浙江天童受损常绿阔叶林恢复动态及主要树种适应策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常绿阔叶林是我国东部地带性自然植被,但长期的人为干扰导致面积日益减少,处于严重受损退化状态。并且由于干扰方式、程度各不相同,导致退化类型多样。因此,为了控制退化,加快恢复,急需阐明不同干扰下,受损常绿阔叶林恢复过程和机制。
     本研究采用实验生态学方法,于2003年10月在浙江天童国家森林公园以米槠-木荷群落为对象,模拟区域不同干扰,以4种方式进行采伐:①在样地Ⅰ中对高度大于8m,DBH大于5cm的大树进行择伐;②在样地Ⅱ中将地上植物全部清除,保留枯枝落叶层;③在样地Ⅲ中:清除地上全部植物,并清除枯枝落叶层和表土层(0-10cm);④在样地Ⅳ中仅清除下木层和草本层,保留大树。
     本文在前人研究的基础上,继续对群落物种组成、群落结构、生境因子进行定位追踪调查(2006-2008年),以期归纳总结植物群落恢复初期(5年)的恢复动态过程,判明其恢复格局。并从主要树种迁居方式、生长格局、繁殖策略方面,结合叶性状、构型等多层次,对恢复初期主要树种的生态适应策略的探讨,以期解析植被恢复的驱动力、限制因子,从而阐明恢复初期格局的形成机制,为受损常绿阔叶林的恢复提供理论依据。主要结论如下:
     (1)不同干扰下植物群落物种丰富度在恢复5年内均迅速增加,并高于干扰前顶级群落的数量。前期表现为破坏严重的样地中呈现指数增长,第3年达到高峰,并出现拐点。5年后干扰轻的样地中物种数最高。
     (2)不同干扰样地内生活型组成改变显著。恢复1年以一年生、多年生草本为主,木本植物以落叶阔叶树种为主,而且随着干扰程度的增加而增加。随着恢复进展,群落分层逐渐形成,落叶树种优势度下降,常绿树种增加。至恢复5年,清除了植被,甚至去除了表土的样地上落叶阔叶树——南酸枣(Choerospondiasaxiliaris)和檫木(Sassafras tzumu)已高达6.5-7m。
     (3)在前人研究的基础上,根据物种在恢复过程中出现和消失的情况,把各物种分为:维持种、消失种、迁入种和一过性物种。同时研究了不同干扰样地内木本植物种子散布方式和更新类型,得出强度干扰样地内恢复初期风力传播种子较多,常绿萌枝更新比例最高。常绿树种强大的萌枝能力,使得在受损群落恢复初期即出现顶级树种。
     (4)对恢复初期不同程度干扰样地内光、空气和土壤温湿度、土壤化学性质的测定,以及植物群落恢复初期格局,可将受损常绿阔叶林恢复划分为四种恢复类型。①更新促进型(样地Ⅰ),去除乔木层后光照的增加使得林下米槠、石栎等常绿阔叶树种得到释压而迅速生长。②更新抑制型(样地Ⅳ),林下植被的去除导致耐荫蕨类的大量繁殖,并占有很大优势,阻碍了木本植物的更新和生长。③演替进展型(样地Ⅱ),充足的光照,丰富的外来种源、原有物种的萌枝库、土壤种子库以及良好的土壤条件,使得群落迅速进入次生演替过程。④演替迟滞型(样地Ⅲ),枯枝落叶层和表土层的去除导致种子库的破坏以及土壤养分的贫瘠,从而抑制了部分先锋物种的定居,或生长、繁殖,物种丰富度低于其他样地,且恢复速率明显落后于样地Ⅱ。受损常绿阔叶林恢复初期四种不同恢复格局的出现,为本地区存在“多途径演替”假说提供了成因论方面的佐证。
     (5)对恢复过程中的两大种组:迁入种和维持种中7个主要树种(迁入种中选择落叶的山鸡椒(Litsea cubeba)、檫木和南酸枣,维持种以常绿的木荷(Schimasuperba)、石栎(Lithocarpus glaber)、米槠(Castanopsis carlesii)和栲树(Castanopsisfargesii)为研究对象)的数量动态、空间分布格局,以及高生长轨迹的测定,得出干扰生境中以落叶树种为主的迁入种分布范围的扩大和种群数量的增加均大于常绿树种,且与种子重量和传播方式有关;对以常绿树种为主的维持种而言,干扰后种群大小主要取决于干扰前种群大小和萌枝能力。迁入种早期生长速率大于维持种。
     (6)在恢复初期高生长速率是占据优势的重要途径,对恢复初期7个主要树种叶性状(包括最大净光合速率、比叶面积、叶氮磷含量)和构型的测定和分析,以期从树种转化光能以及获取光能两方面对树种的生长速率进行解释。结果表明:以落叶树种为主的迁入种具有高光转化能力,并对枝系结构的投入较低,具有简单的枝系结构、扁平的树冠,而将资源投资于枝条的生长,即采取高获取低消耗的积极型生存策略,是对光照充分环境长期适应的结果,这保证落叶树种在恢复初期的竞争优势。以常绿树种为主的维持种具有低的光转化能力,并对枝系结构的投入较高,具有复杂的枝系结构、宽厚的树冠,而对枝条生长的投资较少,即采取低获取高消耗的保守型生存策略,是对郁闭环境长期适应的结果,这使得其在恢复初期高生长速率较低,但是常绿树种成为后期优势种和林内伴生种的手段。
     (7)干扰强度和方式的不同导致资源可利用率的变化,从而对植物叶性状和构型产生影响。其中,光照和土壤养分是主要的环境因子。在干扰轻的郁闭生境中,植物最大光合速率较低,植物倾向于形成大而薄的叶片、低分枝率、较小枝叶倾角、短枝条、平展的树冠以扩大截收光照的面积并减少自身维持的消耗,从而形成矮小的植株。随着干扰程度的增加,光照强度的增加,使得植物最大光合速率增加,同时形成小而厚的叶片,增加叶倾角以防止强光伤害。植株密度是影响植物构型的另一主要因素。在清除植被的干扰样地中,由于高的植株密度使得树种形成较高的分枝率、大枝倾角、长枝条、窄小的树冠,以快速生长而摆脱受压状态。植物叶性状和构型与干扰样地恢复格局相对应,有效的解释了植被恢复机制。
     (8)对各干扰样地中长期发展预测,得出清除植被并去表土的干扰样地可能将比仅清除植被的干扰样地更早进入顶级群落阶段。这可能是由于土壤的贫瘠导致落叶树种高生长较为缓慢,而常绿萌生植株由于丰富的地下碳水化合物、矿物质营养的积累,保证其快速生长,从而可跨越常绿落叶混交林阶段而直接进入常绿阔叶林阶段。
Evergreen broad-leaved forest (EBLF) is a zonal forest ecosystem of Eastern China. Under the long-term, frequent disturbance of human activities, most of EBLF have been deteriorated to many degradation types, such as secondary forests, secondary shrub communities, and shrub-grassland, even to bare lands. It is very important to learn the restoration process and mechanism of EBLF following different disturbance levels.
     The study site is located in Tiantong National Forest Park (TNFP, 29°53'N, 121°39'E), Zhejiang Province, Eastern China, several kilometers inland from the East China Sea. Five 20 m×20 m plots, at 260m above sea level, with a 25-30°slope, were established within TNFP, in October, 2003. The main composition of the community was evergreen broad-leaved species of Fagaceae, Camellia, and Symplocaceae and was dominated by Schima superba, Castanopsis carlesii and Lithocarpus glaber. Four plots were disturbed by diversity treatments according to the common natural or artificial disturbance types of this area, and the other was free of disturbances. The four treatments were: PlotⅠ, removal of the aboveground canopy trees over 8 m, to simulate canopy gaps caused by selective logging or a typhoon; PlotⅡ, removal of vegetation that simulated clear-cutting; PlotⅢ, removal of vegetation, litter and the topsoil (0-10 cm) layer to represented landslides or mining disturbances; PlotⅣ, removal of the understorey vegetation below 8 m, which is standard forestry management practice. PlotⅤwas left undisturbed.
     Long-term monitoring investigations of floristic composition, community structures, and habitat factors were carried out sequentially (2006-2008) to clarify the restoration pattern and dynamics of vegetation in different degradation plots. From the invading, growing and regenerating stage, combining leaf traits and crown architecture of main woody species, the restoration mechanism of destroyed EBLF was tempted to discuss.
     The main results as follows:
     (1) Species richness of disturbed plots increased sharply during the 5 years after disturbance and was higher than the richness of the pre-disturbance plot. The richness increased exponentially in the early stage, reached the summit in the 3~(rd) year after disturbance, and followed the inflexion. The richness was higher in the plot with light disturbance.
     (2) The life-form was changed significantly in disturbed plots. The annual and perennial herb dominated in the 1~(st) year after disturbance. Wood species was maily composed of deciduous broad-leaved trees, whose numbers increased along disturbance levels. As the process of restoration, the stratification was formed with the decreasing domination of deciduous broad-leaved species and increasing domination of evergreen broad-leaved species. In the 5~(th) year after disturbance, Choerospondias axiliaris and Sassafras tzumu in the plot removal of vegetation and even removal litter and the topsoil reached the height of 6.4 and 7 m respectively.
     (3) On the base of previous research, according to the appearance and disappearanceof species, we divided the species in each destroyed plot into 4 species groups, residual species, disappeared species, invading species and once-appeared species. In the early stage of restoration, the species in heavy disturbed plots were mainly dispersed by wind, and the ratio of resprouting individual of evergreen broad-leaved trees was the highest. Due to the strong ability of resprouting, the climax sepceis appeared in the early stage of restoration.
     (4) According to the photosynthetic photon flux density, air and soil temperature and moisture, soil chemistry characteristics, and the restoration pattern following different disturbance levels, the destroyed plots could be divided to 4 types. 1)Accelerated regeneration (plotⅠ), the evergreen broad-leaved species and shrub species understory grew rapidly after the remove of canopy layer. 2)Restrained regeneration (plot IV), the remove of understory leaded to the regeneration of fern, but its predominance restrained the regeneration and growth of woody plants. 3)Progressive succession (plotⅡ), perfect soil and light condition, abundant seed resources, resprouting and soil seed bank accelerated the succession. 4)Delayed succession (plotⅢ), poor soil nutrient and destroyed soil seed bank limited some pioneer species distribution and growth, the restoration rate of vegetation was slowly. The 4 restoration types proved the multi-approach succession in this region.
     (5) The number dynamic, spatial distribution, and height-growth trajectories of 7 main tree species of the main species group, invading species and residual species, were studied to discuss mechanisms of pattern and dynamics of the initial stage of restoration. The invading species included decidous broad-leaved Litsea cubeba, Sassafras tzumu and Choerospondias axiliaris. The residual species included evergreen broad-leaved Schima superba, Lithocarpus glaber, Castanopsis carlesii and Castanopsis fargesii. The results shown that, the distribution and number of invading species were higher than residual species, which were related with seed mass and dispersal type. For residual species, the population deponded on the pre-disturbed population and the resprouting ability. The height gowth of invading species was higher than residual species.
     (6) Fast height growth was an important aspect of the dominantion at the early stage of restoration. Therefore, leaf traits (including the the maximum of net photosynthesis based on area (Amax), specific leaf area (SLA), leaf nitrogen and phosphor content (N, P)) and crown architecture of 7 main species were analysed to explain the height growth pattern via the light transform and capture. The results shown that, the decidous invading species had high ability of light transformation, and simple crown architecture, flat-shaped crown with low investment, while high invested in the branch growth. The acclimation to strong light condition ensured the dominance of deciduous broad-leaved species at the early stage of restoration. The evergreen residual species had low ability of light transformation, and complex crow architecture, deep crown with high investment, while low invested in the branch growth. The acclimation to shade condition made the slow height growth of evergreen broad-leaved species at the early stage of restoration, but it was the powerful instrument to become the dominant species or the understory companion species at the late stage of restoration.
     (7) The intensity and type of disturbance caused the change of resource availability, which affected the leaf trait and crown architecture. Light and soil nutrition were the main environmental fators. In light disturbed plot with shade condition, plant owned low Amax, large and thin leaflet, low bifurcation ratio, small branch and leaf angle to horizon, short branch and flat crown to enlarge photosynthetic area and cut down consume of self-maintenance, then forming the short individual. Along the disturbance level, light increased, and plant had higher Amax, small and thick leaflet and large branch and leaf angle to horizon, which benefited the fast growth and self-protection under strong light. Individual density was another factor affecting the crown architecture. In the plot of vegetation removal, the high individual density caused the higher bifurcation ratio, the larger branch angle to horizon, longer branch length and narrow crown, which benefited growing fast and increasing competitiveness for light. The correspondence of leaf trait, crown architecture and restoration type explained effectively the mechanism of restoration.
     (8) The middle-long term prediction of the future trajectory of each destroyed community shown that, the plot removal of vegetation, litter and the topsoil would enter the climax stage early than the plot only removal of vegetation. It might because the poor soil caused the slow growth of deciduous broad-leaved species, while the powerful accumulation of nutrition of the resprouting individual of evergreen broad-leaved species ensured the fast growth. It would make the destroyed vegetation span the deciduous and evergreen broad-leaved forest.
引文
[1] Aiba M. & Nakashizuka T. (2005) Sapling structure and regeneration strategy in 18 Shorea species co-occurring in a tropical rainforest. Annals of Botany 96:313-321.
    
    [2] Alonso C. & Herrera C. M. (1996) Variation in herbivory within and among plants of Daphne laureola (Thymelaeaceae): Correlation with plant size and architecture. Journal of Ecology 84: 495-502.
    [3] Armesto J., Mitchell J. & Villagran C. (1986) A comparison of spatial patterns of trees in some tropical and temperate forests. Biotropica 18:1-11.
    [4] Baniya C. B., Solhoy T. & Vetaas 0. R. (2009) Temporal changes in species diversity and composition in abandoned fields in a trans-Himalayan landscape,Nepal. Plant Ecology 201: 383-399.
    [5] Bellingham P. J. (2000) Resprouting as a life history strategy in woody plant communities. Oikos 89:409-416.
    [6] Bond W. & Midgley J. (2003) The evolutionary ecology of sprouting in woody plants. International journal of plant science 163:103-114.
    [7] Borchert R. & Slade N. A. (1981) Bifurcation ratios and the adaptive geometry of trees. Botanical Gazette 142:394-401.
    [8] Brokaw N. (1985) Tree falls, regrowth and community structure in tropical forests. Academic Press, Orlando, FL, USA.
    [9] Canadell J. & Lopez-Soria L. (1998) Lignotuber reserves support regrowth following clipping of two Mediterranean shrubs. Functional Ecology 12: 31-38.
    [10] Canham C. & Marks P. (1985) The response of woody plants to disturbance:patterns of establishment and growth. Academic Press, London.
    
    [11] Clarke P. J., Knox K. J. E., Wills K. E. & Campbell M. (2005) Landscape patterns of woody plant response to crown fire: disturbance and productivity influence sprouting ability. Journal of Ecology 93: 544-555.
    
    [12] Clements F. (1936) Nature and structure of the climax. Journal of Ecology 24:252-284. doi:210.2307/2256278.
    [13] Collins S. L., Glenn S. M. & Gibson D. J. (1995) Experimental-Analysis of Intermediate Disturbance and Initial Floristic Composition - Decoupling Cause and Effect. Ecology 76: 486-492.
    [14] Connell J. (1978) Diversity in tropical rain forest and coral reefs. Science 199:1302-1310.
    [15] Cruz A. & Moreno J. M. (2001) Seasonal course of total non-structural carbohydrates in the lignotuberous Mediterranean-type shrub Erica australis.Oecologia 128: 343-350.
    [16] Cruz A., Perez B. & Moreno J. M. (2003) Plant stored reserves do not drive resprouting of the lignotuberous shrub Erica australis. New Phytologist 157:251-261.
    [17] Diaz S., Hodgson J. G., Thompson K., Cabido M., Cornelissen J. H. C., Jalili A.,Montserrat-Marti G, Grime J. P., Zamnkamar F., Asri Y., Band S. R., Basconcelo S., Castro-Diez P., Funes G., Hamzehee B., Khoshnevi M.,Perez-Harguindeguy N., Perez-Rontome M. C., Shirvany F. A., Vendramini F.,Yazdani S., Abbas-Azimi R., Bogaard A., Boustani S., Charles M., Dehghan M.,de Torres-Espuny L., Falczuk V., Guerrero-Campo J., Hynd A., Jones G.,Kowsary E., Kazemi-Saeed F., Maestro-Martinez M., Romo-Diez A., Shaw S.,Siavash B., Villar-Salvador P. & Zak M. R. (2004) The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science 15:295-304.
    [18] Diaz S., McIntyre S., Lavorel S. & Pausas J. G. (2002) Does hairiness matter in Harare? Resolving controversy in global comparisons of plant trait responses to ecosystem disturbance. New Phytologist 154: 7-9.
    [19] Donohue K., Foster D. R. & Motzkin G. (2000) Effects of the past and the present on species distribution: land-use history and demography of wintergreen.Journal of Ecology 88: 303-316.
    [20] Egler F. (1954) Vegetation science concepts I . Initial floristic composition-a factor in old-field vegetation development. Vegetatio 4:412-417.
    [21] Ellsworth D. S. & Reich P. B. (1996) Photosynthesis and leaf nitrogen in five Amazonian tree species during early secondary succession. Ecology 77:581-594.
    [22] Ellsworth J. W., Harrington R. A. & Fownes J. H. (2004) Seedling emergence,growth, and allocation of Oriental bittersweet: effects of seed input, seed bank,and forest floor litter. Forest Ecology and Management 190:255-264.
    [23] Evans J. (1989) Photosynthesis and nitrogen relationships in leaves of C_3 plants.Oecologia 78: 9-19.
    [24] Fernandez-Palacios J. M. & Arevalo J. R. (1998) Regeneration strategies of tree species in the laurel forest of Tenerife (The Canary Islands). Plant Ecology 137:21-29.
    [25] Fladung M., Nowitzki O., Ziegenhagen B., Kumar S. (2003). Vegetative and generative dispersal capacity of field released transgenic aspen trees. Trees 17:412-416.
    [26] Gonzalez-Real M. M. & Bailie A. (2000) Changes in leaf photosynthetic parameters with leaf position and nitrogen content within a rose plant canopy (Rosa hybrida). Plant Cell and Environment 23: 351-363.
    [27] Guariguata M. R. & Dupuy J. M. (1997) Forest regeneration in abandoned logging roads in lowland Costa Rica. Biotropica 29: 15-28.
    [28] Halle F., Oldeman R. & Tomlinson P. (1978) Tropical trees and forests, an architecture analysis. Springer-Verlag, Berlin.
    [29] Han W. X., Fang J. Y, Guo D. L. & Zhang Y. (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist 168: 377-385.
    [30] Horn J. S. (1979) Adaptation from the perspective of optimality. In: Solbrig, O.T. et al. eds. Topics in plant population biology. Columbiauniv. Press, New York.p48-61.
    [31] Johnson P. S. (1993) Perspectives on the ecology and silviculture of oak-dominated forests in the Central and Eastern State. USDA For. Serv. Gen.Tech.Rep.NC-153.p28.
    [32] K(?)ppers M. (1989) Ecological significance of above ground architectural patterns in woody plants: a question of cost-benefit relationships. Trends in Ecology & Evolution 4: 375-379.
    [33] Kenkel N. C, Hendrie M. L. & Bella I. E. (1997) A long-term study of Pinus banksiana population dynamics. Journal of vegetation science 8.
    [34] Kinloch J. E. & Friedel M. H. (2005) Soil seed reserves in arid grazing lands of central Australia. Part 1: seed bank and vegetation dynamics. Journal of Arid Environments 60: 133-161.
    [35] Kitazawa T. & Ohsawa M. (2002) Pattern of speceis diversity in rural herbaceous communities under different management regimes, Chiba, central Japan. Biological Conservation 104:239-249.
    [36] Lara D. P., Oliveira L. A., Azevedo I. F. P., Xavier M. F., Silveira F. A. O.,Carneiro M. A. A. & Fernandes G. W. (2008) Relationships between host plant architecture and gall abundance and survival. Revista Brasileira De Entomologia 52: 78-81.
    [37] Lavorel S., McIntyre S., Landsberg J. & Forbes T. D. A. (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution 12:474-478.
    [38] Lee D. W., Baskaran K., Mansor M., Mohamad H. & Yap S. K. (1996) Irradiance and spectral quality affect Asian tropical rain forest tree seedling development. Ecology 77: 568-580.
    [39] Lima J. D., Mosquim P. R. & Da Matta F. M. (1999) Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phosphorus deficiency. Photosynthetica 37:113-121.
    [40] McGill B. J., Enquist B. J., Weiher E. & Westoby M. (2006) Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21:178-185.
    [41] Michael A. J. (1998) The response of plant communities to human disturbance in Southern Indiana Forests. Doctor thesis. Purdue University, West Lafayette.
    [42] Nakamura A., Morimoto Y. & Mizutani Y. (2005) Adaptive management approach to increasing the diversity of a 30-year-old planted forest in an urban area of Japan. Landscape and Urban Planning 70: 291-300.
    [43] Nepstad D. C, Uhl C., Pereira C. A. & daSilva J. M. C. (1996) A comparative study of tree establishment in abandoned pasture and mature forest of eastern Amazonia. Oikos 76: 25-39.
    [44] Niering W. A. (1953) The past and present vegetation of High Point State Park,New Jersey. Ecological Monographs 23:127-148.
    [45] Niinemets U., Portsmuth A., Tena D., Tobias M., Matesanz S. & Valladares F.(2007) Do we underestimate the importance of leaf size in plant economics?Disproportional scaling of support costs within the spectrum of leaf physiognomy. Annals of Botany 100: 283-303.
    [46] Noble I. & Dirzo R. (1997) Forests as human-dominated ecosystems. Science 277: 522-525.
    [47] Ohsawa M. (1984) Differentiation of vegetation zones and species strategies in the subalpine region Mt. Fuji. Vegetatio 57: 15-52.
    [48] Oosting H. (1942) An ecological analysis of the plant communities of Piedmont,North Carolina. American midland naturalist 28: 1-126.
    [49] Otero-Arnaiz A., Castillo S., Meave J. & Ibarra-Manriquez G. (1999) Isolated pasture trees and the vegetation under their canopies in the Chiapas Coastal Plain, Mexico. Biotropica 31: 243-254.
    [50] Oyugi J. O., Brown J. S. & Whelan C. J. (2008) Effects of human disturbance on composition and structure of Brachystegia woodland in Arabuko-Sokoke Forest,Kenya. African Journal of Ecology 46: 374-383.
    [51] Peltzer D. A., Bast M. L., Wilson S. D. & Gerry A. K. (2000) Plant diversity and tree responses following contrasting disturbances in boreal forest. Forest Ecology and Management 127: 191-203.
    [52] Phillips O., Hall P., Sawyer S. & Vasquez R. (1997) Species richness, tropical forest dynamics, and sampling: Response. Oikos 79:183-187.
    [53] Poorter H., Pepin S., Rijkers T., de Jong Y., Evans J. R. & Korner C. (2006) Construction costs, chemical composition and payback time of high- and low-irradiance leaves. Journal of Experimental Botany 57: 355-371.
    [54] Preston K. A. (1999) Can plasticity compensate for architectural constraints on reproduction? Patterns of seed production and carbohydrate translocation in Perilla frutescens. Journal of Ecology 87: 697-712.
    [55] Pujol B., Salager J. L., Beltran M., Bousquet S. & McKey D. (2008) Photosynthesis and leaf structure in domesticated cassava (Euphorbiaceae) and a close wild relative: Have leaf photosynthetic parameters evolved under domestication? Biotropica 40: 305-312.
    [56] Rees M., Condit R., Crawley M., Pacala S. & Tilman D. (2001) Long-term studies of vegetation dynamics. Science 293: 650-655.
    [57] Reich P. B., Buschena C, Tjoelker M. G, Wrage K., Knops J., Tilman D. & Machado J. L. (2003) Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: a test of functional group differences. New Phytologist 157: 617-631.
    [58] Reich P. B., Walters M. B., Ellsworth D. S., Vose J. M., Volin J. C., Gresham C.& Bowman W. D. (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.Oecologia 114: 471-482.
    [59] Restrepo C. & Alvarez N. (2006) Landslides and their contribution to land-cover change in the mountains of Mexico and Central America. Biotropica 38:446-457.
    [60] Rudgers J. A. & Whitney K. D. (2006) Interactions between insect herbivores and a plant architectural dimorphism. Journal of Ecology 94:1249-1260.
    [61] Rydgren K., Okland R. H. & Hestmark G. (2004) Disturbance severity and community resilience in a boreal forest. Ecology 85:1906-1915.
    [62] Sagar R., Raghubanshi A. S. & Singh J. S. (2003) Tree species composition, dispersion and diversity along a disturbance gradient in a dry tropical forest region of India. Forest Ecology and Management 186: 61-71.
    [63] Seino T. (1998) Intermittent shoot growth in saplings of Acanthopanox sciadophylloides (Araliaceae). Annals of Botany 81: 535-543.
    [64] Silvertown J., Poulton P., Johnston A. & al e. (2006) The Park Grass Experiment 1856 - 2006: Its Contribution to Ecology. Journal of Ecology 94: 801-814.
    [65] Singh J. (2002) The biodiversity crisis: a multifaceted review. Curr Sci 82:638-647.
    [66] Steingraeber D. A. (1979) Variation of shoot morphology and bifurcation ratio in sugar maple (Acer saccharum) saplings. American Journal of Botany 66:441-445.
    [67] Steingraeber D. A. (1982) Phenotypic plasticity of branching patterns in sugar maple (Acer saccharum) American Journal of Botany 69: 638-640.
    [68] Steingraeber D. A. & Waller D. M. (1986) Non-stationarity tree branching patterns and bifurcation ratios. Proceedings of the Royal Society of London B228: 187-194.
    [69] Takahashi K. (1996) Plastic response of crown architecture to crowding in understory trees of two co-dominating conifers. Annals of Botany 77:159-164
    [70] Takahashi K., Mitsuishi D., Uemura S., Suzuki J. I. & Hara T. (2003) Stand structure and dynamics during a 16-year period in a sub-boreal conifer-hardwood mixed forest, northern Japan. Forest Ecology and Management 174: 39-50.
    [71] Takashima T, Hikosake K, Hirose T. (2004) Photosynthesis or persistence nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell and Environment 27:1047-1054.
    [72] Toniato M. T. Z. & de Oliveira-Filho A. T. (2004) Variations in tree community composition and structure in a fragment of tropical semideciduous forest in southeastern Brazil related to different human disturbance histories. Forest Ecology and Management 198: 319-339.
    [73] Turner M. & Dale V. (1990) Modelling landscape disturbance. Ecological studies: Analysis and Synthesis 82: 323-352.
    [74] Uhl C. & Jordan C. (1984) Succession and Nutrient Dynamics Following Forest Cutting and Burning in Amazonia. Ecology 65:1476-1490.
    [75] Vazques-Yanes C. & Orazco-Segovia A. (1993) Patterns of seed longevity and germination in the tropical rainforest. Annual Review of Ecology and Systematics 24: 69-87.
    [76] Velazquez E. & Gomez-Sal A. (2008) Landslide early succession in a neotropical dry forest. Plant Ecology 199: 295-308.
    [77] Vendramini F., Diaz S., Gurvich D. E., Wilson P. J., Thompson K. & Hodgson J.G. (2002) Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytologist 154: 147-157.
    [78] Wangda P. & Ohsawa M. (2006) Structure and regeneration dynamics of dominant tree species along altitudinal gradient in a dry valley slopes of the Bhutan Himalaya. Forest Ecology and Managemant 230: 136-150.
    [79]Wassie A.,Sterck F.J.,Teketay D.& Bongers F.(2009) Tree Regeneration in Church Forests of Ethiopia:Effects of Microsites and Management.Biotropica 41:110-119.
    [80]Watson M.A.,Geber M.A.& Jones C.S.(1995) Ontogenic Contingency and the Expression of Plant Plasticity.Trends in Ecology & Evolution 10:474-475.
    [81]White P.(1983) Evidence that temperate east North American evergreen woody plants follow Corner's rules.New Phytologist 95:139-145.
    [82]Wilson P.J.,Thompson K.& Hodgson J.G.(1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies.New Phytologist 143:155-162.
    [83]Wright S.J.(2002) Plant diversity in tropical forests:a review of mechanisms of species coexistence.Oecologia 130:1-14.
    [84]Yan E.R.,Wang X.H.& Huang J.J.(2006) Shifts in plant nutrient use strategies under secondary forest succession.Plant and Soil 289:187-197.
    [85]Yokozawa M.,Kubota Y.& Hara T.(1996) Crown architecture and species coexistence in plant communities.Annals of Botany 78:437-447.
    [86]Zhou C.,Han S.& Xu W.(2001) Modular dynamics and structure of Picea mongoliea.武汉植物学研究 19:369-376.
    [87]Zhu J.J.,Mao Z.H.,Hu L.& Zhang J.X.(2007) Plant diversity of secondary forests in response to anthropogenic disturbance levels in montane regions of northeastern China.Journal of Forest Research 12:403-416.
    [88]Zhu W.Z.,Cheng S.,Cai X.H.,He F.& Wang J.X.(2009) Changes in plant species diversity along a chronosequenee of vegetation restoration in the humid evergreen broad-leaved forest in the Rainy Zone of West China.Ecological Research 24:315-325.
    [89]www.fao.org/forestry
    [90]www.fgr.cn
    [91]安树青,王峥峰,朱学雷,洪必恭,赵儒林(1997a)土壤因子对次生森林群落物种多样性的影响.武汉植物学研究15:143-150.
    [92]安树青,王峥峰,朱学雷,刘志礼,洪必恭,赵儒林(1997b)土壤因子对次生森林群落演替的影响.生态学报17:45-50.
    [93]包维楷,刘照光(1999)岷江上游大沟流域驱动植被退化的人为干扰体研究.应用与环境生物学报5:233-239.
    [94]包维楷,刘照光,刘朝禄,袁亚夫,刘仁东(2000)中亚热带湿性常绿阔叶次生林自然恢复15年来群落乔木层的动态变化.植物生态学报24:702-709.
    [95]包维楷,陈庆恒(1999)生态系统退化的过程及其特点.生态学杂志18:36-42.
    [96]蔡永立,李恺,胡星明,张天澍(2007)常绿阔叶林优势种栲树种子散布与幼苗更新.In:宋永昌,陈小勇,等.中国东部常绿阔叶林生态系统退化机制与生态恢复.科学出版社,北京.p139-164.
    [97]蔡飞(1993)中国中亚热带东部木荷林研究.博士,华东师范大学,上海.
    [98]陈小勇,宋永昌(2004)受损生态系统类型及影响其退化的关键因素.长江流域资源与环境 13:78-83.
    [99]陈小勇,张庆费,吴化前,宋永昌(1996)黄山西坡青冈种群结构与分布格局研究.生态学报16:325-327.
    [100]陈波,宋永昌,达良俊(2002)木本植物的构型及其在植物生态学研究的进展.生态学杂志21:52-56.
    [101]陈波,达良俊(2003)栲树不同生长发育阶段的枝系特征分析.武汉植物学研究21:226-231.
    [102]陈灵芝(1990)退化生态系统恢复与人工生态系统重建研究刻不容缓.生物科学信息2:104-105.
    [103]达良俊,杨永川,宋永昌(2004)浙江天童国家森林公园常绿阔叶林主要组成种的种群结构及更新类型.植物生态学报28:376-384.
    [104]达良俊,陈波,宋坤,杨同辉(2007)常绿阔叶林生态系统干扰与恢复定位实验.In:宋永昌,陈小勇,等.中国东部常绿阔叶林生态系统退化机制与生态恢复.科学出版社,北京.p416-451.
    [105]达良俊,宋坤(2008)浙江天童受损常绿阔叶林实验生态学研究(Ⅰ):生态恢复实验与长期定位.华东师范大学学报(自然科学版)4:1-11.
    [106]丁圣彦(2001)浙江天童常绿阔叶林演替系列栲树和木荷成为优势种的原因.河南大学学报(自然科学版)31:79-83.
    [107]丁圣彦,宋永昌(1999)浙江天童常绿阔叶林演替系列优势种光合生理生态的比较.生态学报19:318-323.
    [108]丁圣彦,卢训令,李吴民(2007)常绿阔叶林退化过程中群落光环境与优势种生理生态特征.In:宋永昌,陈小勇,等.中国东部常绿阔叶林生态系统退化机制与生态恢复.科学出版社,北京.p89-116.
    [109]高三平,李俊祥,徐明策,陈熙,戴洁(2007)天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征.生态学报27:947-952.
    [110]葛滢,常杰,陈增鸿,潘晓东,刘珂(1999)石栎净光合作用与环境因子的关系.浙江林业科技19:30-35.
    [111]贺金生,陈伟烈,江明喜,金义兴,胡东,路鹏(1998)长江三峡地区退化生态系统植物群落物种多样性特征.生态学报18:399-407.
    [112]胡正华,于明坚(2006)浙江古田山常绿阔叶林演替序列研究:群落物种多样性.生态学杂志25:603-606.
    [113]黄忠良,孔国辉,何道泉(2000)鼎湖山植物群多样性的研究.生态学报20:193-198.
    [114]金泽新(1997)浙江天台山七子花种群结构与分布格局研究.生态学杂志16:15-19.
    [115]李博(2000)生态学.高等教育出版社,北京.
    [116]李翠环,余树全,周国模(2002)亚热带常绿阔叶林植被恢复研究进展.浙江林学院学报19:325-329.
    [117]李兴东(1995)常绿阔叶林的演替.In:宋永昌,王祥荣.浙江天童国家森林公园的植被和区系.上海科学技术文献出版社,上海.p114-142.
    [118]李庆康,马克平(2002)植物群落演替过程中植物生理生态学特性及其主要环境因子的变化.植物生态学报26:9-19.
    [119]黎云祥,陈利,杜道林,刘玉成(1998)四川大头茶的分枝率和顶芽动态.生态学报18:309-314.
    [120]刘世忠,敖惠修,何道泉,夏汉平(1998)粤东五华县亚热带季风常绿阔叶 林退化生态系统恢复的初步研究.热带亚热带植物学报6:57-64.
    [121]刘金林,周秀佳,顾泳洁,周家骏,郑富源(1983)浙江省午潮山次生植被恢复过程中的群落学剖析.植物生态学与地植物学丛刊7:8-19.
    [122]刘增文,李雅素(1997)论森林干扰.陕西林业科技1:28-32.
    [123]刘艳红,赵慧勋(2000)干扰与物种多样性维持理论研究进展.北京林业大学学报22:101-105.
    [124]卢训令(2006)不同干扰背景下常绿阔叶林主要优势种幼苗幼树光合生理生态特性比较.硕士论文,河南大学,郑州.
    [125]罗应华(2004)大明山常绿阔叶林退化生态系统自然恢复过程中群落动态学研究.硕士论文,广西大学,南宁.
    [126]马克平(2008)大型固定样地:森林生物多样性定位研究的平台.植物生态学报32:237.
    [127]毛志宏,朱教君(2006)干扰对植物群落物种组成及多样性的影响.生态学报26:2695-2701.
    [128]孟婷婷,倪健,王国宏(2007)植物功能性状与环境和生态系统功能.植物生态学报31:150-165.
    [129]米湘成,马克平(2003)中国植物生态学研究进展Ⅱ.中国植物群落生态学研究.植物学报45:70-76.
    [130]莫季平(1995)常绿阔叶林种子库和幼苗库.In:宋永昌,王祥荣.浙江天童国家森林公园的植被和区系.上海科学技术文献出版社,上海.p79-92.
    [131]彭少麟(1995)中国南亚热带退化生态系统的恢复及其生态效应.应用与环境生物学报1:403-414.
    [132]彭少麟(1996)南亚热带森林群林群落动态学.科学出版社,北京.
    [133]任海,彭少麟(2001)恢复生态学导论.科学出版社,北京.
    [134]石胜友,李旭光,王周平,齐代华,许文蔚,何正明(2001)缙云山风灾迹地生态恢复过程中的群落动态研究.西南师范大学学报(自然科学版)26:57-61.
    [135]石胜友,杨季冬,王周平,李旭光(2002)缙云山风灾迹地人工混交林生态恢复过程中物种多样性研究.生物多样性.
    [136]宋永昌(2001)植被生态学.华东师范大学出版社,上海.
    [137]宋永昌,王祥荣(1995)浙江天童国家森林公园的植被和区系.上海科学技术文献出版社,上海.
    [138]宋永昌,陈小勇,王希华(2005)中国常绿阔叶林研究的回顾与展望.华东师范大学学报(自然科学版)1:1-8.
    [139]宋永昌,陈小勇,等(2007)中国东部常绿阔叶林生态系统退化机制与生态恢复.科学出版社,北京.
    [140]宋同清,彭晚霞,曾馥平,王克林,欧阳资文(2008)桂西北喀斯特人为干扰区植被的演替规律与更新策略.山地学报26:597-604.
    [141]宋坤(2007)天童常绿阔叶林米槠.木荷群落历史动态及干扰事件的重建.硕士论文,华东师范大学,上海.
    [142]宋坤,杨徐烽,康敏明,达良俊(2008)浙江天童受损常绿阔叶林实验生态学研究(Ⅱ):主要常绿树种的生长格局.华东师范大学学报(自然科学版)4:12-24.
    [143]苏志尧 吴大荣.陈北光.(2000)粤北天然林优势种群结构与空间格局动态. 应用生态学报11:337-341.
    [144]孙谷畴(1994)亚热带季风常绿阔叶林植被恢复Ⅰ.原理:不同干扰林地植物光合作用对环境因子的反应.应用生态学报5:37-42.
    [145]孙书存,陈灵芝(1999a)不同生境中辽东栎的构型差异.生态学报19:359-364.
    [146]孙书存,陈灵芝(1999b)辽东栎植冠的构型分析.植物生态学报23:433-440.
    [147]王希波(2005)天童地区常绿阔叶林萌枝更新特征与群落演替.硕士论文,华东师范大学,上海.
    [148]王希华,闫恩荣,严晓,王良衍(2005)中国东部常绿阔叶林退化群落分析及恢复重建研究的一些问题.生态学报25:1796-1803.
    [149]王树功,周永章,黎夏,陈桂珠(2005)干扰对河口湿地生态系统的影响分析.中山大学学报(自然科学版)44:107-111.
    [150]王辉,蔡志全,蔡传涛,张硕新(2008)不同光照和营养条件下两种不同寿命热带先锋种的对比研究.武汉植物学研究26:134-141.
    [151]温远光(1998a)大明山退化生态系统植物生长动态分析.广西农业生物科学17:113-122
    [152]温远光(1998b)退化生态系统恢复过程木本植物密度的变化.广西农业大学学报17:168-174.
    [153]温远光,李信贤(1998)大明山退化生态系统的垂直结构及动态研究.广西农业大学学报17:160-167.
    [154]温远光,李信贤,元昌安,梁宏温,黄承标,和太平,赖家业(1996)大明山天坪采伐区天然次生林优势树种种群结构及动态初步研究.广西农业生物科学15:118-124.
    [155]温远光,元昌安,李信贤,和太平,赖家业(1998a)大明山中山植被恢复过程植物物种多样性的变化.植物生态学报22:33-40.
    [156]温远光,和太平,赖家业,李信贤,黄志辉(1998b)大明山退化生态系统的植物区系分析.广西农业生物科学.
    [157]温远光,梁宏温,和太平,赖家业,黄承标,李信贤,黄志辉,黄棉,周继忠(1998c)大明山退化生态系统群落光照的变化.广西农业大学学报17:199-203.
    [158]温远光,梁宏温,和太平,赖家业,黄承标,李信贤,黄志辉,黄棉,周继忠(1998d)大明山退化生态系统群落的温湿特征.广西农业大学学报17:204-210.
    [159]温远光,赖家业,梁宏温,和太平,黄志辉(1998e)大明山退化生态系统群落的外貌特征研究.广西农业生物科学17:154-159.
    [160]邬建国(2000)景观生态学--格局、过程、尺度与等级.高等教育出版社,北京.
    [161]吴海勇,彭晚霞,宋同清,曾馥平,黎星辉,宋希娟,欧阳资文(2008)桂西北喀斯特人为干扰区植被自然恢复与土壤养分变化.水土保持学报.22:143-147
    [162]谢帆,王素珍(1983)恢复与发展井岗山区常绿阔叶林的初步探讨.生态学报:49-55.
    [163]徐程扬(2001)不同光环境下紫椴幼树树冠结构的可塑性响应.应用生态 学报13:339-343.
    [164]杨永川(2005)中国中亚热带东部低山丘陵地形梯度上植被的分异及其形成和维持机制.博士论文,华东师范大学,上海.
    [165]杨永川,达良俊,陈波(2006)天童米槠-木荷群落主要树种的结构及空间格局.生态学报26:2927-2938.
    [166]杨徐烽(2008)天童国家森林公园不同受损程度常绿阔叶林恢复初期研究:植物群落与生境动态.硕士论文,华东师范大学,上海.
    [167]杨梅(2004)不同人为干扰强度甜槠群落结构特征及种群动态的研究.福建农林大学,福州.
    [168]杨梅,林思祖,曹光球,刘洪波,曹子林(2007)人为干扰对常绿阔叶林主要种群分布格局的影响.中国生态农业学报15:9-11.
    [169]闫恩荣(2006)常绿阔叶林退化过程中土壤的养分库动态及植物的养分利用策略.博士论文,华东师范大学,上海.
    [170]闫恩荣,王希华(2007)常绿阔叶林退化过程中土壤与植物系统的相互作用.In:宋永昌,陈小勇,等.中国东部常绿阔叶林生态系统退化机制与生态恢复.科学出版社,北京.p196-237.
    [171]曾馥平,彭晚霞,宋同清,王克林,吴海勇,宋希娟,曾昭霞(2007)桂西北喀斯特人为干扰区植被自然恢复22年后群落特征.生态学报22:143-147
    [172]赵平,彭少麟,张烃炜(1999a)恢复生态学最新研究进展和国外动态.资源生态环境网络研究动态10:1-5.
    [173]赵平,Kriebitzsch W.,张志权(1999b)欧洲3种常见乔木幼苗在两种光环境下叶片的气体交换、叶绿素含量和氮素含量.热带亚热带植物学报7:133-139.
    [174]赵其国(2002)中国东部红壤地区土壤退化的时空变化、机理及调控.科学出版社,北京.
    [175]张光富(2001)浙江天童灌丛植被的土壤种子库与幼苗库特征.云南植物研究23:209-215.
    [176]张林,罗天祥(2004)植物叶寿命及其相关叶性状的生态学研究进展.植物生态学报28:844-852.
    [177]张朝芳(1995)天童国家森林公园的蕨类植物.In:宋永昌,王祥荣.浙江天童国家森林公园的植被和区系.上海科学技术文献出版社,上海.p152-155.
    [178]张鼎华,林肖文(1993)采伐迹地恢复阔叶林与人工栽杉土壤肥力变化差异的初步研究.生态学报13:261-266.
    [179]张德罡(2002)东祁连山杜鹃灌丛生态特征及受损恢复的研究.博士论文,甘肃农业大学,兰州.
    [180]张庆费,宋永昌,由文辉(1999a)浙江天童植物群落次生演替与土壤肥力的关系.生态学报19:174-178.
    [181]张庆费,由文辉,宋永昌(1999b)浙江天童植物群落次生演替对土壤化学性质的影响.应用生态学报10:19-22.
    [182]张笃见,由文辉(1998)浙江天童常绿阔叶林地被层的种类组成.华东师范大学学报(自然科学版):95-101.
    [183]张笃见,叶晓娅,由文辉(1999)浙江天童常绿阔叶林地被层的研究.植物生态学报23:544-556.
    [184]浙江植物志编辑委员会(1993)浙江植物志.浙江科学技术出版,杭州.
    [185]周先叶,王伯荪,李鸣光,咎启杰(1999)广东黑石顶自然保护区森林次生演替过程中的群落动态.植物学报41:877-886.
    [186]中国科学院南京土壤研究所(1978)土壤理化分析.上海科学技术出版社,上海.
    [187]朱守谦,陈正仁,魏鲁明(2002)退化喀斯特森林自然恢复的过程和格局.贵州大学学报(农业与生物科学版)21:19-25.
    [188]朱教君,刘足根(2004)森林干扰生态研究.应用生态学报15:1703-1710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700