基于CAD变量几何法的并联机构弹性理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并联机构的刚度和弹性理论研究逐渐成为机器人研究领域的重要课题。传统并联机构刚度和弹性理论研究方法主要包括两大类:以推导并联机构的刚度矩阵为特征的解析解法和以模型离散化为特征的有限单元法,两类方法各有优缺点。本文综合两种解法的优点,采用CAD变量几何法,对3/6-SPS和3-SPR机构进行了弹性理论研究。
     本文首先采用CAD变量几何法对两机构进行位置正反解分析,用解析法验证位置反解的正确性。然后用CAD变量几何法对两机构进行静力分析,采用基于力/力矩平衡方程的求解方法,直接推导出力雅克比矩阵,在三维软件中实现力雅克比矩阵的可视化表达,由力雅克比矩阵进行了并联机构的静力分析,并用解析法和仿真方法证明求解的正确性。
     根据材料力学的知识,由求得的驱动力和约束力,进一步分析单个分支的变形,得到了等效分支长度,基于CAD变量几何法,重新构造了变形之后的分支模拟机构,求解变形前后两个模拟机构的位置、姿态差值,即完成了两机构的弹性变形分析;用解析法推导出了并联机构的刚度矩阵,并以此进行并联机构的弹性变形分析;在三维实体软件中构造机构的几何模型,用有限元软件进行机构的弹性变形求解;并比较了解析法、CAD变量几何法、有限元法求解机构弹性变形的精度。
     采用CAD变量几何法,本文研究了3/6-SPS和3-SPR机构在不同工况、不同位姿的弹性变形情况,发现机构的刚度和位姿、受力类型有很大关系。比较了机构在平动、转动时各向弹性变形量的变化,由此得到机构运动时各向刚度的变化情况,分析了不同方向的作用力、力矩对各个方向刚度、角刚度的影响。
Stiffness and elastic deformation theories gradually become important subjects in thestudy of Parallel Mechanisms(PMs). There are two traditional methods in stiffness solvingand elastic deformation analysis of PMs, one is analytic method characterized by deducingstiffness matrix,the other is FEA methods characterized by model discretization. The twomethods have their own merits. Based on the advantages of both methods, this thesisfocuses on an analysis of the stiffness and the elastic deformation of the 3/6-SPS PM and3-SPR PM by a novel CAD variation geometric approach.
     Based on CAD variation geometric approach, inverse and forward position solutionsof 3/6-SPS and 3-SPR PM are solved. By contrasting the inverse position solutions solvedby the analytic approach, the results obtained by CAD variation geometric approach areverified correctly. Based on force-torque balancing equations, the force Jacobian matrix isderived and the force simulation mechanism is constructed in CAD software. According tothe force Jacobian matrix and the force simulation mechanism, active/constrained forcecan be solved automatically. By contrasting the force solutions solved by the analyticapproach and motion analysis module in CAD software, the results obtained by CADvariation geometric approach are verified correctly.
     According to the knowledge of material mechanics, the elastic deformation of limbsare solved and the equivalent length of limbs are calculated. Based on CAD variationgeometric approach, the position mechanism of PMs after deformation is rebuilt, thus, theposition and posture changes of moving platform can be solved. The stiffness matrix isderived and the elastic deformation is solved by the analytic approach. The solid model isbuilt in CAD software, and the deformation of PMs also can be solved by FEA method.By contrasting the elastic deformation solutions solved by the analytic approach and theFEA method, the results obtained by CAD variation geometric approach are verifiedcorrectly.
     Based on CAD variation geometric approach, the elastic deformation of 3/6-SPS PMand 3-SPR PM working in some different conditions under different loads is calculated,according to the deformation results, it can be find that the position and posture of moving platform and the loads have a huge influence on the stiffness of PMs. According tocomparing the deformation in different conditions, the change of stiffness can be knownand the influence of forces and torques in different directions can be solved.
引文
[1] Gough V E, Whitehall S G. Universal Type Test Machine[C]. FISITA Ninth International.Technical Congress, 1962: 117-135.
    [2] Stewart D. A Platform with Six Degrees of Freedom[J]. Proceedings of the Institution ofMechanical Engineers, London, 1965, 180(15): 371-386.
    [3] McCallion H, Pham D T. The Analysis of a Six Degrees of Freedom Work Station for MechanizedAssembly[C]. Proceedings of the 5th World Congress On Theory of Machines and Mechanisms,Montreal, Canada, 1979: 611-616.
    [4] Hunt K H. Structural Kinematics of In-Parallel-Actuated Robot Arms[J]. Transmissions andAutomation in Design, 1983, 105(4): 705-712.
    [5]黄玉美,程祥,潘泽明,等.实现多方位立卧加工的三轴并联主轴头机构[P].中国专利:CN1559753A 2005.01.05.
    [6]仇洪根,刘辛军,王立平,等.基于空间和平面三自由度并联机构的汽车喷涂混联机器人[P].中国专利:CN101966502A2011.02.09.
    [7]黄田,刘海涛,赵学满,等.五自由度混联机器人[P].中国专利:CN101049692A 2007.10.10.
    [8] Clavel R. DELTA, A Fast Robot with Parallel Geometry[C]. Proceedings International Symposiumon Industrial Robots, Switzerland, 1988:91-100.
    [9] Neumann K E.Robot[P]. US Patent No.4732525, Mar, 22, 1988.
    [10]黄田,李曚,李占贤,等.非对称空间5自由度混联机器人[P].中国专利:CN1524662A2004.09.01.
    [11] Thomas M, Tesar D. Dynamic Modeling of Serial Manipulator Arms[J]. Journal of DynamicSystems, Measurement, and control, 1982, 104(9): 218-227.
    [12] Freeman R A.The Generalized Coordinate Selection for the Dynamics of Complex PlanarMechanical System[J]. Journal of Mechanical Design, 1982, 104: 207-217.
    [13] Huang Z. Modeling Fomulation of 6-DOF Multi-loop Parallel Manipulators Part-1: KinematicInfluence Coefficients[C]. Proc.of 4th IFToMM International Symposium on Linkage andComputer Aided Design Method,1985, Bucharest, Romania,Ⅱ(1): 155-162.
    [14] Huang Z. Modeling Fomulation of 6-DOF Multi-loop Parallel Manipulators Part-2: DymanicModeling and Example[C]. Proc.of 4thIFToMM International Symposium on Linkage andComputer Aided Design Method, 1985, Bucharest,Romania,Ⅱ(1): 163-170.
    [15] Dasgupta N.A Newton-Euler Formulation for the Inverse Dynamic of the Stewart PlatformManipulator[J]. Mechanism and Machine Theory, 1998, 33(8): 1135-1152.
    [16] MERLET JP. Jacobian, Manipulability, Condition number, and Accuracy of Parallel Robots[J].ASME Journal of Mechanical Design, 2006, 128(1): 199-206.
    [17] Lu Y, Shi Y, Hu B. A CAD Geometric Variation Approach of Solving Active/ConstrainedForces ofSome Parallel Manipulators with SPR-type Active Legs[C].ASME 2007 International DesignEngineering Technical Conferences&Computers and Information in Engineering Conference,LasVegas,Nevada,USA, 2007, 8, Part B:839-845.
    [18] Gosselin C.M. Stiffness Mapping for Parallel Manipulators[J]. IEEE Transactions on Robotics andAutomation, 1990, 6(3):377-382.
    [19] Ceccarelli M, Carbone G. A Stiffness Analysis for CaPaMan(Cassino Parallel Manipulator)[J].Mechanism and Machine Theory, 2002, 37(5): 427–439.
    [20] Carbone G, Ceccarelli M. A Stiffness Analysis for a Hybrid Parallel-Serial Manipulator[J].Robotica, 2004, 22(5):567–576.
    [21] Joshi S, Tsai L W. A Comparison Study of Two 3-DOF Parallel Manipulators: One with Three andthe Other with Four Supporting legs[J]. IEEE Transactions on Robotics and Automation, 2003,19(2): 200-209.
    [22] Yoon W.K, Suehiro T, Tsumaki Y. Stiffness Analysis and Design of a Compact Modified DeltaParallel Mechanism[J]. Robotica, 2004, 22(4): 463–475.
    [23] Zhang D, Lang Sherman Y.T.Stiffness Modeling for a Class of Reconfigurable PMs withThree toFive Degree of Freedom[J].Journel of Manufacturing Systems,2004,23(4):316–327.
    [24] Zhang D. On Stiffness Improvement of the Tricept Machine Tool[J]. Robotica, 2005, 23(3):377-386.
    [25] D.Zhang, C.M.Gosselin. Kineto static modeling of N-DOF parallel mechanisms with a passiveconstraining leg and prismatic actuators[J]. ASME Journal of Mechanical Design, 2001, 123(3):375-384
    [26] Dong W, Sun L N, Du Z J. Stiffness Research on a High-Precision, Large-Workspace ParallelMechanism with Compliant Joints[J]. Precision Engineering, 2008, 32(3): 222-231.
    [27] Jung H K, Crane C D, Roberts R G. Stiffness Mapping of Compliant Parallel Mechanisms in aSerial Arrangement[J]. Mechanism and Machine Theory, 2008, 43(3): 271-284.
    [28] Pashkevich A, Chablat D, Wenger P. Stiffness Analysis of Overconstrained ParallelManipulators[J]. Mechanism and Machine Theory, 2009, 44(5): 966-982.
    [29] Pashkevich A, Klimchik A, Chablat D. Enhanced Stiffness Modeling of Manipulators with PassiveJoints[J]. Mechanism and Machine Theory, 2011, 46(5): 662-679.
    [30]李剑锋,费仁元,范金红,等.具有大位置空间的3自由度并联机构运动性能分析[J].机械工程学报, 2007, 43 (8): 53-59.
    [31]赵铁石,赵延志,边辉,等.空间并联机构连续刚度非线性映射[J].机械工程学报, 2008, 44(8):20-25.
    [32]赵延治,张洁,赵铁石.弹性铰平面并联三自由度机器人连续刚度映射研究[J].燕山大学学报,2008, 32(4): 283-287.
    [33] Li Y M, Xu Q S.Stiffness analysis for a 3-PUU Parallel Kinematic Machine[J].Mechanism andMachine Theory, 2008, 43(2): 186-200.
    [34] Xu Q S, Li Y M. An Investigation on Mobility and Stiffness of a 3-DOF Translational ParallelManipulator via Screw Theory[J]. Robotics and Computer-Integrated Manufacturing, 2008, 24(3):402–414.
    [35]韩书葵,方跃法,槐创锋. 4自由度并联机器人刚度分析[J].机械工程学报, 2006, 42(增刊):35-38.
    [36]张建军,高峰,陈玉龙,等.基于压电陶瓷驱动的并联微动机器人静力学及其微动平台的静刚度分析[J].机械工程学报, 2004, 40(11): 82-87.
    [37]周玉林,高峰. 3-RRR 3自由度球面并联机构静刚度分析[J].机械工程学报, 2009,45(4):25-32.
    [38]崔学良,韩先国,陈五一.特殊复合球铰3-RPS并联机构及其连续刚度模型[J].北京航空航天大学学报, 2010, 36(11): 1275-1280.
    [39] Shneor Y, Portman V.T. Stiffness of 5-Axis Machines with Serial, Parallel, and Hybrid Kinematics:Evaluation and Comparison[J]. CIRP Annals-Manufacturing, 2010, 59(1): 409–412.
    [40] Yue Y, Gao F,.Zhao X.C. Relationship Among Input-Force,Payload,Stiffness and Displacement ofa 3-DOF Perpendicular Parallel Micro-Manipulator[J]. Mechanism and Machine Theory, 2010,45(5): 756-771.
    [41] Huang T, Zhao X.Y, Whitehouse D.J. Stiffness estimation of a tripod-based parallel kinematicmachine[C]. IEEE Transactions on Robotics and Automation, 2002, 18(1): 50-58.
    [42]王友渔,黄田,梅江平,等.考虑复杂机架柔性的并联构型装备刚度半解析建模方法[J].科学通报,2008, 53(3): 364-372.
    [43]王友渔,赵兴玉,黄田,等.可重构混联机械手TriVariant与Tricept的静动态特性预估与比较[J].天津大学学报, 2007, 40(1): 41-45.
    [44]王友渔.可重构混联机械手TriVariant与Tricept的静刚度预估技术研究[D],天津:天津大学工学硕士学位论文,2006.
    [45]王友渔.一类球坐标型混联机器人静刚度建模理论与方法研究[D],天津:天津大学工学博士学位论文,2008.
    [46] Griffis M, Duffy. Global Stiffness Modeling of a Class of Simple Compliant Couplings[J].Mechanism and Machine Theory, 1993, 28(2): 207-244.
    [47] Nie Y F, Chang S, Fan X K, The Parallel Mechanism of Node-Based Seamless Finite ElementMethod[J]. Computer Modeling in Engineering and Sciences, 2007, 19(2): 135–143.
    [48]李树军.3-RRR平面并联机构的刚度特性分析[J].东北大学学报, 2007, 28(1): 91-94.
    [49]李辉,朱文白.柔索牵引并联机构的静刚度分析[J].机械工程学报, 2010, 46(3): 8-16.
    [50]刘欣,仇原鹰.绳牵引并联机器人的静刚度解析[J].机械工程学报, 2011, 47(13): 24-29.
    [51] .Lu Y, Hu B, Yu J P. Analysis of Stiffness and Elastic Deformation for a Four-Degree-of-Freedom4SPS+SP Parallel Manipulator with a SP Passive Constrained Leg[J]. Proceedings of theInstitution of Mechanical Engineers, Part K, Journal of Multi-body Dynamics, 2009, 223(K1):73-80.
    [52] Lu Y, Hu B. Analysis of Stiffness and Elastic Deformation for Some 3-5DOF PMs with SPR orRPS-Type Legs[J]. ASME Journal of Mechanical Design, 2008, 130(10): 102307.
    [53]胡波,路懿.求解3-RPS并联机构刚度的新方法[J].机械工程学报, 2010, 46(1): 24-29.
    [54] Hu B, Lu Y. Solving Stiffness and Deformation of a 3-UPU Parallel Manipulator with OneTranslation and Two Rotations[J]. Robotica, 2011, 29(6): 815-822.
    [55] Hu B, Lu Y, Tan Q. Analysis of Stiffness and Elastic Deformation of a 2(SP+SPR+SPU)Serial-Parallel Manipulator[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(2):418-425.
    [56]刘健.三腿4与5自由度并联机构刚度与变形分析[D].秦皇岛:燕山大学工学硕士学位论文,2011: 29-35.
    [57]罗继曼,蔡光起,李景奎.基于ANSYS的新型3-TPS并联机床静刚度分析[J].沈阳建筑大学学报, 2006, 22(2): 34l-344.
    [58]王友渔,黄田,等. Tricept机械手静刚度解析建模方法[J].机械工程学报, 2008, 44(8):13-19.
    [59]张天明,韩先国.基于有限元3-RPS并联机床轻量化优化设计[J].北京航空航天大学学报,2010, 36(11): 1295-1298.
    [60] Rigatos G. G. Model-based and Model-free Control of Flexible-link Robots[J]. AppliedMathematical Modelling, 2009, 33(10):3906-3925.
    [61] Dwivedy S K, Eberhard P, Dynamic Analysis of Flexible Manipulators,a Literature Review[J].Mechanism and Machine Theory, 2006, 41(7): 749-777.
    [62] Wang X Y, Mills J K. Dynamic Modeling of Flexible-Link Planar Parallel Platform Using aSubstructuring Approach[J]. Mechanism and Machine Theory, 2006, 41(6):671-687.
    [63] Kang B, Mills J K, Dynamic Modeling of Structurally-Flexible Planar Parallel Manipulator[J]. Robotica, 2002, 20(3): 329-339.
    [64]杜兆才,余跃庆,等.含弹性杆件的并联机器人刚度分析[J].机械设计, 2007, 24(9): 32-34.
    [65] Lu Y. Using CAD Functionalities for the Kinematics Analysis of Parallel Manipulator with3-, 4-,5-, 6-linearly Driven Limbs[J]. Mechanism and Machine Theory, 2004, 39(1):41-60.
    [66] Lu Y. Using Virtual Work Theory and CAD Functionalities for Solving Active Force and PassiveForce of Spatial Parallel Manipulators[J]. Mechanism and Machine Theory, 2007, 42(7): 839-858.
    [67] Li Y, Hu S, Sun J. A Constructive Approach to Solving 3D Geometric Constraint Systemusingdependence analysis[J]. Computer-Aided Design, 2002, 34(2): 97-108.
    [68] Dasgupta N. A Newton-Euler formulation for the inverse dynamics of the Stewart platformmanipulator[J]. Mechanism and Machine Theory, 1998, 33(8): 1135-1152.
    [69] Timoshenko S P, Gere J. Mechanics of Materials[M]. New York, Van Nostrand Reinhold Company,1972: 443-457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700