(2003)浮筏隔振系统功率流特性分析.应用力学学报, 20(3):99-102.
    [139]唐文勇张圣坤陈铁云.(2000)复合材料迭层板柱状弯曲的非线性流固耦合动力响应分析.复合材料学报, 17(1):93-97.
    [140]童宗鹏,章艺,尚国清等.(2005)舱筏隔振系统水下振动特性的理论分析与试验研究.振动与冲击, 24(6):71-74.
    [141]王艾伦.(2004)复杂机电系统(键合图—模态分析)方法研究.中南大学博士论文.
    [142]王旌生.(2007)粘弹性复合材料结构水中振动和声辐射特性研究.上海交通大学博士论文.
    [143]王锁泉,周庆云,席亦农等.(2006)隔振元件机械阻抗测量与数据处理方法研究.舰船科学技术, 28(S2):107-111.
    [144]王纬波.(2007)复合材料弹性基座的初步概念方案及其隔振估算.中国船舶科学研究中心.
    [145]王文亮,杜作润.(1985)结构振动与动态子结构方法.上海:复旦大学出版社.
    [146]王震鸣.(1991)复合材料力学和复合材料结构力学.北京:机械工业出版社.
    [147]吴广明.(2004)舰船复杂隔振系统建模及其功率流研究.上海交通大学博士论文.
    [148]向锦武,周传荣,袁向东.(1993)一种用实验模态数据识别结构系统支撑刚度的新方法.振动工程学报, 1993, 6(3):238-245.
    [149]行晓亮,王敏庆,宋代科.(2005)弹性基础浮筏的导纳功率流研究.机械科学与技术, 24(7):761-763.
    [150]徐张明,汪玉,华宏星等.(2002)双层壳体的船舶动力舱振动与声辐射的有限元结合边界元数值计算.中国造船, 43(4):39-44.
    [151]严济宽.(1985)机械振动隔离技术.上海:上海科学技术文献出版社.
    [152]严济宽,柴敏,陈小琳.(1997)振动隔离效果的评定.噪声与振动控制, 12(6):22-30.
    [153]晏水平,黄树红,韩守木.(2000)利用Euler梁模型计算汽轮机叶片静频和动频的传递矩阵法.中国电机工程学报. 20(6):68-70.
    [154]杨波,浦伯良,季培德(.2001)内河小型工作艇噪声控制研究与实践.江苏船舶, 18(1):10-15.
    [155]杨炳渊,宋彦国.(2001)界面连接刚度参数辨识的子结构分析法.力学季刊, 22(4):420-427.
    [156]杨炳渊,阳华,宋伟力.(1997)子结构界面连接刚度参数识别的一种直接方法.振动工程学报, 1997, 10(3):335-342.
    [157]杨德庆,郭凤骏.(2008)振级落差约束下齿轮箱基座拓扑构型设计.振动与冲击, 27(6):173-177.
    [158]杨挺青.(1990)粘弹性力学.武汉:华中理工大学出版社.
    [159]姚德源,王其政.(1995)统计能量分析原理及其应用.北京:北京理工大学出版社.
    [160]姚熊亮.(2007)舰船结构振动冲击与噪声.北京:国防工业出版社.
    [161]姚耀中,林立.(2006)潜艇机械噪声控制技术的现状与发展.舰船科学技术, 28(S2):3-8.
    [162]于百胜,郑钢铁,杜华军(.2003)分叉结构系统传递矩阵计算方法.振动与冲击, 22(1):93-95.
    [163]于开平,邹经湘,庞世伟.(2005)结构系统模态参数识别方法研究进展.世界科技研究与发展, 27(6):22-30.
    [164]俞孟萨,林立,林鹤雄(.2001)水下航行体机械噪声的工程预报方法.中国造船, 42(2):82-89.
    [165]贠来峰,芮筱亭,何斌等.(2006)二维系统传递矩阵法.力学学报, 38(5):712-720.
    [166]曾繁洲等.(1999)隔振降噪技术在测量船上的应用.造船技术, (4):9-13.
    [167]张景绘.(2000)动力学系统建模.北京:国防工业出版社.
    [168]张鲲.(2008)带有动力吸振器浮筏隔振系统的减振特性研究.中国科学技术大学博士论文.
    [169]张少辉,陈花玲.(2002)国外纤维增强树脂基复合材料阻尼研究综述.航空材料学报, 22(1):58-62.
    [170]张双寅,刘济庆,于晓霞等.(1992)复合材料结构的力学性能.北京:北京理工大学出版社.
    [171]张思.(1992)振动测试与分析技术.北京:清华大学出版社.
    [172]张宗兰,祝效国.(1988)机械结合面动态参数的研究.哈尔滨工业大学学报, (4):79-86.
    [173]周传荣.(2001)结构动态设计.振动、测试与诊断, 21(1):1-8.
    [174]祝华.(1994)浮筏装置的理论建模与分析方法.舰船科学技术, (2):14-19.
    [175]朱石坚,何琳.(2006)船舶机械振动控制.北京:国防工业出版社.
    [176]朱锡,胡忠平,石勇.(2003)预报基座结构噪声的有限元方法研究.海军工程大学学报, 15(6):33-36.
    [177]邹经湘.(1996)结构动力学.哈尔滨:哈尔滨工业大学出版社.
    [178]左鹤声.(1987)机械阻抗方法与应用.北京:机械工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700