空间绳网系统设计与动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间技术和应用的快速发展,在轨补给、维修、营救和空间碎片处理已成为航天领域的重要前沿问题,引领着空间系统体系结构转型和空间基础设施建设的发展方向。安全、自主的空间非合作目标捕获是解决上述问题的重要基础和关键技术瓶颈,也是体现当今航天技术发展水平的重要标志之一。本文探讨了空间非合作目标捕获的空间绳网系统概念,对相关理论问题进行了深入研究,开展了动力学仿真和初步的地面原理试验。
     首先,针对空间目标捕获需求,对多种空间捕获方法和手段进行了对比分析,提出了能够有效避免碰撞危险、具有容错捕获能力、应用灵活的空间绳网捕获系统概念,形成了面向空间非合作目标在轨捕获的系统方案;围绕空间绳网系统总体设计,提出了基于无向图的绳网结构设计、平面绳网与三维绳网、机械储能自适应收口机构等概念;考虑载体航天器相对运动特点和空间捕获任务的灵活性要求,提出了空间绳网捕获V-bar、R-bar、H-bar等三种基本任务模式。
     其次,针对空间绳网捕获系统多回路非树结构特征和刚柔耦合动力学特性,引入无向图描述绳索各段之间及绳索与牵引质量块之间的连接关系,运用集中质量法建立绳索质点系动力学模型,与牵引质量块刚体动力学模型结合形成刚柔耦合动力学模型,进而提出并建立了具有拓扑结构描述、绳段自动划分、动力学模型自动处理等先进功能的空间绳网系统设计分析方法,研制开发了相应的仿真算法和软件。对空间绳网捕获工作过程中的碰撞与接触动力学进行了初步研究。
     第三,通过对平面绳网和三维绳网的动力学仿真,对其发射展开工作过程与特性进行了系统分析。平面绳网发射展开仿真结果表明:平面绳网发射展开经历匀速展开、稳定飞行和碰撞变形三个阶段,绳网在稳定飞行段能够自然维持适于捕获的形状;发射角度和绳索阻尼系数是直接影响平面绳网发射展开特性的两个主要设计参数,可以进行优化设计;无论系统采用V-bar、R-bar或H-bar哪种任务模式,基本不影响平面绳网发射展开的性能指标。三维绳网发射展开仿真结果表明:三维绳网自然发射展开不能形成稳定飞行阶段;采用连接绳索被动开环阻力控制方法可以解决三维绳网发射展开的网形控制问题,形成稳定飞行过程并保持适合捕获的网形。
     第四,针对空间绳网发射过程中绳网的结构变形与振荡等物理现象,对理想绳索的冲击加载过程进行了理论研究,通过仿真得到了绳索物理非线性和几何非线性对绳索中应力波传播影响的重要结论:绳索始终张紧的情况下,应力波线性叠加原理有效,绳索中应力波的传播过程与刚性杆相同;当绳索经历“张紧—松弛”的变迁过程——绳索质点从被拉伸转换到被压缩并在这个过程中获得了视速度,则绳索中应力波能量逐步衰减,绳索中应力波的传播无法用线性叠加原理解释。
     最后,在系统设计、仿真分析的基础上,提出了空间绳网系统地面原理试验和空中投放试验的总体技术方案,研制了采用牵引质量块火药弹射方式的绳网发射机构地面原理样机和绳网机械储能自适应收口机构原理样机,在国内首次成功进行了空间绳网系统飞艇空中投放试验。地面发射原理试验演证了空间绳网发射的可行性,测量结果与仿真结果吻合,表明仿真模型正确可用;飞艇空中投放试验验证了偏置发射与机械储能自适应收口机构的设计原理与工作可靠性,结果表明机械储能自适应收口机构原理正确、结构合理、功能有效。
     总之,论文对空间绳网系统原理和任务特性进行了系统分析,深入研究了空间绳网系统柔性动力学和刚柔耦合动力学现象,建立了空间绳网任务设计的理论框架,并通过地面原理试验考核验证了空间绳网系统主要机构设计与仿真结果,为空间绳网系统工程研制提供了重要的方法、模型和分析结果。
As the rapid development of space technology and application, on-orbit refueling, maintenance, rescue and space debris handling has become the top issues in space domain, leading the transformation of space systems architecture and space infrastructures development direction. The autonomous and safe capture of a non-cooperative target is an important foundation to solve the above problems and bottlenecks of the key technologies; and is the indication of the development of space technologies. An orbit net capture concept for non-cooperative space target was proposed and related issues were investigated, and dynamic simulations were performed along with a series of ground tests of prototype systems.
     Firstly, based on the analysis of the concept of space capture, different space capture methods were compared to show the features and advantages of the net-capture system. Through the analysis of the process of the net capture mission, a net capture system design was derived. The net-shotting scheme with four weights, an undirected graph method to design net structures of flexible cables, the division of planar net structures and 3D net structures, and mechanical automating net-closing devices, were proposed. Three net capture scenarios were given as a V-bar, an R-bar and an H-bar net capture, with which were some performances indexes of net-capture systems.
     Secondly, the dynamics of net capture systems was divided into the dynamics of rigid bodies and the dynamics of flexible cable structures. A dumped-mass method was utilized to derive a particle system model of the flexible cable structure, which was coupled with the connected rigid bodies to compose the coupling dynamics of the net capture system. A set of algorithms, which form the base of a computer-aid dynamic analysis software of net structures, were given to compute the coupling equations of motion of the systems automatically, with any given structure of net capture systems. Based on the algorithms, object-oriented simulation software was implemented. A primary investigation of the dynamics of impact and contact during the net capture were performed.
     Thirdly, dynamic aspects of planar nets and 3D nets were investigated by simulations. The process of casting of a planar net was concluded as spreading, flying and collapsing. Different mission scenarios, as V-bar, R-bar and H-bar capture, were considered as feasible as the simulations showed. Two design parameters, casting angle and damping ratio, were considered to be crucial to the net capture mission, further simulations and analysis showed opportunities of optimization. The simulation of casting of a 3D net showed that extra control was needed to keep the net structure in an advantageous shape for capturing; a simple control scheme was proved to be effective with simulations.
     Fourthly, the dynamics of ideal cable under impact was investigated to attempt to reveal the cable dynamics behind the collapsing of net structure when casting. The equations of motion for a flexible cable with snatch load acting at its ends are derived from the one-dimension continuum model, which are integrated with the finite difference method to investigate the processes of stress-waves propagating in cables and reflecting at a fixed end or a free end. The stress-waves propagation can reveal the underlying process when the cable changes between slack and tense. The results of stress-waves and energy analysis show the non-linear aspects of stress wave’s propagation due to the physical and geometrical non-linearity of the cable.
     Finally, schemes of net casting ground test and net castings on an aero ship were proposed. The results obtained in ground test and casting on an aero ship show the feasibility of the concept and design of the net capture system, especially the casting device and the net closing device. Dynamic models and simulations are verified with the data collected in ground test.
     To sum up, a systematic investigation of a net capture system was performed, in which the coupling dynamics of flexible cable structure and rigid bodies were modeled and simulated, and which provides a theory framework of the design of net capture systems. Ground tests of the net capture system prototype are important complement of the analysis and the investigation, which build a base to implement the orbit net capture system.
引文
[1] NASA. Satellite Collision Leaves Significant Debris Clouds[C]. Orbital Debris Quarterly News, 2009, 13(2): 1-2. Available at www.orbitaldebris.jsc.nasa.gov
    [2] Barton D K, Brillinger D, El-Shaarawi A H, McDaniel P, Pollock K H, Tuley M T. Final Report of the Haystack Orbital Debris Data Review Panel[R]. NASA TM-4908. 1998
    [3] Liou J C, Matney M J, Anz-Meador P D, Kessler D, Jansen M, Theall J R. The New NASA Orbital Debris Engineering Model ORDEM200[R]. Houston: Johnson Space Center. NASA TP 2002-210780
    [4] Scientific and Technical Subcommittee of the United Nations Committee on the Peaceful uses of Outer Space. Technical Report on Space Debris[R]. New York: United Nations Publication. 1999: 2-14
    [5]林来兴.空间交会对接技术[M].北京:国防工业出版社, 1995: 2-16
    [6]崔乃刚,王平,郭继峰.空间在轨服务技术发展综述[J].宇航学报, 2007, 28(4): 33-39
    [7]翟光,仇越,梁斌.在轨捕获技术发展综述[J].机器人, 2008, 30(5): 467-480
    [8] Cosmo M L, Lorenzini E C. Tethers In Space Handbook[M]. NASA Marshall Space Flight Center, 1997:2-31
    [9] Wikipedia. Space elevator[EB/OL]. http://en.wikipedia.org/wiki/Space_elevator, 2009
    [10] Modi V J, Pradhan S, Chu M, TYC G, Misra A K. Experimental Investigation of the Dynamics of Spinning Tethered Bodies[J]. Acta Astronautica, 1996, 39(7): 487-495
    [11] TiPS Website: hyperspace.nrl.navy.mil/TiPS, 2009
    [12] Alfriend K T, Barnds W J, Coffey S L, Stuhrenberg L M. Attitude and Orbit Determination of a Satellite System[J]. Advances in the Astronautical Sciences, 1995, 90. AAS-95-351
    [13] Barnds W, Coffey S, Davis M, Kelm B, Purdy W. TiPS: Results of a Tethered Satellite Experiment[C]. AAS 97-600.
    [14] Bergamaschi S, Catinaccio A. Further Developments in the Harmonic Analysis of TSS-1[J]. The Journal of Astronautical Sciences, 1992, 40(2):189-201
    [15] Bergamaschi S, Zanetti P, Zottarel C. Nonlinear Vibrations in TSS-1[C]. AIAA-94-3735-CP
    [16] Bergammaschi S, Bonon F, Legnami M. Spectral Analysis of Tethered Satellite System-Mission 1 Vibrations[J]. Journal of Guidance, Control and Dynamics, 1995, 18(3):618-624
    [17] Bergamaschi S, Zanetti P, Zottarel C. Nonlinear Vibrations in the Tethered Satellite System-Mission 1[J]. Jounal of Guidance, Control and Dynamics, 1996, 19(2):289-296
    [18] Bergamaschi S, Stoppato P F L, Volponi F. Non-linear Elasticity in TSS-1 Vibrations[C]. AIAA-96-3586-CP
    [19] Tragesser S G. Formation Flying with Tethered Spacecraft[C]. AIAA 2000-4133. AIAA/AAS Astrodynamics Specialist Conference. 2000
    [20] Tragesser S G, Tuncay A. Orbital Design of Earth-Oriented Tethered Satellite Formations[C]. AIAA 2002-4641. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. 2002
    [21] Pizarro-Chong A, Misra A K. Dynamics of a Multi-Tethered Satellite Formation[C]. AIAA 2004-5308. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. 2004
    [22] Nakaya K. On Attitude Maneuver of Spinning Tethered Formation Flying Based on Virtual Structure Method[C]. AIAA 2005-6088. AIAA Guidance, Navigation, and Control Conference and Exhibit. 2005
    [23] Chung S J, Kong E M. Dynamics and Control of Tethered Formation Flight Spacecraft Using the SPHERES Testbed[C]. AIAA 2005-6089. AIAA 2005-6088. AIAA Guidance, Navigation, and Control Conference and Exhibit. 2005
    [24] Williams P. Optimal Deployment and Offset Control for a Spinning Flexible Tethered Formation[C]. AIAA 2006-6041. AIAA Guidance, Navigation, and Control Conference and Exhibit. 2006
    [25] Williams P. Periodic Optimal Control of a Spinning Earth-Pointing Tethered Satellite Formation[C]. AIAA 2006-6764. AIAA/AAS Astrodynmaics Specialist Conference and Exhibit. 2006
    [26] Chung S J. Nonlinear Model Reduction and Decentralized Control of Tethered Formation Flight by Oscillation synchronization[C]. AIAA 2006. AIAA 2006-6041. AIAA Guidance, Navigation, and Control Conference and Exhibit. 2006
    [27] Vogel K A. Dynamics and Control of Tethered Satellite Formations for the Purpose of Space-Based Remote Sensing[D]. Ohio: Air Force Institute of Technology, 2006: 5-28.
    [28] Eiden M J, Cartmell M P. Overcoming the Challenges: Tether Systems Roadmap for Space Transportation Applications[C]. AIAA 2003-2840. AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Year. 2003
    [29] Stasko S E, Flandro G A. The Feasibility of an Earth Orbiting Tether Propulsion System[C]. AIAA 2004-3901. The 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004
    [30] Bonometti J A, Sorensen K F. 2006 Status of the Momentum eXchangeElectrodynamic Re-boost (MXER) Tether Development[C]. AIAA 2006-4521. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2006
    [31] Sorensen K F. Conceptual Design and Analysis of an MXER Tether Boost Station[C]. AIAA 2001-3915
    [32] In-space Propulsion: Momentum-Exchange Electrodynamic Reboost (MXER) Tether[R]. NASA Technology Summary. FS-2005-05-61-MSFC. 2005
    [33] Hoyt R P, Slostad J T, Frank S S. Momentum Exchange/ Electrodynamic Reboost (MXER) Tether technologies for Low-cost In-space Orbit Transfer[R]
    [34] Kirk F. Sorensen. Momentum eXchange Electrodynamic Reboost (MXER) Tether Tech- nology Assessment Group Final Report[R]. NASA Marshall Space Flight Center, 2003
    [35] GRASP[EB/OL]. http://www.tethers.com/grasp, 2009
    [36] Bremen A S. Robotic Geostationary Orbit Restorer (ROGER) Phase A Final Report[R]. ESA Contract No.: 15706/01/NL/WK, 2003.
    [37] Mankala K K, Agrawal S K. Dynamic Modeling and Simulation of Impact in Tether Net/Gripper systems[Z]. 2004
    [38] Williams P. Spacecraft Rendezvous on Small Relative Inclination Orbits using Tethers[C]. AIAA 2004-5310. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. 2004
    [39] Williams P. Optimal Control of a Tethered Payload Capture Maneuver[C]. AIAA 2005-4114. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference ans Exhibit. 2005
    [40] ZHAI G, YUE Q, LIANG B, LI C. Research and Design of Orbital Net-Capture Robot System[C]. 36th COSPAR Scientific Assembly. 2006
    [41] CHEN Q, YANG L P. Dynamic Modeling and Simulation of Orbital Net-capture Systems[C]. ASTRO 2008, Harnessing Space to Address Global Issues. 2008
    [42] JIANG H, Admas W W, Eby R K.材料科学与技术丛书:高性能聚合物纤维[M].北京:科学出版社, 2009: 532
    [43]师昌绪.材料大词典[M].北京:化学工业出版社, 1998 : 40
    [44] Poole L R, Huckins E K. Evaluation of Massless-Spring Modeling of Suspension-Line Elasticity During the Parachute Unfurling Process[R]. Washington: NASA, 1972. NASA TN D-6671.
    [45] Poole L R, Whitesids J L. Suspension-Line Wave Motion during the line-first parachute unfurling process[J]. AIAA Journal, 1974, 12(1): 38-43
    [46] Etter J R, Hedding L R. An Experimental Investigation of the Longitudinal Dynamics of Long Kevlar Tethers[R]. AIAA-92-4663-CP
    [47] Yozo Fujino, Pennung Warnitchai, B. M. Pacheco. Active Stiffness Control of Cable Vibration[J]. Transaction of the ASME. 1993, 60: 948-953
    [48] Starossek U. Cable Dynamics– A Review[J]. Structural Engineering International. 1994, 3 : 171-176
    [49] Grosenbaugh M A. Low Tension Cable Dynamics and Prediction of Vortex Induced Vibrations of Acousitic Array Cables[R]. Woods Hole, MA 02543: Woods Hole Oceanographic Institution, 1996
    [50] Hobbs R E, Raoof M. Behavior of Cables under Dynamic or Repeated Loading[J]. J. Construct. Steel Res. 1996, 39(1): 31-50
    [51] Canbolat H, Dawson D, Rahn C, Nagarkatti S. Adaptive Boundary Control of Out-of-Plane Cable Vibration[J]. Journal of Applied Mechanics, 1998, 65: 963-969
    [52] Hall J F. Nonlinear waves in strings: The barrage balloon Problem[J].Journal of Applied Mechanics 1998, 65: 141-149
    [53] Nishinari K. Discrete Modeling of a String and Analysis of a Loop Soliton[J]. Journal of Applied Mechanics. 1998, 65: 737-747
    [54] ZHU W D, GUO B Z. Free and Forced Vibration of an Axially Moving String With an Arbitrary Velocity Profile[J]. Journal of Applied Mechanics. 1998, 65: 901-907
    [55]金栋平,文浩,胡海岩.绳索系统的建模、动力学和控制[J].力学进展, 2004, 34(3): 304-313
    [56] ZHU Q, ZENG J, Triantafyllou M S, Yue D K P.Direct Numerial Simulation of Single-Molecule DNA by Cable Dynamics[J]. Journal of Microelectro-mechanical Systems. 2006, 15(5): 1078-1087
    [57] Quisenberry J E, Arena A S. Discrete Cable Modeling and Dynamic Analysis[C]. 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006, Reno, Nevada
    [58] Lacarbonara W, Pacitti A. Nonlinear Modeling of Cables with Flexural Stiffness[J]. Mathematical Problems in Engineering. 2008, 370767
    [59] Buckham B, Nahon M. Dynamics Simulation Of Low Tension Tethers[J]. Oceans `99 MTS/IEEE: Riding the Crest into the 21ST Century, 1999, 1(3): 757-766
    [60] Buckham B, Nahon M, Cote G. Validation of a Finite Element Model for Slack ROV Tethers[C]. Oceans 2000 MTS/IEEE - Where Marine Science and Technology Meet, 2000, 1(3), Conference Proceedings: 1129-1136
    [61] Buckham B, Nahon M, Seto A, Zhao X, Lambert C. Dynamics and Control of a Towed Underwater Vehicle System, Part I: Model Development[J].Ocean Engineering, 30(4): 453-470. 2003
    [62] Lambert C, Nahon M, Buckham B, Seto A. Dynamics and Control of Towed Underwater Vehicle System, Part II: Model Validation and Turn Maneuver Optimization[J]. Ocean Engineering, 30(4): 471-485. 2003
    [63] Buckham B J, Driscoll F R, Nahon M, Radanovic B. Torsional Mechanics in Dynamics Simulation of Low-Tension Marine Tethers[J]. International Journal of Offshore and Polar Engineering, 14(3): 218-226. 2004
    [64] Buckham B, Driscoll F R, Nahon M. Development of a Finite Element Cable Model for Use in Low-tension Dynamics Simulation[J]. Journal of Applied Mechanics-Transactions of the ASME, 71(4): 476-485. 2004
    [65] Buckham B J, Driscoll F R, Nahon M, Radanovic B. Three Dimensional Dynamics Simulation of Slack Tether Motion in an ROV System[C]. Proceedings of the Thirteenth (2003): International Offshore and Polar Engineering Conference, Vol 2: 127-134. 2003
    [66] Soylu S, Buckham, BJ; Podhorodeski, RP. Using Articulated Body Algorithm within Sliding-Mode Control to Compensate Dynamic Coupling in Underwater Manipulator Systems[J]. Transactions of the Canadian Society for Mechanical Engineering, 29(4): 629-643. 2005
    [67] Prabhakar S, Buckham B. Dynamics Modeling and Control of a Variable Length Remotely Operated Vehicle Tether[J]. Oceans 2005, Vols 1-3: 1255-1262. 2005
    [68] Williams P, Sgarioto D, Trivailo P. Optimal Control of an Aircraft-towed Flexible Cable System[J]. Journal of Guidance Control and Dynamics, 29(2): 401-410. 2006
    [69] Williams P. Towing and Winch Control Strategy for Underwater Vehicles in Sheared Currents[J]. International Journal of Offshore and Polar Engineering, 16(3): 218-227. 2006
    [70] Williams P, Trivailo P. Cable-Supported Sliding Payload Deployment from a Circling Fixed-Wing Aircraft[J]. Journal of Aircraft, 43(5): 1567-1570. 2006
    [71] Williams P, Trivailo P. Performance Optimization for a Towed-Cable System with Attached Wind Sock[J]. Journal of Guidance Control and Dynamics, 29(6): 1415-1417
    [72] Williams P. Optimal Terrain-Following for Towed-Aerial-Cable Sensors[J]. Multibody System Dynamics, 16(4): 351-374. 2006
    [73] Williams P, Trivailo P. Dynamics of Circularly Towed Cable Systems, Part 1: Optimal Configurations and Their Stability[J]. Journal of Guidance Control and Dynamics, 30(3): 753-765. 2007
    [74] Williams P, Trivailo P. Dynamics of Circularly Towed Cable Systems, Part 2: Transitional Flight and Deployment Control[J]. Journal of Guidance Control and Dynamics, 30(3): 766-779 MAY-JUN 2007
    [75] Williams P, Sgarioto D, Trivailo P M. Constrained Path-Planning for an Aerial-Towed Cable System[J]. Aerospace Science and Technology, 12(5): 347-354 JUL 2008
    [76] Krehl P, Engemann S, Schwenkel D. The Puzzle of Whip Cracking– Uncovered by a Correlation of Whip-Tip Kinematics with Shock Wave Emission[J]. Shock Wave, 1998, 8:1-9
    [77] Myhrvold N P, Currie P J. Supersonic Sauropods? Tail Dynamics in theDiplodocids[J]. Paleobiology, 1997, 23(4): 393-409
    [78] Goriely A, McMillenm T. Shape of Cracking Whip[J]. Physical Review Letters. 2002, 88(24): 244301-1:4
    [79] Taft J. The Propagation of Waves Through a Cracking Whip[Z]
    [80]宋旭民.大型降落伞系统动力学建模及抽鞭现象研究[D].长沙:国防科学技术大学, 2006.10
    [81] Misra A K, Modi V J. A Servey on the Dynamics and Control of Tethered Satellite Systems[C]. Tethers in Space, Advances in Astronautical Sciences. AAS 1987, 62:667-719
    [82] Carter J T, Greene M. Deployment and Retrieval Simulation of a Single Tether Satellite System[J]. IEEE 1988, 657-660
    [83] Kim E, Vadali S R. Modeling Issues Related to Retrieval of Flexible Tethered Satellite Sytems[C]. AIAA-92-4661-CP, 650-660
    [84] Takeichi N, Natori M C. Dynamics Behaviour of a Tethered System with Multi-Sub-Satellites in Elliptic Orbits. AIAA-2000-1776
    [85] Westerhoff J. Orbital Propagation of Spinning Momentum Exchange Tether Systems[C]. AIAA-2002-3898
    [86] Chapel J D, Grosserode P. Precession and Circularization of Elliptical Space-Tether Motion[C]. AIAA-93-3716-CP, 147-156
    [87] Matunaga S, Mori O, Ohkami Y. Dynamics of Tethered Multibody Systems with Friction and Impact[C]. AIAA-980-4130, 278-285
    [88] Rossi E V, Cicci D A. Existence of Periodic Motions of a Tether Trailing Satellite[C]. AIAA-2000-4347
    [89] Cartmell M P, Ziegler S W. Terrestrial Scale Model Testing of A Motorised Propulsion Tether[C]. AIAA-2000-3612
    [90] Cartmell M P, Ziegler S W. Experimental Scale Model Testing of a Motorised Momentum Exchange Propulsion Tether[C]. AIAA-2001-3914
    [91]于绍华,刘强,杨林娜.绳系卫星系统二维平面运动和常规动力学[J].宇航学报, 2000(4)
    [92]朱仁璋,雷达,林华宝.绳系卫星系统复杂模型研究[J].宇航学报, 1999(3)
    [93]朱仁璋,林华宝.论绳系卫星系统的运动中心[J].中国空间科学技术, 1998(5)
    [94]顾晓勤,谭朝阳. Hohmann转移释放绳系卫星的方法研究[J].力学与实践, 1998(6)
    [95]顾晓勤.绳系卫星释放及工作态动力学分析[J].空间科学学报, 2002(2)
    [96]顾晓勤.圆及椭圆轨道释放绳系子星的方法研究[J].空间科学学报, 2002(3)
    [97]王聪,姜兴谓,黄文虎.低轨道绳系卫星展开过程仿真分析[J].高技术通讯, 2003(5)
    [98]苟兴宇,马兴瑞,邵成勋.绳系卫星研究概况[J].航天器工程, 1995(4)
    [99]崔乃刚.绳系卫星动力学与控制及应用研究[D].哈尔滨:哈尔滨工业大学, 1996
    [100] Jozef C V D H. Orbital and Relative Motion of a Tethered Satellite System[J]. Acta Astronautica, 1995, 12(4): 207-211.
    [101] Mankala K K, Agrawal S K. Dynamic Modeling and Simulation of Satellite Tethered Systems[C]. Proceedings of ASME DETC-2003, 19th Biennial conference on Mechanical Vibration and Noise, 2003
    [102] Rajan M, Anderson T J. Frist Integrals of Motion in the Dynamics of Tethered Satellite[J]. The Journal of the Astronautical Sciences, 1986, 34(3): 331-339
    [103] Humble R W. Tow Dimensional Tethered Satellite Attitude Dynamics[J]. The Journal of the Astronautical Sciences, 1990, 38(1): 21-27
    [104] Modi V J, Misra A K. Orbital Perturbations of Tethered Satellite Systems[J]. The Journal of the Astronautical Sciences, 1977, 25(3): 271-278
    [105] Misra A K, XU D M, Modi V J. On Vibrations of Orbital Tethers[J]. Acta Astronautica, 1986, 13(19): 587-597
    [106] Neustadt M, Ericksen R E. A Parachute Recovery System Dynamic Analysis[J]. Journal of Spacecraft, 1967, 4(3): 321-326
    [107] White F M, Wolf D F. A Theory of Three Dimensional Parachute Dynamic Stability[J]. Journal of Aircraft, 1968, 5(1): 86-92
    [108] Wolf D F. The Dynamic Stability of a Nonrigid Parachute and Payload Analysis[J]. Journal of Aircraft, 1971, 8(8): 603-609
    [109] Pillasch D W, Shen Y C. Parachute/submunition System Coupled Dynamics[R]. AIAA-84-0798. 1984.
    [110] Vishnyak A. Parachute Simulations for Ariane-5 Booster Recovery System Design[R]. AIAA-95-1593. 1995
    [111] Vergnolle J F, Astorg J M. Dynamic Stability of a Capsule-drogue Assembly during the Re-entry[R]. AIAA-91-0878-CP. 1991
    [112] Queen E M, Raiszadeh B. Mars Smart Lander Parachute Simulation Model[R]. AIAA 2002-4616
    [113]张青斌.载人飞船降落伞回收系统动力学研究[D].长沙:国防科学技术大学, 2003
    [114]熊菁.翼伞系统动力学及归航方案研究[D].长沙:国防科学技术大学, 2005
    [115] Idris K, Leonard J W, Yim S C S. Coupled Dynamics of Tethered Buoy Systems[J]. Ocean Engineering, 1997, 24(5): 445-464
    [116] Williamson C H K, Govardhan R. Dynamics and Forcing of a Tethered Sphere in a Fluid Flow[J]. Journal of Fluids and Structures, 1997, 11, 293-305
    [117] Stanney K A, Rahn C D. Response of a Tethered Aerostat to SimulatedTurbulence[J]. Communications in Nonlinear Science and Numerical Simulation, 2006, 11: 759-776
    [118] Chandrasekaran S, Chandak N R, Anupam G. Stability Analysis of TLP Tethers[J]. Ocean Engineering, 2006, 33: 471-482
    [119] Schuch E M. Towfish Design, Simulation and Control[D]. Virginia: Virginia Polytechnic Institute and State University, 2004
    [120] Gilbert E G, Johnson DW, Keerthi S S. A fast procedure for computing the distance between complex objects in three-dimensional space[J]. IEEE Journal of Robotics and Automation, 1988, 4(2):193–203
    [121] C. J. Ong and E. G. Gilbert. The Gilbert-Johnson-Keerthi distance algorithm:A fast version for incremental motions[C]. Proc. IEEE Int. Conf. on Robotics and Automation, 1997, 1183–1189
    [122] Heckbert P, Graphics Gems[M]. Boston: Academic Press, 1994, 83–109
    [123] SWIFT websit[EB/OL]. http://www.cs.unc.edu/geom/SWIFT/
    [124]冯登泰.接触力学的发展概况[J ] .力学进展, 1987 ,17 (4) :431-443
    [125] Sienkiewicz F , Shukla A , Sadd M. A combined experimental and numerical scheme for the determination of contact loads between cemented particles[J] . Mechanics of Materials ,1996 ,22 (1) :43-50.
    [126] Wang Y, Mason M T. Two-Dimensional Rigid-Body Collisions With Friction[J]. Journal of Applied Mechanics, 1992, 59: 536-642
    [127] Ciavarella M. Tangential Loading of General Tree-Dimensional Contacts[J]. Transactions of ASME, 1998, 65: 998-1003
    [128]秦志英,陆启韶.基于恢复系数的碰撞过程模型分析[J].动力学与控制学报, 2006, 4(4): 294-298
    [129]赵永武,吕彦明,蒋建忠.新的粗糙表面弹塑性接触模型[J].机械工程学报, 2007, 43(3): 95-101
    [130]沈凌杰,郭其威,刘锦阳,余征跃.柔性梁线接触碰撞的动力学建模和实验研究[J].动力学与控制学报, 2007, 5(2): 147-152
    [131]刘小虎,佘锦炎,王乘.以优化方法求解布料无摩擦接触变形问题[J].固体力学学报, 2005, 26(4): 482-484
    [132]彼得·艾伯哈特,胡斌.现代接触动力学[M].东南大学出版社,2003
    [133] Donald Hearn, M. Pauline Baker.计算机图形学[M].北京:电子工业出版社, 2002: 237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700