电磁轨道炮电路暂态特性分析及发射组件优化和解析计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁发射装置作为一种全新的概念性武器,在军事、科研等诸多领域有着广泛的应用前景。因其具有巨大的发展潜力,所以吸引着各个国家在理论和应用上对其进行深入的研究。由于电磁发射装置是一个处在高速滑动电接触下的应力场、热场和电磁场相互耦合的复杂系统影响中,所以想要掌握整个电磁发射装置系统的物理过程,目前仍有相当大的困难。
     论文主要对电磁轨道炮电路暂态的基本特性、发射组件重要参数优化和电磁轨道炮发射炮管内表面受三次函数分布压力作用下的解析解进行了研究。
     首先,论文从电磁轨道炮的电路暂态特性出发,综合考虑欠阻尼、过阻尼和临界阻尼三种暂态过程。通过数值模拟结果分析了电感梯度、回路电感和电容三者分别对轨道炮储能电容器上的电压、放电回路电流和电枢反电动势之间的变化关系。
     其次,弹丸的出口速度是电磁轨道炮设计的最重要参数之一,探明轨道间距、高度、驱动电流等对弹丸发射速度的影响,从而获得弹丸的最佳速度是非常有意义的。论文在考虑了等离子体电枢运动中所受到的粘滞阻力和惰性阻力的基础上,构建了包含电枢速度、驱动电流、轨道间距和高度等在内的优化模型,并采用牛顿法进行了优化计算。优化结果表明:调整发射轨道的高度及两轨间的间距可以达到调整弹丸出口速度的目的。
     最后,解决电磁轨道炮发射炮管受力变形的精确计算,有利于延长炮管的使用寿命并提高发射精度。为此,论文在三维空间中构建了一个既满足双调和方程,又满足边界条件的应力函数,推导出采用等离子电枢的圆筒电磁轨道炮的炮管受三次函数分布压力作用下的解析解。在REG-III型电磁炮的发射炮管上,通过静态应变测试仪记录发射时炮管的应变值,并与理论计算的结果相比较,二者吻合程度较高。
As a new concept weapon, electromagnetic emission device has a broad prospect ofapplication in the military and the scientific research fields. It is because of great potentialof development, the research of further in the theory and the application has attractedmany countries. Because the electromagnetic emission device is a high-speed slidingcontact under the stress field, thermal field and electromagnetic field coupling effect ofcomplex system influence. Presently, it is considerable difficult to master entire systemphysical processes of electromagnetic emission device system.
     In this paper, we mainly study the transient basic characteristics of the circuit, theoptimization of the launch components important parameters and the analytic solution ofinternal surface of launcher’s barrel subjected to three times function distributionpressures of the electromagnetic railgun.
     Firstly, paper considers the three transient process including owes damping, overdamping and critical damping on the basis of the electromagnetic railgun circuit’stransient characteristics. Variation relation of the railgun to the storage capacitor voltage,the discharge circuit current and the armature back electromotive force are analyzedrespectively the inductance gradient, the loop inductance and capacitance by the numericalsimulation results.
     Secondly, the speed of launched projectile is one of the most important parameters ofthe railgun design, in order to exploring the influence of speed of projectile launchedabout the spacing and height of the rail and drive current, so it got the optimum speed ofprojectile is meaningful. The optimization model that it will optimize calculation in usingnewton method among armature speed, drive current and the spacing and height of the railwas established in paper on the basis of the plasma armature movement by the viscousdrag and inertial drag. The optimization results showed that adjust to the height of the rail,between two rails distance to reach to purpose that it adjust launched speed of projectile.
     Finally, the accurate calculation of force-deformation of the electromagneticlauncher’s barrel can help to extend the barrel life and improve the firing accuracy. Therefore, a stress function which meets both the biharmonic equations and boundaryconditions is constructed in the three-dimensional space in paper. Furthermore, theanalytic solution of barrel subjected to three times function distributed variable pressurewith plasma armature is deduced. When strain values of a barrel are recorded by staticstrain tester on REG-III electromagnetic launcher’s barrel, the experimental results are inaccord with the theoretic calculation.
引文
[1]王莹,肖峰.电炮原理[M].北京:国防工业出版社,1994:5-16.
    [2]金志明.高速推进内弹道学[M].北京:国防工业出版社,2001:1-16.
    [3] Fair H D. The Science and Technology of Electromagnetic Launchers[J]. IEEE Transactions onMagnetics,2001,10(37):25-32.
    [4] Weldon W F. A Taxonomy of Electromagnetic Launchers[J]. IEEE Transactions on Magnetics,1989,25(l):591-592.
    [5] Marshall R A, Wang Y. Railguns: Their Science and Technology[M]. Beijing: China MachinePress,2004:3-6.
    [6]刘廷贤.发展中的电磁炮[J].大学物理,1998,17(4):44-46.
    [7]李勇,李立毅,程树康等.电磁弹射技术的原理与现状[J].微特电机,2001,29(5):3-4.
    [8]刘守豹,阮江军,彭迎等.改进电流丝法及其在感应线圈炮场路结合分析中的应用[J].中国电机工程学报,2010,30(30):128-134.
    [9] Cowan M, Widner M M, Cnare E C, etal. Exploratory Development of the Reconnection Launcher1986-1990[J]. IEEE Transactions on Magnetics,1991,27(1):563-567.
    [10]李小鹏,李立毅,程树康等.重接式电磁发射技术的现状及应用前景[J].微电机,2002,35(4):39-41.
    [11] Berning P R, Hummer C R, Le C D, etal. A Theoretical and Experimental Study of theElectromagnetic Environment Surrounding a Magnetic Induction Launcher[J]. IEEE Transactionson Magnetics,1997,33(1):368-372.
    [12]赵纯,邹积岩,何俊佳等.多级重接炮的数值仿真与优化物理设计[J].兵工学报,2008,29(6):645-650.
    [13]郭芳,唐跃进,任丽等.基于交错式线圈布局的连续脉冲磁行波电磁发射基础研究[J].中国电机工程学报,2010,30(27):123-128.
    [14]王瑞静.电磁发射技术的发展及其军事应用[J].火力与指挥控制,2001,26(1):5-7.
    [15] Bushway R R. Electromagnetic Aircraft Launch System Development Considerations[J]. IEEETransactions on Magnetics,2001,37(1):52-54.
    [16]李立毅,程树康,刘宝廷.直线电磁发射技术的发展现状及前景[J].微电机,1999,32(2):26-30.
    [17] Schroeder J M, Jully J H, Driga M D. Electromagnetic Launcher for Space Applications[J]. IEEETransactions on Magnetics,1989,25(1):504-507.
    [18]杨世荣,王莹,徐海荣等.电磁发射器的原理与应用[J].物理学和高新技术,2003,32(4):253-256.
    [19]范长增,王文魁.发展中的电磁轨道炮[J].燕山大学学报,2007,31(5):377-386.
    [20] Egeland A. Birkeland’s Electromagnetic Gun: A Historical Review[J]. IEEE Transactions onPlasma Science,1989,17(2):73-82.
    [21] Mcnab I R. Early Electric Gun Research[J]. IEEE Transactions on Magnetics,1999,35(1):250-261.
    [22]古刚,向阳,张建革.国际电磁发射技术研究现状[J].舰船科学技术,2007,29(S1):156-158.
    [23] Smith A N, Ellis R L, Bernardes J S, etal. Thermal Management and Resistive Rail Heating of aLarge-Scale Naval Electromagnetic Launcher[J]. Transactions on Magnetics,2005,41(l):235-240.
    [24] Fair H D. Electromagnetic Launch Science and Technology in the United States Enters a NewEra[J]. Transactions on Magnetics,2005,41(1):158-164.
    [25] Fair H D. Progress in Electromagnetic Launch Science and Technology[J]. Transactions onMagnetics,2007,43(1):93-98.
    [26]李如年,王敬,王海.新概念动能武器—电磁炮[J].中国电子科学研究院学报,2011,6(2):125-129.
    [27]王莹.电发射技术概论[J].电工技术杂志,2003,10(1):94-97.
    [28]李立毅,李小鹏.电磁发射的历史及发展趋势[J].微电机,2004,37(1):41-44.
    [29] Wang Y. EML Technology Research in China[J]. IEEE Transactions on Magnetics,1999,35(1):44-46.
    [30] Tzeng J T. Dynamic Response of Electromagnetic Railgun Due to Projectile Movement[J]. IEEETransactions on Magnetics,2003,39(1):472-475.
    [31] Johnson A J, Moon F C. Elastic Waves and Solid Armature Contact Pressure in ElectromagneticLaunchers[J]. Transactions on Magnetics,2006,42(3):422-429.
    [32] Daneshjoo K, Rahimzadeh M, Ahmadi R, etal. Dynamic Response and Armature Critical VelocityStudies in an Electromagnetic Railgun[J]. IEEE Transactions on Magnetics,2007,43(1):126-131.
    [33] Engel T G, Neri J M, Nunnally W C. Efficiency and Scaling of Constant Inductance Gradient DCElectromagnetic Launchers[J]. IEEE Transactions on Magnetics,2006,42(8):2043-2051.
    [34] Dethlefsen R, Mcnab I, Dobbie C, etal. Pulse Power Applications of Silicon Diodes in EMLCapacitive Pulsers[J]. IEEE Transactions on Magnetics,1993,29(1):934-938.
    [35]李迎生.小口径电磁轨道炮内弹道特性初步研究[D].南京:南京理工大学,2007:1-5.
    [36]胡玉伟.电磁轨道炮系统的建模与仿真[D].哈尔滨:哈尔滨工业大学,2007:1-4.
    [37]何大娇.电磁轨道炮内弹道优化设计[D].南京:南京理工大学,2008:1-3.
    [38]崔鹏.新型电磁发射技术的研究[D].长沙:国防科学技术大学,2005:1-4.
    [39]姜仲秋,汤承林.电磁发射效率与激励电流关系的仿真[J].四川兵工学报,2010,31(3):4-7.
    [40]龚兴根,孙承纬,周之奎等.原理性电磁轨道炮的实验研究[J].爆炸与冲击,1987,7(2):164-169.
    [41]陈庆国,王永红,魏新劳等.电容驱动型轨道电磁炮电磁过程的计算机仿真[J].电工技术学报,2006,21(4):68-71.
    [42]郑庆生.电磁学[M].上海:华东师范大学出版社,1999:314-376.
    [43]卢新培,潘恒.分散储能法的局限性[J].兵工学报,2001,5(2):149-151.
    [44] Mankowski J, Dickens J, Giesselmann M, etal. A Bench Top Railgun With Distributed EnergySources[J]. IEEE Transactions on Magnetics,2007,45(1):167-169.
    [45] Musolino A, Raugi M, Rizzo R, etal. The Multi-Stage Railgun[J]. IEEE Transactions onMagnetics,2001,37(1):445-449.
    [46] Tian Yangmeng, Mai Miao, Zheng Ping, etal. Use of a Fast Shock Tube as an Injector forElectromagnetic Railgun[J]. IEEE Transactions on Magnetics,2005,41(1):365-368.
    [47] Weeks D A, Weldon W F, Zowarka R C. Plasma-armature Railgun Launcher Simulations[J]. IEEETransactions on Plasma Science,1989,17(3):403-408.
    [48] Gallant J, Lehmann P. Experiments with Brush Projectiles in a Parallel Augmented Railgun[J].IEEE Transactions on Magnetics,2005,4(1):188-189.
    [49] Lehmann P, Reck B, Vo M D, etal. Acceleration of a Suborbital Payload Using an ElectromagneticRailgun[J]. IEEE Transactions on Magnetics,2007,43(1):480-485.
    [50]陈宝林.最优化理论与算法[M].北京:清华大学出版社,2005:265-267.
    [51] Keshtkar A, Maleki T, Kalantarnia A, etal. Determination of Optimum Rails Dimensions inRailgun by Lagrange’s Equations[J]. IEEE Transactions on Magnetics,2009,45(1):595-597.
    [52] Keshtkar A, Bayati S, Keshtkar A. Derivation of a Formula for Inductance Gradient UsingIntelligent Estimation Method[J]. IEEE Transactions on Magnetics.2009,45(1):305-598.
    [53] Wang Zijian, He Junjia, Xia Shengguo, etal. Evaluation of Solid Armature’s In-Bore Position,Velocity and Current Distribution Using B-Dot Probes in Railgun Experiments[J]. IEEETransactions on Magnetics,2009,45(1):485-489.
    [54]杨玉东,王建新,薛文.轨道炮动态负载特性的分析与仿真[J].兵工学报,2010,31(8):1029-1030.
    [55]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[M].2004:170-198.
    [56] Tzeng J T, Sun W. Dynamic Response of Cantilevered Rail Guns Attributed to Projectile/GunInteraction-Theory[J]. IEEE Transactions on Magnetics,2007,43(1):207-213.
    [57] Tzeng J T. Structural Mechanics for Electromagnetic Railguns[J]. IEEE Transactions onMagnetics,2005,41(1):246-250.
    [58] Filho F V. Finite Element Analysis of Structures Under Movingloads[J]. Shock and VibrationDigest,1978,10(8):27-35.
    [59] Olsson M. Finite Element Modal Co-ordinate Analysis of Structures Subjected to MovingLoads[J]. Journal of Sound and Vibration,1985,99(1):1-12.
    [60]于艳丽.移动载荷作用下轨道系统和高架桥的动力响应分析[D].武汉:武汉理工大学,2002:1-7.
    [61]董健年,张军,桂应春.轨道炮脉冲电源续流硅堆设计及实验现象分析[J].弹道学报,2007,19(4):71-74.
    [62] Liu Wen, Shi Lei, Bai Xiangzhong. Deformation Calculating of Electromagnetic Launcher’s RailSubjected to Sinusoidal Pressure[J]. Mathematical Problems in Engineering,2011, Article ID920651,12pages.
    [63]刘文,李敏,白象忠等.电磁炮发射轨道受指数函数磁压力的变形计算[J].哈尔滨工业大学学报,2010,42(8):1336-1340.
    [64]刘文,刘秋梅,刘艳伟.两炮喇叭口爆炸成形强化护环拐点离上端近时残余应力的解析解[J].数学理论与应用,2007,27(1):11-14.
    [65]钱伟长,叶开源.弹性力学[M].北京:科学出版社,1983:1-17.
    [66]徐芝纶.弹性力学[M].北京:人民教育出版社,1982:264-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700