神经网络模型在预测急性心肌梗死中的应用及模型预测能力的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     心血管疾病是世界范围内严重危害人类健康的疾病,近年来研究显示,其发病率和死亡率在发展中国家日益增高。目前已经有很多研究探讨心肌梗死发病的危险因素并预测发病概率。预测疾病发病概率需要建立统计学模型,对于目前常规使用的统计模型预测能力有限。我们希望寻找一种更好的分析变量间更为复杂的非线性关系的数学模型,从而为中国人群急性心肌梗死的诊断和预防提供参考。神经网络模型是在模拟人脑神经组织的基础上发展起来的计算系统,是由大量处理单元通过广泛互联而构成的网络体系,它具有生物神经系统的基本特征,具有非线性映射能力、学习能力、自适应能力、容错能力、联想储存的功能,是数据挖掘方法中一类非常重要的模型。
     本研究的目的是构建Logistic回归模型、BP神经网络模型和Elman神经网络模型,并将常规的统计学方法与神经网络模型的方法结合起来运用到急性心肌梗死的预测中,期望能够提高疾病的预测能力。
     方法
     我们将中国人群急性心肌梗死流行学调查数据中涉及的变量分为常规变量和基因SNP位点变量。常规变量分为定性变量和定量变量,进行了变量的描述和单变量分析。对于基因SNP位点变量,进行了基因频率和基因型频率计算、哈代-温伯格平衡定律验证、趋势检验和SNP位点单体型区域的构建。
     之后我们构建了3种统计预测模型,常规Logistic回归模型、BP神经网络模型和Elman神经网络模型,回代数据计算ROC曲线下面积,初步比较三种模型的预测精度;而后利用随机抽样的方法将数据分为训练集和验证集,重新构建模型评价3种模型的泛化能力,利用反复抽样的方法比较三种模型的预测精度;最后我们随机模拟数据,考虑到连续型变量和离散型变量在模型中的差别,因此,我们将随机模拟分为两种情况,第一部分模拟连续型变量具有统计学意义;第二部分模拟离散型变量具有统计学意义,分别构建模型,并针对模型对变量的适应性和模型的稳定性进行研究。
     结果
     经过数据随机抽样分为预测数据集和验证数据集拟合模型比较3种模型的预测能力,结果表明10%-40%4种不同验证数据集比例情况下,BP神经网络模型ROC曲线下面积相比Logistic回归模型分别高出4.5%、3.1%、3.3%和2.9%,具有统计学意义。Elman (?)神经网络模型ROC曲线下面积相比Logistic回归模型分别高出4.2%、2.1%、2.9%和1.4%,20%和40%比例人群作为验证数据集情况下无统计学意义。BP模型ROC曲线下面积相比Elman模型4种不同验证数据集比例差别为:0.2%、0.9%、0.4%和1.6%,差别不具有统计学意义。BP神经网络模型相比常规的Logistic回归模型能够显著提高模型的泛化能力。
     随机模拟数据研究结果表明,第一部分模拟连续型变量具有统计学意义,3种模型的预测性能均较高;第二部分模拟离散型变量具有统计学意义,在10%-40%4种不同验证数据集比例情况下,BP神经网络模型与Elman神经网络模型ROC曲线下面积相比Logistic回归模型分别高出3.2%、2.9%、3.2%和3.1%,具有统计学意义。2种神经网络模型预测性能均显著优于Logistic回归模型。Elman模型与BP模型差别无统计学意义。
     结论
     通过本研究的实际应用结果可知:利用BP神经网络、Elman神经网络模型具有良好的预测能力、较快的运算速度、良好的稳定性,具有解决复杂的非线性关系的能力,特别是在样本量不大、离散型变量较多、非线性关系复杂的数据研究中,神经网络模型的预测性能高于Logistic回归分析,充分显示出神经网络方法的优越性和合理性。这2种神经网络方法在心脏病流行病学领域预测和评价方面的使用将具有较好的实际应用价值。
Objective
     Cardiovascular disease harms to human health seriously worldwide. In recent years, many studies have shown that incidence and mortality has been increasing in developing countries. Several studies have explored risk factors for myocardial infarction and predict the incidence rate. Statistical models need to be built for disease incidence rate prediction, and conventional statistical model predictive ability is limited. We hope to find the mathematical model which is able to analyze more complicated non-linear relationship between variables, and provide a reference for the diagnosis and prevention of acute myocardial infarction in China population. The neural network model is one computing system developed on the basis of the simulation of the human brain tissue, and it is network system constituted by a large number of processing unit through an extensive interconnection. The neural network model has the basic characteristics of the biological nervous system, and it has nonlinear mapping ability, learning ability, adaptive capacity, fault tolerance, and associated storage function, so it is an important model in data mining methods.
     The purpose of this study was to build a Logistic regression model, BP neural network model and Elman neural network model, and conventional statistical methods combined with the method of the neural network model applied to the prediction of acute myocardial infarction. It was expected to be able to improve the capability of the disease prediction.
     Methods All the variables consisted of conventional variables and the SNP locus variable from acute myocardial infarction epidemiological survey data in China population. The conventional variables were divided into qualitative variables and quantitative variables, and description of the variables and univariate analysis are applied. About gene SNP loci variable, we calculated gene and genotype frequencies, and finished Hardy-Weinberg equilibrium validation, trend test and SNP loci haplotype area construction.
     We constructed three kinds of statistical prediction model, conventional logistic regression model, BP neural network model, and Elman neural network model, calculated the area under ROC curve back inputting data to model, and compared the primary prediction accuracy of three models. Then we divided all the data into training and validation sets by random sampling method, and rebuild three models to evaluate the generalization ability. Repeated sampling method was used to compare three models prediction accuracy. Finally, we randomly simulated data, and taking into account the difference between the continuous variables and discrete variables in the model, so the random simulation was divided into two parts:the first, continuous variables were statistically significant; the second, discrete variables were statistically significant. We established models to evaluate adaptability and stability to different variables.
     Results
     After random sampling, the data was divided into the prediction data set and validation data set. We fitted3models, and compared the predictive ability between different models. The results showed that in4different proportions of validation data set,10%-40%, the area under ROC curve of BP neural network model were-increased by4.5%,3.1%,3.3%and2.9%, compared to Logistic regression model, respectively. The area under ROC curve of Elman neural network model were increased by4.2%,2.1%,2.9%and1.4%compared to Logistic regression model. The result fitted by20%and40%population as a validation dataset was not statistically significant. Differences of area under ROC curve between BP model and Elman model in four different proportions of validation data set were0.2%,0.9%,0.4%and1.6%. and there was not statistically significant. BP neural network can significantly improve the generalization ability of the model model compared to conventional logistic regression model.
     Random simulation data results showed that in the first part, simulation of continuous variables were statistically significant, and the predictive capacity of the three models was high. In second part, discrete variables were statistically significant, and in4different proportions of validation set,10%-40%, the area under ROC curve of BP and Elman neural network model increased by3.2%,2.9%,3.2%and3.1%, compared to Logistic regression model, respectively. Two kinds of neural network model predictive capacity were significantly higher than the Logistic regression model. Elman model and BP model were no significant difference.
     Conclusion
     The results of this research showed that the application of BP neural network and Elman neural network model had high predictive capacity, faster computing speed, well stability and strong capacity to resolve complex non-linear relationship. The prediction performance of the neural network model was higher than Logistic regression model, especially in the little sample size situation, more discrete variables, and complex nonlinear relationship in the research data. It clearly showed that advantage and rationality of neural network. The application of these two kinds of neural network in prediction and evaluation in the field of heart disease epidemiology will have a better practical value.
引文
[1]Teo KK, Liu LS, Chow CK, et al:Potentially modifiable risk factors associated with myocardial infarction in China:the INTERHEART China study. Heart,2009,95:1857-64.
    [2]Guo J, Li W, Yusuf S, et al. Influence of dietary patterns on the risk of acute myocardial infarction (AMI) in China population:the INTERHEART China study. Chinese Medical Journal, 2013,126:464-70.
    [3]Guo J, Li W, Wang Y, et al. Influence of socioeconomic status on acute myocardial infarction (AMI) in China population:the INTERHEART China study. Chinese Medical Journal,2012,125: 4214-20.
    [4]Chinese National Center for Cardiovascular Diseases. Report on cardiovascular diseases in China (2008-2009). Beijing:Encyclopedia of China Publishing House,2009.
    [5]Hawken S, Ounpuu S, Dans T, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study):case-control study. Lancet, 2004,364:937-52.
    [6]Rosengren A, Subramanian SV, Islam S, et al. Education and risk for acute myocardial infarction in 52 high, middle and low-income countries:INTERHEART case-control study. Heart,2009, 95:2014-22.
    [7]Gonzalez-Zobl G, Grau M, Munoz MA, et al. Socioeconomic Status and Risk of Acute Myocardial Infarction:Population-Based Case-Control Study. Rev Esp Cardiol,2010, 63:1045-53.
    [8]Kristiina Manderbacka and Marko Elovainio. The Complexity of the Association Between Socioeconomic Status and Acute Myocardial Infarction. Rev Esp Cardiol 2010;63:1015-18
    [9]Schaufelberger M, Rosengren A. Heart failure in different occupational classes in Sweden. Eur Heart J,2007,28:212-8.
    [10]Iqbal R, Anand S, Ounpuu S, et al. Dietary Patterns and the Risk of Acute Myocardial Infarction in 52 Countries:Results of the INTERHEART Study. Circulation,2008,118:1929-37.
    [11]Amani R, Noorizadeh M, Rahmanian S, et al. Nutritional related cardiovascular risk factors in patients with coronary artery disease in IRAN:A case-control study. Nutrition Journal,2010, 9:70-5.
    [12]Oliveira A, Rodriguez-Artalejo F, Gaio R, et al. Major habitual dietary patterns are associated with acute myocardial infarction and cardiovascular risk markers in a southern European population. J Am Diet Assoc,2011,111:241-50.
    [13]Olinto MT, Gigante DP, Horta B, et al. Major dietary patterns and cardiovascular risk factors among young Brazilian adults. Eur J Nutr,2011,17:1-4.
    [14]Nagata C, Nakamura K, Oba S, et al; Association of intakes of fat, dietary fibre, soya isoflavones and alcohol with uterine fibroids in Japanese women. Br J Nutr,2009,101:1427-31.
    [15]Teo K, Chow CK, Vaz M, et al. The Prospective Urban Rural Epidemiology (PURE) study: Examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries. Am Heart J,2009,158:,1-7.
    [16]Guo J, Li W, Wu Z, et al. Association Between 9p21.3 Genomic Markers and Coronary Artery Disease in East Asians:A Meta-analysis Involving 9813 Cases and 10710 Controls. Molecular Biology Reports,2013,40:337-43.
    [17]郭晋,李卫,刘欣等.染色体9p21和1p13上单核苷酸多态性(SNP)位点与中国人群急性心肌梗死(AMI)的关联研究:中国急性心梗研究.第二军医大学学报,2011,32:822-6.
    [18]Myocardial Infarction Genetics Consortium:Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet,2009, 41:,334-41.
    [19]Glenn E, Palomaki, Stephanie Melillo, et-al:Bradley Association Between 9p21 Genomic Markers and Heart Disease A Meta-analysis. JAMA,2010,303:605-56.
    [20]Helgadottir A, Thorleifsson G, Manolescu A, et al:A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science,2007,316:,1491-93.
    [21]Qiu Z, Zhang Y, Gao S, et al. SusceptibiHty study of 9p21 polymophism in patients with coronary heart disease in Chinese Han population. Geriatr Health Care,2011,17:21-4.
    [22]Preuss M, Konig R, Thompson R, et al. Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Study:A Genome-Wide Association Meta-analysis Involving More Than 22000 Cases and 60 000 Controls. Circ Cardiovasc Genet, 2010,3:475-83.
    [23]Xie F, Chu X, Wu H, et al. Replication of Putative Susceptibility Loci from Genome-Wide Association Studies Associated with Coronary Atherosclerosis in Chinese Han Population. PLoS ONE,2011,6:e20833.
    [24]Ding K, Kullo IJ. Genome-Wide Association Studies for Atherosclerotic Vascular Disease and Its Risk Factors. Circ Cardiovasc Genet,2009,2:63-72.
    [25]Chang M, et al. Genetic variants associated with fasting blood lipids in the U.S. population: Third National Health and Nutrition Examination Survey. BMC Medical Genetics,2010,11: 62-74.
    [26]Zhou L, Zhang X, He M, et al:Associations Between Single Nucleotide Polymorphisms on Chromosome 9p21 and Risk of Coronary Heart Disease in Chinese Han Population. Arterioscler Thromb Vasc Biol,2008,28:2085-9.
    [27]Johansen T, Lanktree B, Hegele A. Translating genomic analyses into improved management of coronary artery disease. Future Cardiol,2010,6:507-21.
    [28]Linsel-Nitschke P, Heeren J, Aherrahrou Z, et al:Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis,2010,208:183-9.
    [29]Tan P, Steibach M, Kumar V. Introduction to Data Mining. POST&TELECOM PRESS,2008: 135-7.
    [30]Santner D E, Duffy T J. The Statistical Analysis of Discrete Data, New York:Springer-Verlag, 1989.
    [31]Furnival G M, Wilson R W. Regression by Leaps and Bounds. Technometrics,1974,16: 499-511.
    [32]Akaike H. A new look at the statistical identification model. IEEE Trans. Auto Control,1974,19: 716-23.
    [33]Joannis G V, Dimitris A K, Manolis J H. Improved Medical Decision Making.Cambridge,2000, 201:95.
    [34]Samanta B, Bird GL, Kuijpers M,et al. Prediction of periventricular leukomalacia. Part I. Selection of hemodynamic features using logistic regression and decision tree algorithms. Arti Intell Med,2009,45:300-20.
    [35]Simon Haykin. Neural Networks and Learning Machines (Third Edition). China:China Machine Press,2009.
    [36]Olsson SE, Ohlsson M, Ohlin H, et al. Neural networks-a diagnostic tool in acute myocardial infarction with concomitant left bundle branch block. Clin Physiol & Func Im,2002,22:295-9
    [37]Delen D, Walker G, Kadam A. Predicting breast cancer survivability:a comparison of three data mining methods. Artificial Intelligence in Medicine,2005,34:113-27.
    [38]Bigi R, Gregori D, Cortigiani L, et al. Artificial neural networks and robust Bayesian classifiers for risk stratification following uncomplicated myocardial infarction. International Journal of Cardiology,2005,101:481-7.
    [39]Eggers KM, Ellenius J, Dellborg M, et al. Artificial neural network algorithms for early diagnosis of acute myocardial infarction and prediction of infarct size in chest pain patients. Int J Cardiol,2007,114:366-74.
    [40]陈建新,西广成,王伟.数据挖掘分类算法在冠心病临床应用的比较.北京生物医学工程,2008,27:249-52.
    [41]Ounpuu S, Negassa A, Yusuf S, et al. INTERHEART, a global study of risk factors for myocardial infarction. Am Heart J,2001,141:711-21.
    [42]Yusuf S, Hawken S, Ounpuu S, et al:On behalf of the INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study):case-control study. Lancet,2004,364:937-52.
    [43]McPherson R, Pertsemlidis A, Kavaslar N, et al:A common allele on chromosome 9 associated with coronary heart disease. Science,2007,316:1488-91.
    [44]Samani NJ, et al:Genomewide association analysis of coronary artery disease. N Engl J Med, 2007,357:443-53.
    [45]Clarke R, Peden F, Opewell C, et al:Genetic Variants Associated with Lp(a) Lipoprotein Level and Coronary Disease. The New England Journal of Medicine,2009,361:2518-28.
    [46]李照海.遗传学中的统计方法.北京:科学出版社,2006:11-93.
    [47]江三多.医学遗传数理统计方法.北京:科学出版社,1998:1-10.
    [48]顾万春.统计遗传学.北京:科学出版社,2004:23-25.
    [49]SAS Institute Inc. SAS/GeneticsTM 9.2 User's Guide. North Carolina:SAS Institute Inc,2008: 13-171.
    [50]50 SAS Institute Inc. SAS/GeneticsTM 9.1.3 User's Guide. North Carolina:SAS Institute Inc, 2005:19-139.
    [51]高惠璇.SAS系统SAS/STAT软件使用手册.北京:中国统计出版社,1997:20-23.
    [52]刘勤,金丕焕.分类数据的统计分析及SAS编程.上海:复旦大学出版社,2002:19-32.
    [53]胡良平.医学统计学-运用三型理论分析定量定性资料.北京:人民军医出版社,2009:248-56.
    [54]Tamhane YH. Multiple Comparison Procedures. New York:John Wiley & Sons, Inc,1987: 17-133.
    [55]易洪刚,陈峰等.病例-同胞对照设计统计方法检验效能的比较研究.中国卫生统计,2007,24:338-9.
    [56]易洪刚,陈峰,于浩等.病例同胞对照设计.中华流行病学杂志,2006,27:170.
    [57]胡永华.遗传流行病学.北京:北京大学医学出版社,2008:133-185.
    [58]Li C. Population Genetics. IL:Univ Chicago Press,1955.
    [59]Rozenn N. Lemaitrea, Kenneth Riceb, et al:Variation in eicosanoid genes, non-fatal myocardial infarction and ischemic stroke. Atherosclerosis,2009,204:e58-e63.
    [60]Carlson CS, Eberle MA, Rieder MJ, et al:Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet,2004,74:106-20.
    [61]Schaid DJ. Genetic epidemiology and haplotypes. Genet Epidemiol,2004,27:317-20.
    [62]Spielman RS, Ewens WJ. A sibship test for linkage in the presence of association:the sib transmission/disequilibrium test. Am J Hum Genet,1998,27(2):170
    [63]Arnold M. Saxton. Genetic Analysis of Complex Traits Using SAS. North Carolina:SAS Institute Inc,2004:225-49
    [64]Dempster A, Laird N, Rubin D:Maximum likelihood from incomplete data via the EM algorithm. J Royal Statistical Society 1977, Series B,39:1-38.
    [65]Muller J. The mechanism of crossing over. Amer Naturalist,1916,50(593):284-305.
    [66]Ott J. analysis of Human Genetic Linkage. Baltimore:Johns Hopkins University Press,1999: 114-150.
    [67]Kass R E, Raftery A. Bayes factors. J Am Stat Assoc,1995,90(430):773-95.
    [68]Jeffreys H. Theory of Probability. Oxford:Clarendon Press,1961:1-447.
    [69]Gianola D. Statistics in animal breeding. J Am Stat Assoc,2000,95(449):296-9.
    [70]Gelman A, Carlin J B, Stern H S, Rubin D B. Bayesian Data Analysis. New York: Chapman&Hall/CRC,2003:1-688
    [71]郭晋,胡良平,李长平,等.如何进行因变量为二值变量的多重logistic回归分析.中国药物应用与监测,2009;6:379-82
    [72]胡良平.口腔医学科研设计与统计分析.北京:人民军医出版社.2007.
    [73]胡良平.医学统计学——运用三型理论分析定量定性资料.北京:人民军医出版社.2009.
    [74]张文彤.SPSS统计分析高级教程.北京:高等教育出版社,2011:84-187.
    [75]Fox J. Linear Statistical Models and Related Methods. New York:Wiley,1984.
    [76]Agreti A. Categorical Data Analysis. New York:John Wiley & Sons,1990.
    [77]Hoeffding W. A Non-parametric Test of Independence. Annals of Mathematical Statistics,1948, 19:546-57.
    [78]Hollander M. Wolfe D. Nonparametric Statistical Methods. Second Edition. New York:John Wiley & Sons,1999.
    [79]史忠植.神经网络.北京:高等教育出版社,2009:21-63
    [80]Abarbanel HD, Talathi SS, Gibb L, et al. Synaptic plasticity with discrete state synapses. PhysRev E,2005,72:069903
    [81]Principe J, Euliano N R, Lefebvre W C. Neural and adaptive systems:Fundamentals through simulations. New York:Wiley,1999.
    [82]Bartlett P L. For Valid Generalization, the Size of the Weights is More Important than the Size of the Network in:Advances in Neural Information Processing Systems Volume 9 (Mozer, Jordan, and Petsche eds.). Cambridge, Ma:The MIT Press,1997.
    [83]Bertsekas DP. Dynamic Programming and Optimal Control. Belmont, MA:Athenas,1995.
    [84]Levenberg K. A method for the solution of certain problem in least squares. Quart. Appl. Math, 1944,2:164-168
    [85]Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math,1963,11:431-441
    [86]傅荟璇,赵红.Matlab神经网络应用设计.北京:机械工业出版社,2010:21-152
    [87]钟珞,饶文碧,邹承明.人工神经网络及其融合技术.北京:科学出版社,2008:1-11
    [88]钟守铭,刘碧森,王晓梅,等.神经网络稳定性理论.北京:科学出版社,2008:2-60
    [89]Xu JF, Xu J, Li SZ et al. Transmission Risks of Schistosomiasis Japonica:Extraction from Back-propagation Artificial Neural Network and Logistic Regression Model. PLoS Negl Trop Dis,2013,7:e2123.
    [90]Yu D, Qing Y, Jianxun Z, et al. An Artificial Neural Network Approach to the Predictive Modeling of Tensile Force during Renal Suturing.Ann Biomed Eng,2013,41:786-94.
    [91]Que R, Zhu R. Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification. Sensors (Basel),2012,12:10920-29.
    [92]Khanmohammadi M, Garmarudi AB, Rouchi MB, et al. Simultaneous determination of some components in detergent washing powder by mid-infrared spectrometry and artificial neural network. J AOAC Int,2011,94:322-6.
    [93]Wu W, Wang J, Cheng M, et al. Convergence analysis of online gradient method for BP neural networks. Neural Netw,2011,24:91-8.
    [94]周开利,康耀红.神经网络模型及其Matlab仿真程序设计.北京:清华大学出版社,2005:10-70
    [95]Lin FJ, Lee SY, Chou PH. Intelligent nonsingular terminal sliding-mode control using MIMO Elman neural network for piezo-flexural nanopositioning stage. IEEE Trans Ultrason Ferroelectr Freq Control,2012,59:2716-30
    [96]Petrovic J, Ibric S, Betz G, et al. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees. Int J Pharm,2012,428:57-67.
    [97]Isik H, Sezer E. Diagnosis of epilepsy from electroencephalography signals using multilayer perceptron and Elman Artificial Neural Networks and Wavelet Transform. J Med Syst,2012,36: 1-13.
    [98]Song Q. On the weight convergence of Elman networks. IEEE Trans Neural Netw,2010,21: 463-80.
    [99]Lin FJ, Hung YC. FPGA-based Elman neural network control system for linear ultrasonic motor. IEEE Trans Ultrason Ferroelectr Freq Control,2009,56:101-13.
    [100]Gunturkiin R. Using Elman recurrent neural networks with conjugate gradient algorithm in determining the anesthetic the amount of anesthetic medicine to be applied,2010,34:479-84.
    [101]Kirschner A, Frishman D. Prediction of beta-turns and beta-turn types by a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN). Gene,2008,422:22-9.
    [102]Kannathal N, Puthusserypady SK, Min LC. Elman neural networks for dynamic modeling of epileptic EEG Conf Proc IEEE Eng Med Biol Soc,2006,1:6145-48.
    [103]Armitage P, Colton T. Encyclopedia of biostatistics. New York:John,1998:3738-44.
    [104]Delong E R., Delong D M, Daniel L, et al. Comparing the Areas Under Two or More Correlated Receiver Operating Characteristic Curves:A Nonparametric Approach. Biometrics,1988,44(3): 837-45.
    [105]张磊,胡春,钱锋.BP算法局部极小问题改进的研究进展.工业控制计算机,2004,17(9):33-4
    [106]吴今培,肖健华.智能故障诊断与专家系统.北京:科学出版社,1997:172-6
    [107]李俭川.神经网络在信号除噪技术中的应用.电子技术应用,1999,25(12):6-9
    [108]Anderson JA. Introduction to Neural Networks. Cambridge, MA:MIT Press,1995.
    [109]李俭川,秦国军,温熙森,等.神经网络学习算法的过拟合问题及解决方法.振动、测试与诊断,2002,22(4):260-2
    [110]沈洪兵,徐耀初.Logistic回归模型的适用条件及其局限性.中国公共卫生,1991,7(3):127-8
    [111]陈峰.医用多元统计分析方法.北京:中国统计出版社,2001:83-111.
    [112]田国钰,黄海洋.神经网络中隐含层的确定.信息技术,2010,10:79-81
    [1]Teo KK, Liu LS, Chow CK, et al:Potentially modifiable risk factors associated with myocardial infarction in China:the INTERHEART China study. Heart,2009,95:1857-64.
    [2]Guo J, Li W, Yusuf S, et al. Influence of dietary patterns on the risk of acute myocardial infarction (AMI) in China population:the INTERHEART China study. Chinese Medical Journal, 2013,126:464-70.
    [3]Guo J, Li W, Wang Y, et al. Influence of socioeconomic status on acute myocardial infarction (AMI) in China population:the INTERHEART China study. Chinese Medical Journal,2012,125: 4214-20.
    [4]Chinese National Center for Cardiovascular Diseases. Report on cardiovascular diseases in China (2008-2009). Beijing:Encyclopedia of China Publishing House,2009.
    [5]Hawken S, Ounpuu S, Dans T, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study):case-control study. Lancet, 2004,364:937-52.
    [6]Rosengren A, Subramanian SV, Islam S, et al. Education and risk for acute myocardial infarction in 52 high, middle and low-income countries:INTERHEART case-control study. Heart,2009, 95:2014-22.
    [7]Gonzalez-Zobl G, Grau M, Munoz MA, et al. Socioeconomic Status and Risk of Acute Myocardial Infarction:Population-Based Case-Control Study. Rev Esp Cardiol,2010, 63:1045-53.
    [8]Kristiina Manderbacka and Marko Elovainio. The Complexity of the Association Between Socioeconomic Status and Acute Myocardial Infarction. Rev Esp Cardiol 2O10;63:1015-18
    [9]Schaufelberger M, Rosengren A. Heart failure in different occupational classes in Sweden. Eur Heart J,2007,28:212-8.
    [10]Iqbal R, Anand S, Ounpuu S, et al. Dietary Patterns and the Risk of Acute Myocardial Infarction in 52 Countries:Results of the INTERHEART Study. Circulation,2008,118:1929-37.
    [11]Amani R, Noorizadeh M, Rahmanian S, et al. Nutritional related cardiovascular risk factors in patients with coronary artery disease in IRAN:A case-control study. Nutrition Journal,2010, 9:70-5.
    [12]Oliveira A, Rodriguez-Artalejo F, Gaio R, et al. Major habitual dietary patterns are associated with acute myocardial infarction and cardiovascular risk markers in a southern European population. J Am Diet Assoc,2011,111:241-50.
    [13]Olinto MT, Gigante DP, Horta B, et al. Major dietary patterns and cardiovascular risk factors among young Brazilian adults. Eur J Nutr,2011,17:1-4.
    [14]Nagata C, Nakamura K, Oba S, et al; Association of intakes of fat, dietary fibre, soya isoflavones and alcohol with uterine fibroids in Japanese women. Br J Nutr,2009,101:1427-31.
    [15]Teo K, Chow CK, Vaz M, et al. The Prospective Urban Rural Epidemiology (PURE) study: Examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries. Am Heart J,2009,158:,1-7.
    [16]Guo J, Li W, Wu Z, et al. Association Between 9p21.3 Genomic Markers and Coronary Artery Disease in East Asians:A Meta-analysis Involving 9813 Cases and 10710 Controls. Molecular Biology Reports,2013,40:337-43.
    [17]郭晋,李卫,刘欣等.染色体9p21和1p13上单核苷酸多态性(SNP)位点与中国人群急性心肌梗死(AMI)的关联研究:中国急性心梗研究.第二军医大学学报,2011,32:822-6.
    [18]Myocardial Infarction Genetics Consortium:Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet,2009, 41:,334-41.
    [19]Glenn E, Palomaki, Stephanie Melillo, et al:Bradley Association Between 9p21 Genomic Markers and Heart Disease A Meta-analysis. JAMA,2010,303:605-56.
    [20]Helgadottir A, Thorleifsson G, Manolescu A, et al:A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science,2007,316:,1491-93.
    [21]Qiu Z, Zhang Y, Gao S, et al. SusceptibiHty study of 9p21 polymophism in patients with coronary heart disease in Chinese Han population. Geriatr Health Care,2011,17:21-4.
    [22]Preuss M, Konig R, Thompson R, et al. Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Study:A Genome-Wide Association Meta-analysis Involving More Than 22000 Cases and 60000 Controls. Circ Cardiovasc Genet, 2010,3:475-83.
    [23]Xie F, Chu X, Wu H, et al. Replication of Putative Susceptibility Loci from Genome-Wide Association Studies Associated with Coronary Atherosclerosis in Chinese Han Population. PLoS ONE,2011,6:e20833.
    [24]Ding K, Kullo IJ. Genome-Wide Association Studies for Atherosclerotic Vascular Disease and Its Risk Factors. Circ Cardiovasc Genet,2009,2:63-72.
    [25]Chang M, et al. Genetic variants associated with fasting blood lipids in the U.S. population: Third National Health and Nutrition Examination Survey. BMC Medical Genetics,2010,11: 62-74.
    [26]Zhou L, Zhang X, He M, et al:Associations Between Single Nucleotide Polymorphisms on Chromosome 9p21 and Risk of Coronary Heart Disease in Chinese Han Population. Arterioscler Thromb Vase Biol,2008,28:2085-9.
    [27]Johansen T, Lanktree B, Hegele A. Translating genomic analyses into improved management of coronary artery disease. Future Cardiol,2010,6:507-21.
    [28]Linsel-Nitschke P, Heeren J, Aherrahrou Z, et al:Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis,2010,208:183-9.
    [29]Olsson SE, Ohlsson M, Ohlin H, et al. Neural networks-a diagnostic tool in acute myocardial infarction with concomitant left bundle branch block. Clin Physiol & Func Im,2002,22:295-9
    [30]Delen D, Walker G, Kadam A. Predicting breast cancer survivability:a comparison of three data mining methods. Artificial Intelligence in Medicine,2005,34:113-27.
    [31]Bigi R, Gregori D, Cortigiani L, et al. Artificial neural networks and robust Bayesian classifiers for risk stratification following uncomplicated myocardial infarction. International Journal of Cardiology,2005,101:481-7.
    [32]Eggers KM, Ellenius J, Dellborg M, et al. Artificial neural network algorithms for early diagnosis of acute myocardial infarction and prediction of infarct size in chest pain patients. Int J Cardiol,2007,114:366-74.
    [33]陈建新,西广成,王伟.数据挖掘分类算法在冠心病临床应用的比较.北京生物医学工程,2008,27:249-52.
    [34]Joannis G V, Dimitris A K, Manolis J H. Improved Medical Decision Making.Cambridge,2000, 201:95.
    [35]Samanta B, Bird GL, Kuijpers M,et al. Prediction of periventricular leukomalacia. Part I. Selection of hemodynamic features using logistic regression and decision tree algorithms. Arti Intell Med,2009,45:300-20.
    [36]Simon Haykin. Neural Networks and Learning Machines (Third Edition). China:China Machine Press,2009.
    [37]傅荟璇,赵红Matlab神经网络应用设计.北京:机械工业出版社,2010:21-152
    [38]钟珞,饶文碧,邹承明.人工神经网络及其融合技术.北京:科学出版社,2008:1-11
    [39]钟守铭,刘碧森,王晓梅,等.神经网络稳定性理论.北京:科学出版社,2008:2-60
    [40]Xu JF, Xu J, Li SZ et al. Transmission Risks of Schistosomiasis Japonica:Extraction from Back-propagation Artificial Neural Network and Logistic Regression Model. PLoS Negl Trop Dis,2013,7:e2123.
    [41]Yu D, Qing Y, Jianxun Z, et al. An Artificial Neural Network Approach to the Predictive Modeling of Tensile Force during Renal Suturing.Ann Biomed Eng,2013,41:786-94.
    [42]Que R, Zhu R. Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification. Sensors (Basel),2012,12:10920-29.
    [43]Khanmohammadi M, Garmarudi AB, Rouchi MB, et al. Simultaneous determination of some components in detergent washing powder by mid-infrared spectrometry and artificial neural network. J AOAC Int,2011,94:322-6.
    [44]Wu W, Wang J, Cheng M, et al. Convergence analysis of online gradient method for BP neural networks. Neural Netw,2011,24:91-8.
    [45]周开利,康耀红.神经网络模型及其Matlab仿真程序设计.北京:清华大学出版社,2005:10-70
    [46]Lin FJ, Lee SY, Chou PH. Intelligent nonsingular terminal sliding-mode control using MIMO Elman neural network for piezo-flexural nanopositioning stage. IEEE Trans Ultrason Ferroelectr Freq Control,2012,59:2716-30
    [47]Petrovic J, Ibric S, Betz G, et al. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees. Int J Pharm,2012,428:57-67.
    [48]Isik H, Sezer E. Diagnosis of epilepsy from electroencephalography signals using multilayer perceptron and Elman Artificial Neural Networks and Wavelet Transform. J Med Syst,2012,36: 1-13.
    [49]Song Q. On the weight convergence of Elman networks. IEEE Trans Neural Netw,2010,21: 463-80.
    [50]Lin FJ, Hung YC. FPGA-based Elman neural network control system for linear ultrasonic motor. IEEE Trans Ultrason Ferroelectr Freq Control,2009,56:101-13.
    [51]田国钰,黄海洋.神经网络中隐含层的确定.信息技术,2010,10:79-81
    [52]张磊,胡春,钱锋.BP算法局部极小问题改进的研究进展.工业控制计算机,2004,17(9):33-4
    [53]吴今培,肖健华.智能故障诊断与专家系统.北京:科学出版社,1997:172-6
    [54]李俭川.神经网络在信号除噪技术中的应用.电子技术应用,1999,25(12):6-9
    [55]Anderson JA. Introduction to Neural Networks. Cambridge, MA:MIT Press,1995.
    [56]李俭川,秦国军,温熙森,等.神经网络学习算法的过拟合问题及解决方法.振动、测试与诊断,2002,22(4):260-2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700