可降解纯镁椎间融合器的相关实验研究及胸锁关节脱位的影像和临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会老龄化的加快,腰椎退行性疾病逐渐成为干扰人们健康和生活质量的常见疾病。腰椎退行性疾病既是一种机体自然退变的进程,也是自身保护的一个机制,随着病程的进展,逐渐影响腰椎周围的邻近结构,产生临床症状。对腰椎退行性疾病的诊治一直是骨科医师研究的热点。
     髓核的退变被认为是腰椎退行性疾病的起始点。随着年龄的增长,髓核的含水量和弹性降低,引起脊柱负荷重新分布,导致脊柱各个结构发生过度负载,逐渐发生退变。此外,髓核的退变引起椎间隙的变窄和髓核的突出,引起神经根管和椎间孔的狭窄,从而压迫神经根,引起腰腿疼痛等临床表现。在脊柱发生退变的伊始,脊柱周围的赘生结构可以视为机体自身调节的过程。例如:椎骨增生形成骨赘,黄韧带的肥厚和关节突的增生,可以视为是机体为增加脊柱的稳定性而新生的结构。任何事物均具有两面性,当这些退变保护性结构压迫了神经根、脊髓等结构,即可引起临床症状,干扰正常的生活。因此腰椎退行性疾病的手术治疗原则即为去除增生结构,恢复脊柱的正常排列,重建脊柱的稳定性。
     后路腰椎间融合术(posterior lumbar interbody fusion, PLIF)自20世纪50年代被Cloward报道以来,一直被作为椎间融合的首选术式。其效果肯定,不存在争议。该术式可以直接去除增生的各个结构,进行神经根的减压,同时完成内固定,并且可以将椎间植入物最大限度地置于椎体的力学中心附近,以利融合。在去除增生的结构以后,恢复脊柱的正常序列和重建脊柱的稳定性成为了下一步的重点内容。其中,对于椎间隙的处理更是重中之重。
     在处理终板之后,椎间植入融合材料,可以维持椎间隙的高度,提供利于融合的力学环境。理想的融合材料应具有一定的初始强度,并具有和椎体相似的弹性模量和诱导成骨的特性,不影响观察椎间隙的成骨情况,有良好的生物相容性。自体骼骨块可满足上述的绝大部分要求。但是在应用过程中发现,应用自体髂骨块进行椎间融合,骨块的初始强度不足,不能早期承重,在骨重建和融合过程中,骨块有吸收、塌陷的现象。关于供骨区的并发症时有报道。金属cage可以有效的恢复椎间隙的高度,避免供骨区的并发症。但是由于金属cage(?)勺弹性模量过高,存在应力遮挡、下沉、移位和影响影像学观察等缺点。于是,接近椎体弹性模量的材料得以应用于制作椎间融合器,代表材料就是碳纤维材料和聚醚醚酮。这些材料所制作的椎间融合器,透光性好,其外形和终板近似。但是文献报道,在其周围有炎症细胞出现。随着工艺的发展和多学科的交叉发展,以聚乳酸为代表的可吸收性融合器应用于临床。经随访发现,可吸收聚乳酸椎间融合器可以提供即时稳定性,在椎间融合的进程中,逐步降解吸收,能提高椎间的融合率,并发症少,但其酸性代谢产物可以产生骨质溶解,对融合过程产生不利影响,且降解时间各家报道不一。继续寻找和骨的弹性模量相近,并可逐渐降解吸收的材料成为解决上述问题的关键。
     镁在骨科领域的应用可以追溯到1878年。纯镁具有以下特点:1、具备和骨近似的弹性模量,可避免对终板的过度切割。2、具有骨诱导性和可降解性,可以促进椎间融合的进程。3、其代谢产物对人体无害。4、文献报道有促进骨生长和神经恢复的功能。但是因为镁在体内的降解速度过快,限制了镁在骨科固定材料方面的应用。
     我们从以上所述椎间融合的要求和镁的特性考虑,联合中国科学院金属研究所和北京纳通医疗集团进行了两方面的研究,一是将纯镁制作为椎间融合器,将其进行钙磷涂层,控制其降解速度,探讨其在椎间融合和降解方面的行为特性。二是对胸锁关节为代表的微动关节脱位进行内固定治疗,并进行随访,确定其愈合时间和内固定的可行性研究,为镁材料在这一方面的拓展应用做准备工作。在研究过程中,我们从实验动物-山羊的脊柱影像学测量入手,设计制造了适合山羊体内使用的纯镁cage。并对纯镁cagee进行了钙磷涂层。进行了纯镁cage在体外的降解特性的观察和体外的生物力学特点的研究。经过这些研究,我们发现经钙磷涂层后的纯镁cage在生物力学和降解时间等方面可以满足椎间融合的需要。然后我们进一步经后路将纯镁cage植入了山羊的椎间,观察涂层后的纯镁cage在体内的降解特点和椎间融合的效果。在本文中逐一进行分述。
     第一部分山羊腰椎影像学数据的测量和纯镁cage的设计、制造
     目的:了解山羊腰椎各个结构的解剖参数,并进行腰椎后路椎弓根钉手术的方案,在此基础上设计、制造纯镁cage。
     方法:利用西门子64排螺旋CT对12只1岁龄雄性山羊(体重48-55kg,平均体重52kg)进行腰椎节段的扫描,重建。采用CT自带测量软件Syngo software version A70A分别测量椎体的高度、椎间隙高度、椎弓根的宽度、终板面积等数据。根据测量数据,利用CAD软件绘制符合山羊腰椎特点的纯镁cage制造图。
     结果:椎体后缘高度(VBHp)逐渐增大,到L6, VBHp可达3.32±0.14cm,L7较之缩小0.57cm。椎体前缘高度(VBHa)和椎体后缘有相似的变化趋势,至L6最大:2.78±O.0lcm。椎体后缘高于前缘。
     终板宽度L1至L3逐渐增大至1.92±0.03cm,L4突然减小为0.99±0.02cm,然后又逐渐增加,至L7,增加到2.53±0.02cm。终板上表面面积(EPAu)在L1为407.63±2.52mm2,L2较小,为364.24±2.64mm2,L3又变大,为393.65±2.52mm2,然后逐渐缩小,L6又复增大,至L7达最大,为464.00±3.59mm2。终板的下表面面积(EPAl)具有相似的变化趋势。
     椎管宽度(SCW)逐渐增宽至L7:2.61±0.19cm。椎管深度(SCD)逐渐增大,至L7增长为:1.15±0.01cm。
     左侧椎弓根宽度(PDWL)在L1最大,为0.70±0.03cm,逐渐增小直至L4,为0.45±0.02cm,又逐渐增大,至L6为0.62±0.02cm,L7又缩小为0.53±0.02cm。右侧椎弓根宽度(PDWR)(?)口左侧有同样的趋势,并且和左侧椎弓根宽度无统计学差异。椎弓根的外倾角度(PCA)在L1平均为42.00。,逐渐增大至L7,平均为57。,左右无统计学差异。
     前方椎间隙高度逐渐增大,至L6-7最大,为1.37±0.03cm,L7-S1缩小为1.27±0.04cm。后方椎间隙高度与此类似,但是小于前方高度。
     结论:经过测量得到了山羊腰椎各个重要结构的解剖参数,并根据这些数据,成功设计制造了纯镁cage。并且为实施手术和选择内固定器械提供了第一手资料。
     第二部分纯镁cage的钙磷涂层和体外降解特性
     目的:对纯镁cage进行钙磷涂层,控制其降解速度。并在模拟体液中测试其体外降解特性。
     方法:将纯镁cage放置在四水硝酸钙和磷酸二氢钠钙磷沉积液中,于70℃水浴中沉积12h。采用扫描电镜对涂层进行形貌及成分的表征。在Hank's模拟体液中研究经过钙磷表面处理的镁的降解情况及表面活性。
     结果:扫描电镜图片显示:镁cage上致密地覆盖着一层多边形颗粒状钙磷晶体,涂层平整规则,和镁基体结合的很好。涂层厚度大约为23μm。
     采用EDS对涂层成分进行分析,结果显示涂层主要元素是Ca,P和O等元素组成。能谱上并无镁元素峰值出现,进一步说明了镁cage表面上致密地被覆着钙磷层。
     未经钙磷涂层的纯镁材料浸提液的pH值在第一天很快上升至11.3,说明镁基体受到严重的腐蚀。而后,出现了pH值下降趋势。与此相比,经过钙磷涂层处理的纯镁cage在浸泡第一天,pH只上升到7.8,随后,pH值以缓慢的速度增加。浸泡到第10天pH值出现下降的趋势。当浸泡到20天,较浸泡纯镁的浸泡液Ph值10.18相比,该溶液的pH值依旧保持在9.0以下。经过钙磷表面处理纯镁在Hank's浸泡110天后,纯镁cage表面仍有致密的钙磷晶体覆盖着,表明涂层在110天后还没完全降解掉,对镁基体还有保护作用。
     浸泡后涂层EDS能谱分析显示,涂层的主要元素还是O,Ca和P。Ca/P原子比由浸泡前的1:1升高到1.7,接近羟基磷灰石Ca/P原子1:5。表明在Hank's(?)容液中浸泡110天后,涂层表面可能有羟基磷灰石HA生成。
     结论:通过化学沉积法可以在纯镁cage表面上成功覆盖钙磷涂层。经过钙磷涂层处理的纯镁cage具有良好的抗腐蚀性能,在Hank's浸泡110天后,涂层尚未完全降解掉,对镁cage仍有保护作用。涂层表面可能有HA生成,具有一定的生物活性。
     第三部分纯镁椎间融合器的体外生物力学实验
     目的:评价纯镁cage结合椎弓根钉固定对所固定腰椎运动阶段的影口向。
     方法:12具山羊的L4-L5运动阶段,随机分为3组,每组4个标本。第一组为对照组,为完整正常的标本。第二组为cage组,将标本实施标准后路加压椎弓根钉内固定,并在椎间应用纯镁cage。第三组为自体髂骨组,处理同第二组,椎间应用自体髂骨快。用夹具依次将其固定于CSS-44020生物力学试验机上,将应变片粘贴于上下位椎体的16个位点,加载至500N。应用WS3811型数字式应变仪依次测量正常组标本、cage组标本和自体髂骨组标本的各点应变值。
     结果:正常组:应力集中于椎体前方,前方各点位移增加明显。在三组中位移最大。cage组:各点位移轴向位移均匀增加,增加的位移最小自体髂骨组:各点位移均匀增加,增加位移较cage组大。在侧屈方向上:正常组最大,cage组最小,自体髂骨组居中。在屈曲和伸展方向上,cage组发生的位移低于正常髂骨组,但是没有统计学差异。但这两组都明显低于正常椎体组的位移。
     结论:山羊腰椎椎体标本垂直负荷集中在椎体的前柱。新型镁金属椎间融合器组腰椎椎体标本前方及后方的位点应变均小于正常椎体组和自体髂骨植骨组。此外,新型镁金属椎间融合器组椎体标本在同样的载荷作用下脊柱位移小于正常椎体组和自体髂骨植骨组,其生物力学稳定性良好。可以提供有效的椎间支持作用。
     第四部分纯镁cage山羊椎间融合、降解实验
     目的:了解纯镁椎间融合器在山羊椎间的降解情况和成骨情况。
     方法:选用12只1岁龄雄性山羊,体重48-55kg,平均体重52kg。将12只山羊随机分为2组,每组6只。第一组为纯镁融合器组:将山羊麻醉后,对L4-L5节段实施后路减压融合椎弓根内固定术。椎间融合材料采用涂层后的纯镁cage.第二组为自体髂骨组:术式同第一组,椎间融合材料使用自体髂骨块。分别于术后即刻、1周、2周、4周、8周、12周麻醉后进行CT扫描,观察降解及成骨情况。抽血监测血镁的情况。于术后3个月将动物处死,取下L4-L5节段,应用micro-CT(?)扫描成像,了解植入物的降解和融合情况,并取6个正常相应节段椎体进行对照。取心、肝、肾,和相应节段的脊髓进行切片,行光镜镜检,明确各组织是否存在病理变化。
     结果:在各个时相,纯镁cage组山羊和自体髂骨组山羊的血镁水平无明显差异。采用CT进行影像学观察,内固定物无松动及移位。纯镁椎间融合周围无明显产气现象,随时间增加,纯镁融合器的亮度降低,表明涂层在逐渐降解。在4周时,两组所植椎间材料周围开始成骨。Micro-CT所示:所固定椎体节段均有骨质疏松表现。两组椎间均有骨小梁通过,纯镁cage组新生骨小梁数目较少,但是成熟骨小梁较多,骨小梁粗壮。经3个月体内试验,仅初步完成了涂层的降解。Cage组的山羊心肝肾切片与自体髂骨组经光镜观察对照,无明显病理改变。心肝肾和相应节段脊髓的光镜观察,未发现病理改变。
     结论:经钙磷涂层的纯镁椎间融合器降解缓慢,可以诱导成骨,提供有效的椎间支撑,具有良好的生物相容性。
     第五部分胸锁关节脱位的影像学和临床研究
     目的:测量胸锁关节影像解剖学数据,制造新型接骨板,治疗胸锁关节脱位。
     方法:对50名健康志愿者的胸锁关节进行CT扫描成像,将其纳入本研究。胸锁关节解剖异常或者局部有损伤的患者排除本研究。扫描范围自锁骨上缘至胸骨角,在矢状面、冠状面和横断面重建CT图像。在冠状面上测量胸骨头在下外侧至上内侧方向的直径(DOSH)、锁骨切迹的长度、锁骨切迹和胸骨夹角。在矢状面上测量胸骨柄和躯干之间的夹角。在横断面测量下述指标:(1)锁骨切迹、胸骨柄和胸骨头的前后直径;(2)胸锁关节的宽度:(3)双侧锁骨之间的距离;(4)胸腔内胸骨柄及其下软组织的最小距离。根据上述测量数据设计新型接骨板治疗胸锁关节脱位或半脱位。
     结果:在水平断面,锁骨近端较胸骨柄高。在轴位图像上,胸骨头前后径较胸骨柄长,胸骨柄的中部较边缘部分薄。左侧胸锁关节的间距是0.84±0.24cm,右侧为0.88±0.23cm。经过胸腔内胸骨后的结构中,左侧双边无名静脉距离胸骨柄最近,此静脉距离胸骨前皮质的距离平均为2.38±0.61厘米。根据测量的结果,设计了新型的钢板,此钢板能够解剖复位脱位的胸锁关节并安全置入螺钉。
     结论:通过在CT图像上测量胸锁关节的正常参数,能够便于胸锁关节脱位和半脱位的治疗。新型的钢板能够安全有效的治疗胸锁关节脱位
With the accelerated aging of the society, lumbar degenerative disease is becoming an important factor which interferes with people's health and quality of daily life. Lumbar degenerative disease is a natural process, and also a kind of self-protection mechanisms. Diagnosis and treatment of lumbar degenerative disease remains a great challenge for orthopedic surgeons and a research focus in the orthopedic field.
     Degeneration of the nucleus is considered to be the start-up point of the lumbar degenerative disease. Water content and elasticity of the nucleus decreased with aging, which leads to re-distribution of the spinal load, followed the spine structure degenerating gradually. Meanwhile, nucleus degeneration also results in narrowing of the intervertebral disc space. Furthermore, the nucleus was protruded to the compress nerve root. All these factors contributed to the pain of the affected lumbar and leg. At the beginning of spinal degeneration, many supernumerary structures, such as hyperplasia formation of osteophytes, ligamentum flavum hypertrophy and hyperplasia of the articular process can response to this change as the body's own regulation. The above mentioned structures could be regarded as primary body structure to increase the stability of the spine. However, one coin has two sides:these degenerative protection structures compress the nerve root or spinal cord, leading to clinical symptoms, disturbing the daily life. So the surgical treatment of lumbar degenerative disease gains its popularity by removing the hyperplasia structure, restoring the normal alignment of the spine, or reconstructing spinal stability.
     Posterior lumbar interbody fusion with the aim to release compression of the nerve root by removal of proliferation structure has been the standard surgical interbody fusion since it was introduced by Cloward in the1950s. The technique can remove the proliferation of various structures, complete the internal fixation and insert the cage to the position adjoining the mechanical center maximatily. After removing the proliferation structure, restoration of the spine normal sequence and the reconstruction of spinal stability have become the focus of the subsequent research. The treatment of intervertebral space is a key point.
     Interbody fusion technology can provide a stable and fast convergence after decompression. Autologous bone transplantation in the intervertebral space can promote the fusion of the spine to ensure stability. But it is found in clinical practice that the bone graft used in fusion interbody does not have adequate intensity for the early load-bearing. The bone graft may collapse or be absorbed during remodeling and integration of the bone. Complication in bone donor site has also been reported. The metal cage can effectively restore the height of the intervertebral space, and avoid complications of bone donor site at the same time. However, there are some disadvantages about metal cage because of the high modulus of elasticity such as stress shielding, sink, shift, and interfereing with radiological observation. Therefore, material with the elastic modulus similar to vertebral bone such as carbon fiber and PEEK is the optimal selection for cage implamtation. These materials have good radiolucent features, and approximate shape similar to endplate. But it's also reported that inflammatory cells appear around the transplanted material. With the technology and multidisciplinary development, absorbable materials such as polylactic acid have been brought into clinical application. It has been found that the absorbable material can provide immediate stability and will be gradually absorbed during the interbody fusion process to improve the intervertebral fusion rate with fewer complications. Whereas, the acidic metabolites from the absorbable fusion devices can lead to osteolysis. The time to absorbe the degradation fusion material is varied among different reports. It is vital to resolve the above mentioned problems by identifying the new material not only with elasticity similar to bone but also with ability of gradual degradation.
     The history of magnesium application in the orthopedics can be traced back to1878. Pure magnesium has many characteristics, including1, elasticity modulus similar to bone, avoiding excessive cutting the end plate;2, bone inducibility and biodegradation which can promote interbody fusion process;3, its metabolites harmless to humans.4, Promoting the healing of fracture. In addition, it has been also reported magnesium can promote bone growth and recovery of nerve function. However, the application of magnesium is limited as a kind of orthopedic fixation materials for its excessive degradation speed in human body.
     Considering the demands of interbody fusion and the characteristics of magnesium, we cooperate with The Metal Institute of Chinese Academy of Sciences and The Nathon Medical Group in Beijing to conduct two studies:1, coating magnesium with Ca/P as an interbody fusion and exploring its degradation characteristic in interbody fusion;2, investigating the healing time of the dislocation of amphiarhtrosis for the application of magnesium as a kind internal fixation. In the current study, we design magnesium cage according to the animals through experimental animals'spine imaging measurement and coat the magnesium cage with Ca/P. Then we implanted the magnesium cage to the intervertebral space by the posterior interbody fusion. Finally, we study the degradation characteristics of the magnesium in vitro and in vivo.
     Part1The design and manufacture of pure magnesium cage according to the imaging measurement of goat lumbar imaging data
     Objective:To measure the anatomical parameters of the goat's lumbar spine for the design and manufacture of pure magnesium cage.
     Methods:Methods:Using the Siemens64-slice spiral CT scan to scan lumbar spines of12goats. These images were reconstructed. The measurement software accompanied with CT workstation was used to measure the vertebral body height, disc space height, the height and width of the pedicle and the endplate area, etc. Based on these measured data, the pure magnesium cage was designed by CAD software.
     Results:Posterior vertebral body height (VBHp) increases gradually to3.32±0.14cm in L6, and narrowes to0.57cm in L7. The anterior vertebral body height (VBHa) has the same tendency with VBHp, and maximizes to2.78±0.01cm in L6. Posterior border is higher than anterior border in the lumbar vertebral body.
     The endplate width gradually increases to1.92±0.03cm from L1to L3, decreases to0.99±0.02cm sharply in L4, and increases gradually to2.53±0.02cm in L7. The value of EPAu is407.63±2.52mm2, becomes smaller (about364.24±2.64mm2) in L2.The value of EPAu is393.65±2.52mm2in L3, and decreaed gradually to L6, then increased sudduenly to464.00±3.59mm2in L7.The value of EPAl shows similar trend to EPAu.
     The SCW gradually widened to2.61±0.19cm in L7. The SCD increased gradually tol.15±0.01cm in L7.
     The value of PDWL is largest in Ll (0.70±0.03cm) and decreases to0.45±0.02cm in L4, then increases to0.62±0.02cm in L6, decreases to0.53±0.02cm in L7. PDWR is similar to PDWL, and no statistical difference between these two groups. The average value of PCA is42.00±, and increases to57。in L7. There is no statistical difference between both sides.
     The height of the front intervertebral disc increases gradually to1.37±0.03cm in L6-7, and decreases to1.27±0.04cm. The height of the post intervertebral disc is similar to this trend, but smaller than the front value.
     Conclusion:The anatomical parameters of goat lumbar spine has been measured, and based on these parameters, pure magnesium cage has been successfully designed and manufactured. These data are helpful to handle surgery and choose internal fixation.
     Part2The vitro degradation characteristics of pure magnesium cage coated with calcium phosphate
     Objective To test degradation characteristics of pure magnesium cage coated with calcium phosphate in the simulated body fluid.
     Methods Pure magnesium cages were placed in calcium nituate tetrahydrate phosphate and sodium dihydrogen calcium phosphate deposition solution at70℃for12h. The characterization of the morphology and composition of the coating layer were determined by electron microscopy. The degradation and surface activity of magnesium coated with calcium phosphate were studied in Hank's simulated body fluid.
     Results:Electron microscope image scanning showed that the magnesium matrix was coated compactly with a layer of polygonal granular calcium phosphate crystals. The coating layer was smooth and regular, and integrated closely with magnesium matrix. The thickness of layer is about23μm. The results show that the coating layer was mainly composed of Ca, P and O elements by EDS. There is no Mg peak in the spectrum. It was confirmed that the magnesium matrix was covered with the layer composed of c calcium phosphate. The pH value of leaching solution which contained uncoated magnesium cage without the treatment of calcium and phosphorus soon reached to11.3on the first day. This phenomenon indicated that the magnesium matrix was corroded severely. Then, the pH value began to show a slow descent. On the comparison, the leaching solution's pH value of magnesium that coated by calcium and phosphorus only rose to7.8on the first day, and then the pH value rose slowly until the10th day when the pH value began to show a slow descent. The pH value to leach solution containing coated magnesium was still lower than9until the20th day, compared with the pH value of the above solution equal to10.18on the same point. The phosphorus was showed below in the Hank's solution for110days. As shown, the surface of coated magnesium surface was still compactly covered with calcium phosphate crystals in Hank's solution, indicating that the coating layer was not completely degraded at110days, and still protected magnesium matrix. EDS analysis of the coating layer after the coated magnesium immersed in SBF for110days showed that the main elements of the coating layer was still the O, Ca and P. Ca/P atomic ratio increased from1:1to1.7after immersion. The ratio was close to hydroxyapatite (1:5), indicating that the hydroxyapatite HA was generated on the surface of magnesium cage coated with Ca/P in Hank's solution.
     Conclusion:The magnesium can be coated successfully with calcium phosphate through the chemical deposition method. Magnesium coated by calcium and phosphorus owned good resistance to corrosion. The coating layer has not been completely degraded and still protected magnesium matrix in SBF for110days. HA might be generated on the surface, which has biological activity.
     Part3The biomechanical study of pure magnesium cage in vitro
     Objective:To evaluate the effect on lumbar movement segment fixed with pure magnesium cage combined with pedicle screw fixation.
     Methods:Twelve goats'L4-L5motion segments were randomly averaged into3groups. The first group is the normal specimens as the control group. The second group was the cage group, in which the specimens were operated using the standard PLIF, and the pure magnesium cage was implanted in the intervertebral space. The third group was interbody autologous ilium group, treated same to the second group, but autologous ilium was inserted into the interbody. Specimen was fixed on the CSS-440020biomechanical testing machine, and the strain gauges were pasted on the16selected sites distributed uniformly on the upper and lower vertebral body. The strain value was measured by WS3811digital strain gauge when the loads increased to500N gradually.
     Results:Normal group:stress concentrated on the front part of the vertebral body, and the displacement of the anterior sites increased significantly. The displacement of normal groups was largest among three groups.
     Cage group:Axial displacement of various sites increased uniformly, and the displacement in Cage group was the smallest among three groups.
     Autologous ilium Group:The displacements of all sites increased uniformly, and the displacement in autologous ilium Group was greater than that in Cage group.
     In the flexor test:the displacement was largest in the normal group while smallest in the cage group. In the test of flexion and extension, the displacement in cage group is smaller than that in autologous ilium group. But there was no statistical significance between both groups. The displacements in these two groups were significantly smaller than in normal vertebral group.
     Conclusion:The vertebral motion segment fixed with the pure magnesium cage combined with pedicle screw can provide a good mechanical stability for interbody fusion. Part4:The study of the interbody fusion and degradation of pure magnesium cage in goat
     Objective:To observe the bone formation and the degradation of pure magnesium in the goat intervertebral space.
     Methods:Twelve1-year-old male goats, with as average weight of52kg, were randomly divided into2groups (n=6). The first group is pure magnesium cage group. The goat in this group was conducted with posterior lumbar interbody fusion (PLIF) in the L4-L5segment after anesthesia. Interbody fusion material was pure magnesium cage. The second group was autologous ilium group treated through the surgical approach same to the first group, but autologous ilium was acted as interbody fusion material. CT scanning was carried on the1st week, the2nd weeks, the4th weeks, the8th weeks, and the12th weeks after the surgery, respectively. The degradation and bone formation of two kinds of materials were observed. The blood samples of goats were collected to monitor blood magnesium. The animals were executed at3months later after the surgery, and the L4-L5segment of these animals were removed and examined by micro-CT scanning to investigate the degradation and fusion of the implant, compared with six normal vertebral as control. Heart, liver, kidney of the goats were sliced and examined under light microscopy to investigate the changes in these organs.
     Results:There was no significant difference in different phase between two groups. CT imaging showed that there were no loosening and displacement of the internal fixation. There was no apparent gas appearance adjacent to the pure magnesium cage. With time passed by, the density of pure magnesium cage absorbed?? grandualy, indicating that the coating layer was gradual degraded. At four weeks after the surgery, newborn bone appeared around the intervertebral plant material. Micro-CT showed that osteoporosis was observed in all fixed vertebral segments. Intervertebral bone trabecular appeared in both groups. There was less number of newborn trabecular in pure magnesium cage group, while more mature bone trabeculars were found which was relatively strong. At three months after the surgery, the coating layer began to degrade. The pathological sections of heart, liver, and kindey slices in both groups showed no significant pathological changes.
     Conclusion:Pure magnesium cage coated with the calcium phosphate degrades slowly in vivo and has good biocompatibility. Moreover, the new-style cage can induce osteogenesis and provide effective intervertebral support.
     Part5The imageological measurement of sternoclavicular joint and its clinical application
     Objective:To investigate its imageological anatomical features, and facilitate therapy of SCJ dislocation.
     Methods:Fifty healthy Chinese volunteers examined with chest computed tomography (CT) in our hospital were included into the study. Volunteers with SCJ deformity or injury were excluded from the study. The coronal, sagittal and axial images of the sternoclavicular region from the superior border of the clavicle to sternal angle were reconstructed. The diameter of the sternal head in inferolateral to superomedial direction(DOSH), the length of clavicular notch and the angle between clavicular notch and sternum were measured on the coronal images. The angle between presternum and trunk were measured on the sagittal images. The following issues were measured in the axial images, including (1) the anteroposterior dimensions of sternal head, clavicular notch and presternum;(2) the SCJ wide;(3) the distance between bilateral clavicles; and (4) the minimal distance from presternum to the underlying structures in the thoracic cavity. New plate was designed according to the data measured in the study to treat SCJ dislocation or subluxation.
     Results:The proximal clavicle is higher than the prestenum in a horizontal position. On the axial images, the anteroposterior dimension of the sternal head was longer than the presternum, and the center region of the presternum was thinner than the edges. The left SCJ space was0.84±0.24cm, and the right was0.88±0.23cm. Among the structures going behind the sternum in the thoracic cavity, the left bilateral innominate vein ran nearest to the presternum. The distance from the anterior cortex of sterna to left bilateral innominate vein was2.38±0.61cm. A new-style plate was designed according to our measurement. Anatomical reduction of the dislocated joint and safe insertion of screws into the presternum was achieved in the management of SCJ dislocation with the use of the new plate.
     Conclusion:Normal parameters of the SCJ were measured on the CT images. The measurement can facilitate the treatment of SCJ dislocation or subluxation. The new designed plate can be used to treat SCJ dislocation effectively and safely.
引文
1 Smit TH. The use of a quadruped as an in vivo model for the study of the spine-biomechanical considerations. Eur Spine J 2002; 11:137-144
    2 Wilke HJ, Kettler A, Wenger KH, et al. Anatomy of the sheep spine and its comparison to the human spine. Anat Rec 1997;247:542-555
    3马利杰,张英泽,郑占乐.山羊单纯与复合全身麻醉效果的比较.中国比较医学杂志2009;19:76-78
    4 Reid JJ, Johnson JS, Wang JC. Challenges to bone formation in spinal fusion. J Biomech 2011;44:213-220
    5 Sheng SR, Wang XY, Xu HZ, et al. Anatomy of large animal spines and its comparison to the human spine:a systematic review. Eur Spine J 2010;19:46-56
    6 Sandhu HS, Turner S, Kabo JM, et al. Distractive properties of a threaded interbody fusion device. An in vivo model. Spine (Phila Pa 1976) 1996;21:1201-1210
    7周春光,宋跃明,刘浩,et al.可降解椎间融合器的研究进展.Chinese Journal of Reparative and Reconstructive Surgery 2010;24:1500
    8袁青领,阎钧,郑起.可降解镁合金材料的研究新进展.材料导报2010;24:132-135
    9 Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005;26:3557-3563
    10 Ginsberg MD. Neuroprotection for ischemic stroke:past, present and future. Neuropharmacology 2008;55:363-389
    11 Gok B, Okutan O, Beskonakli E, et al. Effects of magnesium sulphate following spinal cord injury in rats. Chin J Physiol 2007;50:93-97
    12 Hoane MR. Assessment of cognitive function following magnesium therapy in the traumatically injured brain. Magnes Res 2007;20:229-236
    13 Lee JH, Roy J, Sohn HM, et al. Magnesium in a polyethylene glycol formulation provides neuroprotection after unilateral cervical spinal cord injury. Spine (Phila Pa 1976) 2010;35:2041-2048
    14 Kubosch D, Milz S, Sprecher CM, et al. Effect of graft size on graft fracture rate after anterior lumbar spinal fusion in a sheep model. Injury 2010;41:768-771
    15 Goh JC, Wong HK, Thambyah A, et al. Influence of PLIF cage size on lumbar spine stability. Spine (Phila Pa 1976) 2000;25:35-39; discussion 40
    16 Togawa D, Bauer TW, Lieberman IH, et al. Lumbar intervertebral body fusion cages:histological evaluation of clinically failed cages retrieved from humans. JBone Joint SurgAm 2004;86-A:70-79
    17 Heim SE, Abitbol JJ. Complications and strategies for salvage of intervertebral fixation devices. Orthop Clin North Am 2002;33:393-402, Ⅶ
    18 Zhang E, Xu L, Yu G, et al. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res A 2009;90:882-893
    19 Hollowell JP, Vollmer DG, Wilson CR, et al. Biomechanical analysis of thoracolumbar interbody constructs. How important is the endplate? Spine (Phila Pa 1976) 1996;21:1032-1036
    20 Closkey RF, Parsons JR, Lee CK, et al. Mechanics of interbody spinal fusion. Analysis of critical bone graft area. Spine (Phila Pa 1976) 1993;18:1011-1015
    21 Vadapalli S, Robon M, Biyani A, et al. Effect of lumbar interbody cage geometry on construct stability:a cadaveric study. Spine (Phila Pa 1976) 2006;31:2189-2194
    1 袁青领,阎钧,郑起.可降解镁合金材料的研究新进展.材料导报2010;24:132-135
    2 Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005;26:3557-3563
    3 Li H, Zhong H, Xu K, et al. Enhanced efficacy of sirolimus-eluting bioabsorbable magnesium alloy stents in the prevention of restenosis. J Endovasc Ther 2011; 18:407-415
    4 Mueller WD, Lucia Nascimento M, Lorenzo de Mele MF. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater 2010;6:1749-1755
    5 耿芳,谭丽丽,贺永莲,et al.多孔镁表面生物活性p-TCP涂层的制备及其细胞相容性研究.稀有金属材料与工程2009;38:318-322
    6 黄晶晶,杨柯.镁合金的生物医用研究.材料导报2006;20:67-69
    7 曾荣昌,孔令鸿,陈君,et al.医用镁合金表面改性研究进展.中国有色金属学报2011;21:35-43
    8 王勇,高家诚,张艳,et al.纯镁在模拟体液中的腐蚀机理.中国有色金属学报2007;12:1981-1986
    9 耿芳,谭丽丽,张炳春,et al.多孔镁作为新型骨组织工程材料的研究探索.材料导报2007;21:76-78
    10 Therin M, Christel P, Li S, et al. In vivo degradation of massive poly(alpha-hydroxy acids):validation of in vitro findings. Biomaterials 1992;13:594-600
    11 Wuisman PI, Smit TH. Bioresorbable polymers:heading for a new generation of spinal cages. Eur Spine J 2006; 15:133-148
    12 Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006;27:1013-1018
    13 Keim S, Brunner JG, Fabry B, et al. Control of magnesium corrosion and biocompatibility with biomimetic coatings. J Biomed Mater Res B Appl Biomater 2011;96:84-90
    14刘江南,董璞,王正品,et al.生物镁合金在人体模拟液中的腐蚀行为.西安工业大学学报2009;29:129-133
    15 Mueller WD, de Mele MF, Nascimento ML, et al. Degradation of magnesium and its alloys:dependence on the composition of the synthetic biological media. J Biomed Mater Res A 2009;90:487-495
    16 Xu L, Yu G, Zhang E, et al. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res A 2007;83:703-711
    17 Pina S, Ferreira JMF. Brushite-Forming Mg-, Zn-and Sr-Substituted Bone Cements for Clinical Applications. Materials 2010;3:519-535
    18 Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 2007;28:2163-2174
    19 Bobby Kannan M, Singh Raman RK, Witte F, et al. Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid. J Biomed Mater Res B Appl Biomater 2011;96:303-309
    1 Humphreys SC, Hodges SD, Patwardhan AG, et al. Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine (Phila Pa 1976) 2001;26:567-571
    2 Hacker RJ. Comparison of interbody fusion approaches for disabling low back pain. Spine (Phila Pa 1976) 1997;22:660-665; discussion 665-666
    3 Cavusoglu H, Kaya RA, Turkmenoglu ON, et al. Midterm outcome after unilateral approach for bilateral decompression of lumbar spinal stenosis: 5-year prospective study. Eur Spine J 2007; 16:2133-2142
    4 Rompe JD, Eysel P, Zollner J, et al. Degenerative lumbar spinal stenosis. Long-term results after undercutting decompression compared with decompressive laminectomy alone or with instrumented fusion. Neurosurg Rev 1999;22:102-106
    5 洪鑫,吴小涛,茅祖斌.新型后路腰椎椎间融合器的研制和动物实验研究.中华骨科杂志2005;25:736-739
    6 李开南,李继友,兰海.生物降解聚—DL一乳酸腰椎椎间融合器体内降解的生物力学研究.中华骨科杂志2010;30:783-788
    7 Goh JC, Wong HK, Thambyah A, et al. Influence of PLIF cage size on lumbar spine stability. Spine (Phila Pa 1976) 2000;25:35-39; discussion 40
    8 Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care. J Neurosurg 1953; 10:154-168
    9 Aaron AD, Wiedel JD. Allograft use in orthopedic surgery. Orthopedics 1994;17:41-48
    10 Panjabi MM, White AA,3rd, Johnson RM. Cervical spine mechanics as a function of transection of components. J Biomech 1975;8:327-336
    11 White AA,3rd, Johnson RM, Panjabi MM, et al. Biomechanical analysis of clinical stability in the cervical spine. Clin Orthop Relat Res 1975:85-96
    12 Panjabi MM. The stabilizing system of the spine. Part Ⅱ. Neutral zone and instability hypothesis. J Spinal Disord 1992;5:390-396; discussion 397
    13 Heineck J, Haupt C, Werner K, et al. Fracture models in the lumbar sheep spine:a biomechanical investigation. J Orthop Res;28:773-777
    14 Southern EP, Pelker RR, Crisco JJ, et al. Posterior element strength six months postinjury in the canine cervical spine. J Spinal Disord 1993;6:155-161
    15 Smit TH. The use of a quadruped as an in vivo model for the study of the spine-biomechanical considerations. Eur Spine J 2002; 11:137-144
    16 Dalstra M, Huiskes R. Load transfer across the pelvic bone. J Biomech 1995;28:715-724
    1 Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006;27:1013-1018
    2 马利杰,张英泽,郑占乐.山羊单纯与复合全身麻醉效果的比较.中国比较医学杂志 2009;19:76-78
    3 宗会迁,刘怀军,刘记存,et al.适合磁共振成像的羊颈脊髓压迫性损伤模型的建立与病理学观察.中国医学影像技术2009:719-722
    4 吴叶,侯树勋,何海龙,et al.颈脊髓慢性压迫模型的建立及其病理改变.中国脊柱脊髓杂志 2006;16:57-61
    5 Santos ER, Goss DG, Morcom RK, et al. Radiologic assessment of interbody fusion using carbon fiber cages. Spine (Phila Pa 1976) 2003;28:997-1001
    6 Kubosch D, Milz S, Sprecher CM, et al. Effect of graft size on graft fracture rate after anterior lumbar spinal fusion in a sheep model. Injury 2010;41:768-771
    7 Xue Q, Li H, Zou X, et al. The influence of alendronate treatment and bone graft volume on posterior lateral spine fusion in a porcine model. Spine (Phila Pa 1976) 2005;30:1116-1121
    8 Liebensteiner MC, Jesacher G, Thaler M, et al. Restoration and preservation of disc height and segmental lordosis with circumferential lumbar fusion:a retrospective analysis of cage Versus bone graft. J Spinal Disord Tech 2011;24:44-49
    9 Togawa D, Bauer TW, Lieberman IH, et al. Lumbar intervertebral body fusion cages:histological evaluation of clinically failed cages retrieved from humans. J Bone Joint Surg Am 2004;86-A:70-79
    10 Johnsson R, Axelsson P, Stromqvist B. Posterolateral lumbar fusion using facet joint fixation with biodegradable rods:a pilot study. Eur Spine J 1997;6:144-148
    11 Vaccaro AR, Singh K, Haid R, et al. The use of bioabsorbable implants in the spine. Spine J 2003:3:227-237
    12 Brantigan JW, McAfee PC, Cunningham BW, et al. Interbody lumbar fusion using a carbon fiber cage implant versus allograft bone. An investigational study in the Spanish goat. Spine (Phila Pa 1976) 1994;19:1436-1444
    13余琨,陈良建,雷路,et al.镁合金作为生物医用植入材料的研究进展.金属功能材料 2009;16:61-64
    14 Ernstberger T, Buchhorn G, Heidrich G. Artifacts in spine magnetic resonance imaging due to different intervertebral test spacers:an in vitro evaluation of magnesium versus titanium and carbon-fiber-reinforced polymers as biomaterials. Neuroradiology 2009;51:525-529
    15 Witte F, Kaese Ⅴ, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005;26:3557-3563
    16高家诚,乔丽英,王勇,et al.纯镁在动物体内骨诱导性能的研究.稀有金属材料与工程 2010:296-299
    17 Pina S, Ferreira JMF. Brushite-Forming Mg-, Zn-and Sr-Substituted Bone Cements for Clinical Applications. Materials 2010;3:519-535
    18 Xu L, Yu G, Zhang E, et al. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res A 2007;83:703-711
    19 Bobby Kannan M, Singh RK. A mechanistic study of in vitro degradation of magnesium alloy using electrochemical techniques. J Biomed Mater Res A 2010;93:1050-1055
    20 Krijnen MR, Smit TH, Strijkers GJ, et al. The use of high-resolution magnetic resonance imaging for monitoring interbody fusion and bioabsorbable cages:an ex vivo pilot study. Neurosurg Focus 2004;16:E3
    21 Witte F, Ulrich H, Rudert M, et al. Biodegradable magnesium scaffolds: Part 1:appropriate inflammatory response. J Biomed Mater Res A 2007;81:748-756
    22 Witte F, Ulrich H, Palm C, et al. Biodegradable magnesium scaffolds:Part II:peri-implant bone remodeling. J Biomed Mater Res A 2007;81:757-765.
    23 Xin Y, Huo K, Tao H, et al. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater 2008;4:2008-2015
    24 Janning C, Willbold E, Vogt C, et al. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater 2010;6:1861-1868
    25 Lichte P, Pape HC, Pufe T, et al. Scaffolds for bone healing:concepts, materials and evidence. Injury 2011;42:569-573
    26 Zhang E, Xu L, Yu G, et al. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res A 2009;90:882-893
    27黄晶晶,杨柯,任伊宾,et al.镁植入动物体内的短期效果.稀有金属材料与工程 2008;37:629-632
    28 Ginsberg MD. Neuroprotection for ischemic stroke:past, present and future. Neuropharmacology 2008;55:363-389
    29 Gok B, Okutan O, Beskonakli E, et al. Effects of magnesium sulphate following spinal cord injury in rats. Chin JPhysiol 2007;50:93-97
    30 Hoane MR. Assessment of cognitive function following magnesium therapy in the traumatically injured brain. Magnes Res 2007;20:229-236
    31 Lee JH, Roy J, Sohn HM, et al. Magnesium in a polyethylene glycol formulation provides neuroprotection after unilateral cervical spinal cord injury. Spine (Phila Pa 1976) 2010;35:2041-2048
    32 Hollowell JP, Vollmer DG, Wilson CR, et al. Biomechanical analysis of thoracolumbar interbody constructs. How important is the endplate? Spine (Phila Pa 1976) 1996;21:1032-1036
    33 Closkey RF, Parsons JR, Lee CK, et al. Mechanics of interbody spinal fusion. Analysis of critical bone graft area. Spine (Phila Pa 1976) 1993;18:1011-1015
    34 Reid JJ, Johnson JS, Wang JC. Challenges to bone formation in spinal fusion. JBiomech 2011;44:213-220
    35 Han JS, Goel VK, Ahn JY, et al. Loads in the spinal structures during lifting:development of a three-dimensional comprehensive biomechanical model. Eur Spine J 1995;4:153-168
    36 Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care. J Neurosurg 1953;10:154-168
    37张永刚,张文智,吕多赛,et al.腰椎前路椎间自体骨植骨后椎间隙高度变化的研究.中华外科杂志 2004;42:330-333
    38王欢,刘学勇,李雷,et al.椎间加压融合治疗胸腰椎骨折脱位.中华骨科杂志 2004;24:714-717
    39纪泉,孙常太,黄公怡.应用Cage行腰椎融合术的研究进展.中华骨科杂志 2003;23:631-633
    40 Sohn MJ, Kayanja MM, Kilincer C, et al. Biomechanical evaluation of the ventral and lateral surface shear strain distributions in central compared with dorsolateral placement of cages for lumbar interbody fusion. J Neurosurg Spine 2006;4:219-224
    41 Togawa D, Bauer TW, Brantigan JW, et al. Bone graft incorporation in radiographically successful human intervertebral body fusion cages. Spine (Phila Pa 1976) 2001;26:2744-2750
    42 Mooney V, Massie JB, Lind BI, et al. Comparison of hydroxyapatite granules to autogenous bone graft in fusion cages in a goat model. Surg Neurol 1998;49:628-633; discussion 633-624
    43 Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates. Spine (Phila Pa 1976) 2001;26:889-896
    44 Zhao J, Zhang F, Chen X, et al. Posterior interbody fusion using a diagonal cage with unilateral transpedicular screw fixation for lumbar stenosis. J Clin Neurosci 2011;18:324-328
    45 Lyons AS, Sherman BP, Puttlitz CM, et al. Failure of resorbable plates and screws in an ovine model of anterior cervical discectomy and fusion. Spine J 2011;11:876-883
    46 Fogel GR, Toohey JS, Neidre A, et al. Fusion assessment of posterior lumbar interbody fusion using radiolucent cages:X-ray films and helical computed tomography scans compared with surgical exploration of fusion. Spine J 2008;8:570-577
    47范顺武,方向前,张宏军,et al.椎间隙撑开在腰椎滑脱症复位和融合中的应用价值.中华骨科杂志 2006;26:105-109
    48耿芳,谭丽丽,贺永莲,et al.多孔镁表面生物活性p-TCP涂层的制备及其细胞相容性研究.稀有金属材料与工程2009;38:318-322
    49刘江南,董璞,王正品,et al.生物镁合金在人体模拟液中的腐蚀行为.西安工业大学学报 2009;29:129-133
    50 Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 2007;28:2163-2174
    51顾宇彤,姚振均,李智,et al.颈椎椎间融合器复合涂层及生长因子在山羊体内的融合效果评价.复旦学报:医学版2010;37:259-264
    52 Vehof JW, Spauwen PH, Jansen JA. Bone formation in calcium-phosphate-coated titanium mesh. Biomaterials 2000;21:2003-2009
    53 Mano T, Ueyama Y, Ishikawa K, et al. Initial tissue response to a titanium implant coated with apatite at room temperature using a blast coating method. Biomaterials 2002;23:1931-1936
    54 Tschegg EK, Lindtner RA, Doblhoff-Dier Ⅴ, et al. Characterization methods of bone-implant-interfaces of bioresorbable and titanium implants by fracture mechanical means. J Mech Behav Biomed Mater 2011;4:766-775
    55 Goh JC, Wong HK, Thambyah A, et al. Influence of PLIF cage size on lumbar spine stability. Spine (Phila Pa 1976) 2000;25:35-39; discussion 40
    56 Yamamoto I, Panjabi MM, Crisco T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine (Phila Pa 1976) 1989;14:1256-1260
    57 Chen H, Shoumura S, Emura S, et al. Regional variations of vertebral trabecular bone microstructure with age and gender. Osteoporos Int 2008;19:1473-1483
    58 Viguet-Carrin S, Follet H, Gineyts E, et al. Association between collagen cross-links and trabecular microarchitecture properties of human vertebral bone. Bone 2010;46:342-347
    59 Liu XS, Zhang XH, Guo XE. Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone. Bone 2009;45:158-163
    60 Smit TH, Muller R, van Dijk M, et al. Changes in bone architecture during spinal fusion:three years follow-up and the role of cage stiffness. Spine (Phila Pa 1976) 2003;28:1802-1808; discussion 1809
    61 Zreiqat H, Valenzuela SM, Nissan BB, et al. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials 2005;26:7579-7586
    62 Marie PJ, Hott M. Effect of calcitonin on the magnesium-induced bone resorption in the mouse. Magnesium 1987;6:100-108
    63 Rude RK, Kirchen ME, Gruber HE, et al. Magnesium deficiency-induced osteoporosis in the rat:uncoupling of bone formation and bone resorption. Magnes Res 1999;12:257-267
    64 Rude RK, Gruber HE, Norton HJ, et al. Dietary magnesium reduction to 25% of nutrient requirement disrupts bone and mineral metabolism in the rat. Bone 2005;37:211-219
    65 Rude RK, Gruber HE, Norton HJ, et al. Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism. Osteoporos Int 2006;17:1022-1032
    66 Marie PJ, Travers R, Delvin EE. Influence of magnesium supplementation on bone turnover in the normal young mouse. Calcif Tissue Int 1983;35:755-761
    67 Augat P, Ryaby JT. Fracture healing and micro architecture. Adv Exp Med Biol 2001;496:99-110
    68 Kleerekoper M, Villanueva AR, Stanciu J, et al. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 1985;37:594-597
    69 Flatley TJ, Lynch KL, Benson M. Tissue response to implants of calcium phosphate ceramic in the rabbit spine. Cln Orthop Relat Res 1983:246-252
    70 Fujibayashi S, Takemoto M, Neo M, et al. A novel synthetic material for spinal fusion:a prospective clinical trial of porous bioactive titanium metal for lumbar interbody fusion. Eur Spine J 2011;20:1486-1495
    1 Renfree KJ, Wright TW. Anatomy and biomechanics of the acromioclavicular and sternoclavicular joints. Clin Sports Med 2003; 22:219-237
    2 Kocher MS, Feagin JA, Jr. Shoulder injuries during alpine skiing. Am J Sports Med 1996; 24:665-669
    3 Kocher MS, Dupre MM, Feagin JA, Jr. Shoulder injuries from alpine skiing and snowboarding. Aetiology, treatment and prevention. Sports Med 1998; 25:201-211
    4 Cope R.Dislocations of the sternoclavicular joint.Skeletal Radeol, 1993:233-238
    5 Worman LW, Leagus C. Intrathoracic injury following retrosternal dislocation of the clavicle. J Trauma 1967;7:416-423
    6 Hoekzema N, Torchia M, Adkins M, et al. Posterior sternoclavicular joint dislocation. Can J Surg 2008;51:E19-20
    7 Asplund C, Pollard ME. Posterior sternoclavicular joint dislocation in a wrestler. Mil Med 2004; 169:134-136
    8 Macdonald PB, Lapointe P. Acromioclavicular and sternoclavicular joint injuries. Orthop Clin North Am 2008;39:535-545, viii
    9 Tuscano D, Banerjee S, Terk MR. Variations in normal sternoclavicular joints; a retrospective study to quantify SCJ asymmetry. Skeletal Radiol 2009;38:997-1001
    10 Djerf K, Tropp H, Asberg B. Case report:retrosternal clavicular dislocation in the sternoclavicular joint. Clin Radiol 1998;53:75-76
    11 Brinker MR, Simon RG. Pseudo-dislocation of the sternoclavicular joint. J Orthop Trauma 1999; 13:222-225
    12 Kiroff GK, McClure DN, Skelley JW. Delayed diagnosis of posterior sternoclavicular joint dislocation. Med J Aust 1996;164:242-243
    13 Doss A, Lang IM, Roberts I, et al. Posterior sternoclavicular joint dislocation in children-role of spiral computed tomography. Pediatr Emerg Care 2005:21:325-326
    14 Gregory GJ, Michael WA, Charles RA. et al. Injuries to the sternoclavicular joint//Robert BW, James HD, Charles BC. Rockwood and Greens Fractures in Adults (6th ed). Philadelphia:Lippincott 2006:1365-1385
    15 Restrepo CS, Martinez S, Lemos DF, et al. Imaging appearances of the sternum and sternoclavicular joints. Radiographics 2009;29:839-859
    16 Jaggard MK, Gupte CM, Gulati V, et al. A comprehensive review of trauma and disruption to the sternoclavicular joint with the proposal of a new classification system. J Trauma 2009;66:576-584
    17 Eskola A. Sternoclavicular dislocation. A plea for open treatment. Acta Orthop Scand 1986;57:227-228
    18 Bae DS, Kocher MS, Waters PM, et al. Chronic recurrent anterior sternoclavicular joint instability:results of surgical management. J Pediatr Orthop 2006;26:71-74
    19 Smolle-Juettner FM, Hofer PH, Pinter H, et al. Intracardiac malpositioning of a sternoclavicular fixation wire. J Orthop Trauma 1992;6:102-105
    20 Durpekt R, Vojacek J, Lischke R, et al. Kirschner wire migration from the right sternoclavicular joint to the heart:a case report. Heart Surg Forum 2006;9:E840-842
    21 Brinker MR, Bartz RL, Reardon PR, et al. A method for open reduction and internal fixation of the unstable posterior sternoclavicular joint dislocation. J Orthop Trauma 1997; 11:378-381
    22 Lemos MJ, Tolo ET. Complications of the treatment of the acromioclavicular and sternoclavicular joint injuries, including instability. Clin Sports Med 2003;22:371-385
    1 Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care[J]. Journal of neurosurgery,1953,10(2):154
    2 Bagby G. The Bagby and Kuslich (BAK) method of lumbar interbody fusion[J]. Spine,1999,24(17):1857
    3 WAGNER PC, GRANT BD, BAGBY GW, et al. Evaluation of cervical spinal fusion as a treatment in the equine "wobbler" syndrome[J]. Veterinary Surgery,1979,8(3):84-88
    4 Kuslich S. Lumbar interbody cage fusion for back pain:an update on the BAK (Bagby and Kuslich) system[J]. SPINE-PHILADELPHIA-HANLEY AND BELFUS-,1999,13:295-312
    5 Ray CD. Threaded titanium cages for lumbar interbody fusions[J]. Spine, 1997,22(6):667
    6 Bagby GW. Arthrodesis by the distraction-compression method using a stainless steel implant[J]. Orthopedics,1988,11(6):931
    7 Brodke DS, Dick JC, Kunz DN, et al. Posterior lumbar interbody fusion:a biomechanical comparison, including a new threaded cage[J]. Spine, 1997,22(1):26
    8 Kuslich SD, Ulstrom CL, Griffith SL, et al. The Bagby and Kuslich method of lumbar interbody fusion:history, techniques, and 2-year follow-up results of a United States prospective, multicenter trial[J]. Spine, 1998,23(11):1267
    9 Ray C. Lumbar interbody threaded prostheses[J]. The Artificial Disc Berlin:Springer-Verlag,1991:53-67
    10 Hacker RJ. Comparison of interbody fusion approaches for disabling low back pain[J]. Spine,1997,22(6):660
    11 Ray CD. Threaded fusion cages for lumbar interbody fusions:An economic comparison with 360 fusions[J]. Spine,1997,22(6):681
    12 Goh JCH, Wong HK, Thambyah A, et al. Influence of PLIF cage size on lumbar spine stability[J]. Spine,2000,25(1):35
    13 Kanayama M, Cunningham BW, Haggerty CJ, et al. In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices[J]. Journal of Neurosurgery:Spine, 2000,93(2):259-265
    14 Tsantrizos A, Baramki HG, Zeidman S, et al. Segmental stability and compressive strength of posterior lumbar interbody fusion implants[J]. Spine,2000,25(15):1899
    15 Tencer AF, Hampton D, Eddy S. Biomechanical properties of threaded inserts for lumbar interbody spinal fusion[J]. Spine,1995,20(22):2408
    16 Lund T, Oxland T, Jost B, et al. Interbody cage stabilisation in the lumbar spine:biomechanical evaluation of cage design, posterior instrumentation and bone density[J]. Journal of Bone and Joint Surgery-British Volume, 1998,80(2):351
    17 Kettler A, Wilke HJ, Dietl R, et al. Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading[J]. Journal of Neurosurgery:Spine,2000,92(1):87-92
    18 Oxland TR, Hoffer Z, Nydegger T, et al. A Comparative Biomechanical Investigation of Anterior Lumbar Interbody Cages:Central and Bilateral Approaches*[J]. The Journal of Bone and Joint Surgery (American), 2000,82(3):383-393
    19 Rathonyi G, Oxland T, Gerich U. et al. The role of supplemental translaminar screws in anterior lumbar interbody fixation:a biomechanical study[J]. European Spine Journal,1998,7(5):400-407
    20 Togawa D, Bauer TW, Brantigan JW, et al. Bone graft incorporation in radiographically successful human intervertebral body fusion cages[J]. Spine,2001,26(24):2744
    21 Kandziora F, Schollmeier G, Scholz M, et al. Influence of cage design on interbody fusion in a sheep cervical spine model [J]. Journal of Neurosurgery:Spine,2002,96(3):321-332
    22 Kim Y. Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments[J]. Spine,2001,26(13): 1437
    23 Hasegawa K, Abe M, Washio T, et al. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density[J]. Spine,2001,26(8):957
    24 Pilliar R, Lee J, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants[J]. Clinical orthopaedics and related research,1986,208:108
    25 Fantigrossi A, Galbusera F, Raimondi MT, et al. Biomechanical analysis of cages for posterior lumbar interbody fusion[J]. Medical engineering & physics,2007,29(1):101-109
    26 Brantigan JW, Steffee AD, Lewis ML, et al. Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system:two-year results from a Food and Drug Administration investigational device exemption clinical trial [J]. Spine,2000,25(11):1437
    27 Arnold P, Boswell S, McMahon J. Threaded interbody fusion cage for adjacent segment degenerative disease after previous anterior cervical fusion[J]. Surgical neurology,2008,70(4):390-397
    28 Button G, Gupta M, Barrett C, et al. Three-to six-year follow-up of stand-alone BAK cages implanted by a single surgeon[J]. The Spine Journal,2005,5(2):155-160
    29 Caroli E, Orlando ER, D'Andrea G, et al. Anterior cervical fusion with interbody titanium cage containing surgical bone site graft:our institution's experience in 103 consecutive cases of degenerative spondylosis[J]. Journal of spinal disorders & techniques,2007,20(3):216
    30 Wang ST, Goel VK, Fu CY, et al. Comparison of two interbody fusion cages for posterior lumbar interbody fusion in a cadaveric model [J]. International orthopaedics,2006,30(4):299-304
    31 Kulkarni AG, Hee HT, Wong HK. Solis cage (PEEK) for anterior cervical fusion:preliminary radiological results with emphasis on fusion and subsidence[J]. The Spine Journal,2007,7(2):205-209
    32 Cutler AR, Siddiqui S, Avinash L M, et al. Comparison of polyetheretherketone cages with femoral cortical bone allograft as a single-piece interbody spacer in transforaminal lumbar interbody fusion[J]. Journal of Neurosurgery:Spine,2006,5(6):534-539
    33 Kandziora F, Pflugmacher R, Kleemann R, et al. Biomechanical analysis of biodegradable interbody fusion cages augmented with poly (propylene glycol-co-fumaric acid)[J]. Spine,2002,27(15):1644
    34 Van Dijk M, Smit TH, Arnoe MF, et al. The use of poly-L-lactic acid in lumbar interbody cages:design and biomechanical evaluation in vitro[J]. European Spine Journal,2003,12(1):34-40
    35 Wuisman PIJM, Smit T. Bioresorbable polymers:heading for a new generation of spinal cages[J]. European Spine Journal,2006,15(2): 133-148
    36 Wuisman P, Van Dijk M, Smit T. Resorbable cages for supnal fusion:an experimental goat model[J]. Special Supplements,2002,97(4):433-439
    37 [37] van Dijk M, Smit TH, Burger EH, et al. Bioabsorbable poly-L-lactic acid cages for lumbar interbody fusion:three-year follow-up radiographic, histologic, and histomorphometric analysis in goats[J]. Spine, 2002,27(23):2706
    38 Cahill DW, Martin Jr GJ, Hajjar MV, et al. Suitability of bioresorbable cages for anterior cervical fusion[J]. Journal of Neurosurgery:Spine, 2003,98(2):195-201
    39 Hojo Y, Kotani Y, Ito M, et al. A biomechanical and histological evaluation of a bioresorbable lumbar interbody fusion cage[J]. Biomaterials, 2005,26(15):2643-2651
    40 Coe JD, Vaccaro AR. Instrumented transforaminal lumbar interbody fusion with bioresorbable polymer implants and iliac crest autograft[J]. Spine, 2005,30(17S):S76
    41 Van Dijk M, Smit TH, Sugihara S, et al. The effect of cage stiffness on the rate of lumbar interbody fusion:an in vivo model using poly (1-lactic acid) and titanium cages[J]. Spine,2002,27(7):682
    42 Shah RR, Mohammed S, Saifuddin A, et al. Comparison of plain radiographs with CT scan to evaluate interbody fusion following the use of titanium interbody cages and transpedicular instrumentation[J]. European Spine Journal,2003,12(4):378-385
    43 Kuslich SD, Danielson G, Dowdle JD, et al. Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage[J]. Spine,2000,25(20):2656
    44 O'brien J. The role of fusion for chronic low back pain[J]. The Orthopedic clinics of North America,1983,14(3):639
    45 Rajaraman V, Vingan R, Roth P, et al. Visceral and vascular complications resulting from anterior lumbar interbody fusion[J]. Journal of Neurosurgery:Spine,1999,91(1):60-64
    46 Mulholland R. Cages:outcome and complications[J]. European Spine Journal,2000,9(7):110-113
    47 Regan JJ, Yuan H, McAfee PC. Laparoscopic fusion of the lumbar spine: Minimally invasive spine surgery:A prospective multicenter study evaluating open and laparoscopic lumbar fusion[J]. Spine,1999,24(4):402
    48 Zdeblick TA, David SM. A prospective comparison of surgical approach for anterior L4-L5 fusion:laparoscopic versus mini anterior lumbar interbody fusion[J]. Spine,2000,25(20):2682
    49 Aebi M, Parthasarathy S, Avadhani A, et al. Minimal invasive anterior lumbar interbody fusion (mini ALIF)[J]. European Spine Journal, 2010,19(2):335-336
    50 Lee DY, Lee SH, Kim SK, et al. A Morphometric Analysis of Neuroforamen in Grade I Isthmic Spondylolisthesis by Anterior Lumbar Interbody Fusion with Pedicle Screw Fixation[J]. Journal of Korean Neurosurgical Society,2007,41(6):377-381
    51 Burkus JK, Gornet MF, Schuler TC, et al. Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2[J]. The Journal of Bone and Joint Surgery (American),2009,91(5):1181-1189
    52 Smoljanovic T, Bojanic I, Delimar D. Adverse effects of posterior lumbar interbody fusion using rhBMP-2[J]. European Spine Journal,2009,18(6): 920-923
    53 Chen Z, Zhao J, Liu AG, et al. Surgical treatment of recurrent lumbar disc herniation by transforaminal lumbar interbody fusion[J]. International orthopaedics,2009,33(1):197-201
    54 Faundez AA, Schwender JD, Safriel Y, et al. Clinical and radiological outcome of anterior-posterior fusion versus transforaminal lumbar interbody fusion for symptomatic disc degeneration:a retrospective comparative study of 133 patients[J]. European Spine Journal,2009,18(2): 203-211
    55 Dhall SS, Wang MY, Mummaneni PV. Clinical and radiographic comparison of mini-open transforaminal lumbar interbody fusion with open transforaminal lumbar interbody fusion in 42 patients with long-term follow-up[J]. Journal of Neurosurgery:Spine,2008,9(6):560-565
    56 Schizas C, Tzinieris N, Tsiridis E, et al. Minimally invasive versus open transforaminal lumbar interbody fusion:evaluating initial experience[J]. International orthopaedics,2009,33(6):1683-1688
    57 Zhao J, Hai Y, Ordway NR, et al. Posterior lumbar interbody fusion using posterolateral placement of a single cylindrical threaded cage[J]. Spine, 2000,25(4):425
    58 Aryan H, Newman C, Gold J, et al. Percutaneous axial lumbar interbody fusion (AxiaLIF) of the L5-S1 segment:initial clinical and radiographic experience [J]. Minimally invasive neurosurgery,2008,51(4):225-230
    59 Duan X, Shao Z, Xie K, et al. Research progress of percutaneous 360 degree axial lumbar interbody fusion technique][J]. Zhongguo xiu fu chong jian wai ke za zhi= Zhongguo xiufu chongjian waike zazhi= Chinese journal of reparative and reconstructive surgery,2009,23(8):917
    60 Hollowell JP, Vollmer DG, Wilson CR. et al. Biomechanical Analysis of Thoracolumbar Interbody Constructs:How Important Is the Endplate?[J]. Spine,1996,21(9):1032
    61 Closkey RF, Parsons JR, Lee CK, et al. Mechanics of interbody spinal fusion. Analysis of critical bone graft area[J]. Spine,1993,18(8):1011
    62 Polikeit A, Ferguson SJ, Nolte LP, et al. The importance of the endplate for interbody cages in the lumbar spine[J]. European Spine Journal, 2003,12(6):556-561
    63 Ti-Sheng C, Jia-Hao C, Chien-Shiung W, et al. Evaluation of unilateral cage-instrumented fixation for lumbar spine[J]. Journal of Orthopaedic Surgery and Research,2010,5
    64 Vadapalli S, Robon M, Biyani A, et al. Effect of lumbar interbody cage geometry on construct stability:a cadaveric study[J]. Spine,2006,31(19): 2189
    65 Niemeyer TK, Koriller M, Claes L, et al. In vitro study of biomechanical behavior of anterior and transforaminal lumbar interbody instrumentation techniques[J]. Neurosurgery,2006,59(6):1271
    66 Sudo H, Oda Ⅰ, Abumi K, et al. Biomechanical study on the effect of five different lumbar reconstruction techniques on adjacent-level intradiscal pressure and lamina strain[J]. Journal of Neurosurgery:Spine,2006,5(2): 150-155
    67 Villavicencio AT, Burneikiene S, Bulsara KR, et al. Perioperative complications in transforaminal lumbar interbody fusion versus anterior-posterior reconstruction for lumbar disc degeneration and instability [J]. Journal of spinal disorders & techniques,2006,19(2):92
    68 Wong HK, CH Goh J, Goh PS. Paired cylindrical interbody cage fit and facetectomy in posterior lumbar interbody fusion in an Asian population [J]. Spine,2001,26(5):572
    69 Sim HB, Murovic JA, Cho BY, et al. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation:segmental stability and the effects on adjacent motion segments[J]. Journal of Neurosurgery:Spine,2010,12(6): 700-708
    70 La Rosa G, Cacciola F, Conti A, et al. Posterior fusion compared with posterior interbody fusion in segmental spinal fixation for adult spondylolisthesis[J]. Neurosurgical focus,2001,10(4):1-7
    71 Whitecloud 3rd T, Castro Jr FP, Brinker MR, et al. Degenerative conditions of the lumbar spine treated with intervertebral titanium cages and posterior instrumentation for circumferential fusion[J]. Journal of spinal disorders,1998,11(6):479
    72 Rosenberg WS, Mummaneni PY. Transforaminal lumbar interbody fusion: technique, complications, and early results[J]. Neurosurgery,2001,48(3): 569
    73 Agazzi S, Reverdin A, May D. Posterior lumbar interbody fusion with cages:an independent review of 71 cases[J]. Journal of Neurosurgery: Spine,1999,91(2):186-192
    74 Huang KF, Chen TY. Clinical results of a single central interbody fusion cage and transpedicle screws fixation for recurrent herniated lumbar disc and low-grade spondy lolisthesis[J]. Chang Gung medical journal, 2003,26(3):170-177
    75孙志明,赵合元,董荣华,et al.单枚斜向cage置入加椎弓根螺钉固定治疗腰椎滑脱症的疗效分析[J].中国脊柱脊髓杂志,2004,13(7):429-431
    76郭元利,尤元璋,袁华澄.单枚椎间融合器加关节突螺钉固定治疗腰椎间盘突出症伴腰椎不稳[J].骨与关节损伤杂志,2005,19(10):692-693
    77 Niu CC, Chen LH, Lai PL, et al. Single cylindrical threaded cage used in recurrent lumbar disc herniation[J]. Journal of spinal disorders & techniques,2005,18:S65
    78 Spruit M, Meijers H, Obradov M, et al. CT density measurement of bone graft within an intervertebral lumbar cage:increase of hounsfield units as an indicator for increasing bone mineral content[J]. Journal of spinal disorders & techniques,2004,17(3):232
    79 Diedrich O, Perlick L, Schmitt O, et al. Radiographic characteristics on conventional radiographs after posterior lumbar interbody fusion: comparative study between radiotranslucent and radiopaque cages[J]. Journal of spinal disorders & techniques,2001,14(6):522
    80 Brantigan JW, Steffee AD. A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients[J]. Spine, 1993,18(14):2106
    81 Toth JM, Wang M, Estes BT, et al. Polyetheretherketone as a biomaterial for spinal applications[J]. Biomaterials,2006,27(3):324-334
    82 Grobler L, Novotny J, Wilder D, et al. L4-5 isthmic spondylolisthesis:a biomechanical analysis comparing stability in L4-5 and L5-S1 isthmic spondylolisthesis[J]. Spine,1994,19(2):222
    83 Grobler LJ, Robertson PA, Novotny JE, et al. Decompression for degenerative spondylolisthesis and spinal stenosis at L4-5:The effects on facet joint morphology [J]. Spine,1993,18(11):1475
    84 Pfeiffer M, Griss P, Haake M, et al. Standardized evaluation of long-term results after anterior lumbar interbody fusion[J]. European Spine Journal, 1996,5(5):299-307
    85 Blumenthal SL, Gill K. Can lumbar spine radiographs accurately determine fusion in postoperative patients? Correlation of routine radiographs with a second surgical look at lumbar fusions[J]. Spine, 1993,18(9):1186
    86 McAfee PC, Regan JJ, Geis WP, et al. Minimally invasive anterior retroperitoneal approach to the lumbar spine:Emphasis on the lateral BAK[J]. Spine,1998,23(13):1476
    87 Kim KS, Yang TK, Lee JC. Radiological changes in the bone fusion site after posterior lumbar interbody fusion using carbon cages impacted with laminar bone chips:follow-up study over more than 4 years[J]. Spine, 2005,30(6):655
    88 Wada E, Yonenobu K, Suzuki S, et al. Can intramedullary signal change on magnetic resonance imaging predict surgical outcome in cervical spondylotic myelopathy?[J]. Spine.1999,24(5):455
    89贾宁阳,陈雄生,史建刚,et al.磁共振对脊髓型颈椎病前路减压及融合术后评价[J].中国矫形外科杂志,2001,8(8):757-759
    90邱贵兴.脊柱外科的回顾与展望[J].继续医学教育,2005,19(007):4-6
    91 Hashimoto T, Shigenobu K, Kanayama M, et al. Clinical results of single-level posterior lumbar interbody fusion using the Brantigan I/F carbon cage filled with a mixture of local morselized bone and bioactive ceramic granules[J]. Spine,2002,27(3):258
    92 Taylor BA, Vaccaro AR, Hilibrand AS, et al. The risk of foraminal violation and nerve root impingement after anterior placement of lumbar interbody fusion cages[J]. Spine,2001,26(1):100
    93 McAfee PC, Cunningham BW, Lee GA, et al. Revision strategies for salvaging or improving failed cylindrical cages[J]. Spine,1999,24(20): 2147
    94 Hodges SD, Humphreys SC, Eck JC, et al. Intraoperative loosening of Bagby and Kuslich cages during anterior lumbar interbody fusion[J]. Journal of spinal disorders & techniques,2000,13(6):535
    95陈亮,唐天驷.后路BAK椎间融合术治疗腰椎滑脱症的并发症分析[J].中华骨科杂志,2002,22(006):337-339
    96 Yuan HA, Brown CW, Phillips FM. Osteoporotic spinal deformity:a biomechanical rationale for the clinical consequences and treatment of vertebral body compression fractures[J]. Journal of spinal disorders & techniques,2004,17(3):236
    97 Park P, Garton HJ, Gala VC, et al. Adjacent segment disease after lumbar or lumbosacral fusion:review of the literature[J]. Spine,2004,29(17): 1938
    98 Okuda S, Iwasaki M, Miyauchi A, et al. Risk factors for adjacent segment degeneration after PLIF[J]. Spine,2004,29(14):1535
    99 Nakano M, Matsui H, Miaki K, et al. Postlaminectomy adhesion of the cauda equina:changes of postoperative vascular permeability of the equina in rats[J]. Spine,1997,22(10):1105
    100Furderer S, Schollhuber F, Rompe J, et al. Effect of design and implantation technique on risk of progressive sintering of various cervical vertebrae cages][J]. Der Orthopade,2002,31(5):466
    101 Boden SD, Martin Jr GJ, Horton WC, et al. Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage[J]. Journal of spinal disorders,1998,11(2):95
    102 Boden SD, Zdeblick TA, Sandhu HS, et al. The use of rhBMP-2 in interbody fusion cages:definitive evidence of osteoinduction in humans:a preliminary report[J]. Spine,2000,25(3):376
    103 Kandziora F, Pflugmacher R, Scholz M, et al. Comparison of BMP-2 and combined IGF-I/TGF-ssl application in a sheep cervical spine fusion model[J]. European Spine Journal,2002,11(5):482-493
    104 Papavero L, Zwonitzer R, Burkard I, et al. A composite bone graft substitute for anterior cervical fusion:assessment of osseointegration by quantitative computed tomography [J]. Spine,2002,27(10):1037

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700