性生态学中两个基本问题的空间结构模型及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间生态学研究和性生态学研究近年来一直是理论生态学和数学生态学研究的热点问题,两者的结合更是当今研究的前沿领域。然而大多数空间结构下的研究都忽略了性,而关于性的大多数研究又都没有考虑空间因素的因素。本篇论文就是在性生态学的两个基本问题(性比率的1:1稳定维持机制及有性生殖和无性生殖的共存)的研究中考虑了空间结构的影响。我们利用常微分方程、偶对近似方法和元胞自动机方法建立了数学模型,利用数学分析和数值模拟的方法从理论角度回答了空间结构的影响。同时,扩散作为生物生活史的一个重要特征,其对生物自组织的影响一直是生态学工作者的关注的核心问题之一。我们在以上研究的基础上还研究了扩散对生态系统的影响。研究得到了许多有意义的结果:(1).空间结构下的Allee效应有利于种群性比率稳定在1:1附近,空间结构越明显,Allee效应的影响越强;(2).斑块之间的联通度过低会导致偏雌的进化维持策略;(3).空间联通度的改善,对雌雄性的影响并不相同,其导致雄性更加聚集,雌性更加离散,使得雄性局域性比率减小,而却不会影响雌性局域性比率;(4).迁移并不会影响两性种群的进化维持性比,但是,个体的迁移对有性集合种群的时空动态的影响差异明显,雄性的迁移以有利于整个集合种群的繁殖,然而雌性迁移几乎没有影响;雄性的迁移增大了两性的局域性比率,而雌性的迁移减少了两性的局域性比率;而且,雄性局域性比率总是大于雌性局域性比率,这可能是由于雌性种希望得到更多的交配机会的原因;(5).空间结构可以从根本上解释雌核发育种群和其依附种群的共存问题,其共存可能有两种情况:1.在集合种群模式下,其共存于同一斑块,这是由于配对歧视或者生态位的分化导致雌核发育对有性生殖的危害比较小;2.在集合种群框架下,类似于宿主-寄生系统的共存,即雌核发育个体导致斑块上有性生殖灭绝,从而使自身灭绝,形成新的空斑块,有利于有性生殖个体的繁殖和再次侵占;(6).雌核发育过高的繁殖率会导致整个有性生殖的灭绝,进而自身也灭绝;(7).雌核发育的繁殖率和其导致有性生殖的灭绝率对系统空间结构的影响,在两个共存区间是不同的,因此,在研究具体物种时应该予以重视;(8).当雌核发育对有性生殖的影响适中时,雌核发育的灭绝率的增大在一定范围之内反而有利于雌核发育种群密度的提高;(9).空间联通程度亦会影响到雌核发育的空间分布,联通越低,雌核发育越易聚集分布:(10).虽然有性生殖和雌核发育的迁移都有利于雌核发育的增长,减少了有性生殖斑块的密度,但是,其强度有明显的差异,雌核发育的迁移比有性生殖的迁移影响要强得多,即迁移对系统作用的不对称性,这是因为雌核发育的类似于寄生的特点决定的。
     综上,本文的研究丰富和发展了空间结构下的性生态学理论,同时,也丰富了扩散生态学中关于扩散对集合种群的时空动态的影响。
Spatial ecology and sex ecology are both important fields in the international research of theoretical and mathematical ecology, especially the combination of those is one of the frontiers and hotspots in ecology. However, almost all papers that focus on spatial ecology have ignored the sex reproduction in population, and the research on sex often do not take the spatial factors into account. In this PhD thesis, the effect of spatial structure on the two basic problems in sex ecology, the stability of 1:1 sex ratio and the coexistence of sexual and asexual modes of reproduction, are considered. Ordi-nary differential equations, Pair-approximation and computer simulation model (Cellu-lar Automaton) are used to built spatial structured models, with the help of which we can find how the spatial structure influence on the upon two problems. Two approaches are used, mathematical analysis and numerical simulation. Meanwhile, the effect of migration on the two system are also investigated. The main results are as follows:
     1. The stability of 1:1 sex ratio may be strongly enhanced by the Allee effect. The effect became more severe when the spatial structure is considered explicitly.
     2. The small scale of ecological interactions will lead to female biased EMS;
     3. The impact on female and male are not the same when the spatial scale becomes larger. Male becomes more aggregated, but female more discreted. The increase of spatial scale also causes male sex local ratio decreasing, while has no effect on female local sex ratio.
     4. Migration does no effect on EMS, but can largely change the spatial-temporary dynamic:migration of male increases the local sex ratio, which are benefit for the growth of the population, while the migration of female decreases the local sex ratio and has no influence on the population. in addition, male local sex ratio is always greater than the ratio of female-locality, this may because females want more opportunities to mate with males.
     5. spatial dynamics can be essential for explanting the coexistence of Genogenesis and the sexual species which offers sperm. coexistence may occurs in two sit-uation:1. Niche differentiation and mate discrimination keep local extinction rate low, most patches contain both species; 2. In metapopulation, the system re- sembles host-parasite dynamics where parasite frequently drive the host locally extinct, and host reinvade the empty patches again.
     6. The good colonization rate of Genogenesis is not always beneficial for its persis-tence. The high colonization rate can cause extinction of the whole metapopula-tion.
     7. The effect of colonization rate of sexual patches by Genogenesis and the extinc-tion rate of patches with both species on the spatial distribution of the metapop-ulation are not the same in the two coexistence regions. So it is worth paying attention when the field study is done.
     8. When the effect of Genogenesis on sexual species is intermediate, high Genogenesis-only extinction can increase the equilibrium frequency of patches that Genogenesis is able to occupy.
     9. When the spatial interaction scale is small, Genogenesis tend to be more aggre-gated. 10. Both migration can be beneficial for Genogenesis, and destructive for sexual species. However, the influence of migration of Genogenesis are much stronger than that of sexual, The asymmetric effect is determined by the parasite feature of genogenesis.
     In all, Our research has enriched and developed the theories in spatial sex ecology, and enriched content that the effect of migration on spatial-temporal dynamics in metapop-ulation.
引文
[1]姜启源,1993.数学模型(第二版)[M],高等教育出版社,北京.
    [2]惠苍,2004.空间生态学模拟研究:集合种群对环境变化的生态及进化响应(博士论文),兰州大学
    [3]李才伟,1997.元胞自动机及复杂系统的时空演化模拟(博士论文),华中理工大学.
    [4]马知恩,1996.种群生态学的数学建模与研究[M],安徽教育出版社,合肥.
    [5]孙儒泳,2001.动物生态学原理[M],北京师范大学出版社,北京.
    [6]张大勇,2000.理论生态学研究[M],高等教育出版社,北京.
    [7]张丰盘,2008.利用偶对近似和矩方法对空间性生态学中性比率和有性生殖维持的研究(博士论文),兰州大学.
    [8]张锦炎,冯贝叶,2001.微分方程集合理论和分支问题[M],北京大学出版社,北京.
    [9]Agrawal,A.F.,2001. Sexual selection and the maintainance of sexual reproduction. Nature 411,692-695.
    [10]Agrawal,A.F.,2006. Evolution of sex:why do organisms shuffle their genotypes? Curr. Biol.16, R696-R704.
    [11]Allee, W. C.,1931. Aggregations:a study in General Socialogy. University of Chicago Press. Chicago.
    [12]Amarasekare, P.,1998. Allen effect in metapopulation dynamics. Am. Nat.152, 298-302.
    [13]Amarasekare, P.,2006. Productivity, dispersal and the coexistence of intraguild predators and prey. J. Theor. Biol.243,121-133.
    [14]Amarasekare, P.,2007. Spatial dynamics of communities with intraguild preda-tion:the role of dispersal strategies. Am. Nat.170,819-831.
    [15]Amarasekare, P.,2008. Spatial dynamics of keystone predation. J. Anim. Ecol. 77,1306-1315.
    [16]Ament, I., Scheu, S., Drossel, B.,2008. Influence of spatial structure on the main-tenance of sexual reproduction. J. theor. Biol.254,520-528.
    [17]Aspbury, A.S. Gabor, C.R.,2004. Discriminating males alter sperm production between species. Proc. Natl Acad. Sci. USA 101,15970-15973.
    [18]Avise, J. C., Trexler, J., Travis, J., Nelson, W.S.,1991. Poecilia mexicama is the recent female parent of the unisexual fish Poecilia formosa. Evolution 45,1530-1533.
    [19]Balsano, J. S., Kucharski, K., Randle, E. J., Rasch, E. M., Monaco, P. J.,1981. Reduction of competition between bisexual and unisexual females of Poecilia in northeastern Mexico. Environ. Biol. Fishes 6,39-48.
    [20]Bascompte, J., Sole, R.V.,1998. Effects of habitat destruction in a prey-predator metapopulation model. J. Theor. Biol.195,383-393.
    [21]Bell, G.,1982. The maspterpiece of nature:the evolution and genetics of sexual-ity. London, UK:Croom Helm.
    [22]Berec, L.,Boukal, D.V., Berec, M.,2001. Linking the Allen effect,sexual repro-duction, and temperature-dependent sex determination via spatial dynamics. Am. Nat.157,217-230.
    [23]Beukeboom, L.W., Vrijenhoek, R.C.,1998. Evolutionary genetics and population dynamics of enchytraeids(Oligochaeta) from the high arctic. Can. J. Zool.87,2079-2086.
    [24]Beukeboom, L.W., Vrijenhoek, R.C.,1998. Evolutionary genetics and ecology of sperm-dependent parthenogenesis. J. Evol. Biol.11,755-782.
    [25]Bonsall, M. B., French, D.R., Hassell, M.P.,2002. Metapopulation structures af-fect persistence of predator-prey interactions. J. Anim. Ecol.71,1075-1084.
    [26]Boots, M., Sasaki, A.,2001. Parasite-driven extinction in spatially explicit host-parasite systems. Am. Nat.34,707-713.
    [27]Boots, M., Sasaki, A.,2003. Parasites evolution and extinctions Eco. Lett.6,176-182.
    [28]Boots, M., Hudson, P., Sasaki, A.,2004. Large shifts in pathogen virulence relate to host population structure. Science.303,842-844.
    [29]Boots, M., Kamo, M., Sasaki, A.,2006. disease evolution:modles, concepts, and data analysis. In Feng, Z., Diechmann, U., Levin, S.(Eds), Mathematical Analysis by Approximation:Limits and Directions. American Mathematical Society Provi-dence.
    [30]Bulmer, M.,1994. Theoretical Evolutionary Ecology. Sinauer Associates, Sun-derland.
    [31]Castillo-Chavez, C., Huang, W.,1995. The logistic equation revisited:the two-sex case. Math. Biosci.128,299-316.
    [32]Caswell, H., Weeks, D.E.,1986. Two-sex models:chaos, extinction, and the other dynamic consequences of sex. Am. Nat.128,707-735.
    [33]Charnov, E.L.,1982. The theory of sex allocation. Princeton University Press, Princeton.
    [34]Christensen, B., O'Connor, F.B,1958. Pseudofertilization in the genus Lumbri-cillus(Enchytaeidac). Nature.181,1085.
    [35]Comins,H.N., Hassell, M.P., May.R.M.,1992. The spatial dynamics of Host-parasitoid systems. J. Anim. Ecol.61,735-748.
    [36]Dey, S., Dabholkar, S., Joshi, A.,2006. The effect of migration on metapopulation stability is qualitatively unaffected by demographic and spatial heterogeneity. J. Theor. Biol.238,78-84.
    [37]Diechman,, U., Law, R., Metz, J.A.J.,(Eds),2000. The Geometry of Ecological Interactions:Simplifying Spatial Complexity. Cambridge University Press. Cam-bridge.
    [38]Doebeli, M.,1997. Genetic vsristion and persistence of predator-prey interactions in the Nichlson-Bailey model. J. Thero. Biol.188,109-120.
    [39]Doebeli, M., Koella, J.C.,1994. Sex and population dynamics. Proc. R. Soc. Lond. B.257,17-23.
    [40]Doncaster, C. P., Pound, G. E., Cox, S. J.,2000. The ecological cost of sex. Nature 404,281-285.
    [41]Dries, L.A.,2003. Peering through the looking glass at a sexual parasites:are Amazon mollies red queens? Evolution 57,1387-1396.
    [42]Dunbrack, R. L., Coffin, C., Howe, R.,1995. The cost of males and the paradox of sex:an experimental investigation of the short-term competitive advantages of evolution in sexual populations. Proc. R. Soc. B 262,45-49.
    [43]Fisher, R.A.,1930. The Genetical theory of Natural Selection. Dover, New York.
    [44]Frantz, A., Plantegenest, M., Simon, J.C.,2006. Temporal habitat variability and the maintenance of sex in host populations of the pea aphid. Proc. R. Soc. B.273, 2887-2891.
    [48]Gao, M., Li, Z., Dai, H.,2007a.Effects on spectral color of a spatially-structured population:Environmental noise, dispersal, spatial heterogeneity. Ecol Model,201,326-330.
    [50]Gao, M., Li, W., Li, Z., Dai, H., Liu, H.,2007b. Spatial synchrony in host-parasitoid populations. Ecol. Model.204,29-39.
    [47]Gumm, J.M., Gonzalez, R., Aspbury, A.S., Gabor, C.R.,2006. Do I know you? Species recognition operates within and between the sexes in a unisexual-bisexual species complex of mollies. Ethology.112,448-457.
    [48]Hakoyama, H., Iwasa, Y.,2004. Coexistence of a sexual and an unisexual form stabilized by parasites. J. Thero. Biol.226,185-194.
    [49]Halyoak, M.,2000.Habitat patch arrangement and metapopulation persistence of predators and prey. Am.Nat.156,378-389.
    [50]Hamilton, W. D.,1967. The genetical evolution of social behaviour. J. Theor. Biol. 7,1-52.
    [51]Hamilton, W. D., Axelrod, R., Tanese, R.1990. Sexual reproduction as an adap-tation to resist parasites. Proc. Natl Acad. Sci. USA 87,3566-3573.
    [52]Hanski,I.,1999. Metapopulation ecology. Oxford University Press. Oxford.
    [53]Hanski, I.,2001. Spatially realistic theory of metapopulation ecology. Naturwis-senschaften 88,372-381.
    [54]Harada, Y., Iwasa, Y.,1994. Lattice population dynamics for plants with despers-ing seeds and vegetative propagation. Researches on population ecology.36,237-249.
    [55]Harada, Y., Ezoe,H., Iwasa, Y, Matsuda, H., Sato, K.,1995. Population persis-tence and spatially limited social interaction. Theor. Pop. Biol.48,65-91.
    [56]Harada, Y., Iwasa, Y.,1996. Analyses of spatial patterns and population processes of clonal plants. Researches on population ecology.38,153-164.
    [57]Hasell M. P.,Comins H. N., May R. M.,1994. Species coexistence of self-organizing spatial dynamics, Nature,370:290-292.
    [58]Hassell, M.P., May, R.M., Pacala, S.W., Chesson, P.L.,1991. Spatial structure and chaos in insect population dynamics. Nature 353,255-258.
    [59]Heubel, K. U.2004. Population ecology and sexual preferences in the mating complex of the unisexual Amazon molly Poecilia formosa. PhD thesis, University of Hamburg, Hamburg.
    [60]Hiebeler, D.,2000. Populations on fragmented landscapes with spatially struc-tured heterogeneities:landscape generation and local dispersal. Ecology 81,1629-1641.
    [61]Hiebeler, D.,2004. Competition between near and far dispersers in spatially struc-tured habitats. Theor. Popul. Biol.66,205-218.
    [62]Hiebeler, D.,2005. A cellular automaton SIS epidemiological model with spa-tially clustered recoveries. Lect. Notes Compu. Sci.3515,360-367.
    [63]Hiebeler, D., Morin, B.,2007. The effect of static and dynamic spatially structured disturbances on a locally dispersing population. J. Theor. Biol.246,136-144.
    [64]Hubbs, C.,1964. Interactions between bisexual fish species and its gynogenetic sexual parasite. Tex. Mem. Mus. Bull.8,1-72.
    [65]Hui, C., Li, Z.Z.2003. Dynamical complexity and metapopulation persistence. Ecological modelling 164,201-209.
    [66]Hui,C., Li, Z.Z.2004. distribution patterns of metapopulation determined by Allen effect. Pop. Ecol.46,55-63.
    [67]Hui,C., McGeach, M.A.,2007a. Spatial patterns of prisoner's dilemma game. Bull.Math. Biol.69,659-676.
    [68]Hui, C., McGeoch, M.A.,2007b. A self-similarity model for the occupancy fre-quency distribution. Theor. Popul. Biol.71,61-70.
    [69]Hui,C., McGeach, M.A., Warren, A.2006. A spatial explicit approach to estimat-ing species occupancy and spatial correlation. J. Anim. Ecol.75,140-147.
    [70]Janko, K., Eisner, J.,2009. Sperm-dependent parthenogens delay the spatial ex-pansion of their sexual hosts. J. Theor. Biol.261,431-440.
    [71]Iwasa, Y., Sato, k., Nakashima, S.,1991. Dynamic modeling of wave regeneration (Shimagare) in subalpine Abies forests. J. Theor. Biol.152,143-158.
    [72]Iwasa, Y., Nakamara, M., Levin, S.A.,1998. Allelopathy of bacteria in a lattice population:competition between colicin sensitive and colicin producing strains. Evol. Ecol.12,785-802.
    [73]Johnson, J.T.,1994. Sex ratio and population stability. Oikos 69,172-176.
    [74]Johnson, J.T., Festa-Bianchet, M., Gaillard, J.M., Wishart, W.D.,1997. Effects of age, sex, disease, and density on survival of bighorn sheep. Ecology 78,1019-1032.
    [75]Kaitala, V., Ylikarjula, J.,Ranta, E., Lundberg., P.,1997. Population dynamics and the color of environmental noise. Proc. R. Soc. Lond.B.264,943-948.
    [76]Kamo, M., Sasaki, A., Boots, M.,2007. The role of trade-off shapes in the evolu-tion of parasites in spatial host populations:An approximate analytical approach. J. Theor. Biol.244,588-596.
    [77]Kaneko K.,1984. Period-doublings of Kink-antikink patterns, quasiperiodicity in antiferro-like structure and spatial intermittency in coupled logistic lattice:towards a prelude of a " field theory of chaos " Prog. Theor. Phys,72,480-492.
    [78]Kaparal R.,1985. Pattern formation in two dimensional arrays of coupled discrete time oscillations, Phys. Rev. A.31,3868-3873.
    [79]Kawecki TJ, Ebert D.2004. Conceptual issues in local adaptation. Ecol Lett.7, 1225-1241.
    [80]Keeling, M.J.,1999. Correlation equations for endemic diseases:externally im-posed and internally generated heterogeneity. Proc. R. Soc. London B 266,953-961.
    [81]Keeling, M.J.,1999a.Spatial models of interacting populations. In McGlade, J.M.,(Eds) Advanced Ecological Theory:Principle and Applications. Blackwell Science, Oxford.
    [82]Keeling, M.J., Rand, D.A.,1996. Spatial correlations and local fluctuations in host-parasite ecological. In:Glendining P(Eds), From finite to infinite dimensional systems. Kluwer, Amsterdam.
    [83]Keightley, P.D., Otto, S.p.,2006. interfernce among deleterious mutations favours sex and recombination in finite populations. Nature 443,89-92.
    [84]Kiester, A.R., Nagylaki, T., Shaffer, B.,1981. Population dynamics of species with gynogenetic sibling species. Theor. Popul. Biol.19,358-369.
    [85]Kitamura, K., Kashiwagi, K., Tainaka, K., Hayash, T., Yoshimura, J., Kawai, T., Kajiwara,T.,2006. Asymmetrical effect of migration on a prey-predator model. Phys. Lett. A.357,213-217.
    [86]Koelle, K., Vandermeer, J.,2005. Dispersal-induced desynchronization:form metapopulation to metacommunities. Ecol. Lett.8,167-175.
    [87]Kokko, H., Heubel, K. U., Rankin, D. J.,2008. How population persist when asex-uality requires sex:the spatial dynamics of coping with sperm parasites. Proc.R. Soc. B.275,817-825.
    [88]Kot M.,2001. Elements of Mathematical Ecology. Cambridge University Press, Cambridge.
    [89]Kubo, T., Iwasa, Y., Furumoto, N.,1996. Forest spatial dynamics with gap expan-sion:total gap area and gap size distribution. J. Theor. Biol.180,229-246.
    [90]Larison,.B.,2008. Impacts of environmental heterogeneity on alternative mating tactics in the threadtail damselfly. Behav Ecol Sociobiol.63,531-536.
    [91]Levins, R.,1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am.71,237-240.
    [92]Li, Z., Gao, M., Hui, C., Han, X., Shi, H.,2005. Impact of predator pursuit and prey evasion on synchrony and spatial patterns in metapopulation. Ecol. Model. 185,245-254.
    [93]Liebhold, A., Walter, D., Koenig, D., Bjornstand, O.N.,2004. Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst.35,467-490.
    [94]Loyning, M.K., Kirkendall, L.R.,1996. Mate discrimination in a pseudogamous bark beetle (Coleoptera:Scolytidae):male Ipsacuminatus prefer sexual to clonal females. Oikos 77,336-344.
    [95]Matsuda, H., Tamachi, N., Ogita, A.,1987. A lattice model for population biology. In Teramoto, E., and Yamaguti, M.,(Eds) Mathematical Topics in Biology:Lecture Notes in Biomathematics. Springer, New York.
    [96]Matsuda, H., Ogita, A., Sasaki, A., Sato, K.,1992. Statistical mechanics of popu-lation:the lattice Lotka-Volterra model. Prog. Theor. Phys.88,1035-1049.
    [97]McCann, K.S., Rasmussen, J.B., Umbanhowar, U.,2005. The dynamics of spa-tially coupled food webs. Ecol.Lett.8,513-523.
    [98]Mistro, D.C., Rodrigues, L.A.D., Varriale, M.C.2009. The role of spatial refuges in Coupled Map Lattice model for host-parasitoid systems. Bull. Math. Biol.71, 1934-1953.
    [99]Mitter, C., Futuyma, D.,1977. Parthenogenesis in the fall cankerworm Alsophilia pometariai(Lepidoptea, Geometridae) Ent. Exp. Appl.21,192-198.
    [100]Montoya, M.R.,2005. The environment's influence on mate preferences. Sexu-alities, Evolution Gender.7,115-134.
    [101]Morris, A.J.,1997. Representing spatial interactions in simple ecological mod-els. PhD thesis. Warwick University.
    [102]Muller, H. J.1964. The relation of recombination to mutational advance. Mutat. Res.1,2-9.
    [103]Murray, J.D.,1993; 1999. Mathematical Biology. Springer Verlag, Berlin.
    [104]Nakamaru, M., Matsuda, H., Iwasa, Y.,1997. the evolution of cooperation in a lattice structure population. J. Theor. Biol.184,65-81.
    [105]Nakamaru, M., Nogami, H., Iwasa, Y.,1998. Score dependent fertility model for the evolution of cooperation in a lattice. J. Theor. Biol.194,101-124.
    [106]Nowak, M. A., May, R.M.,1992. Evolutionary games and spatial chaos. Na-ture.359,826-829.
    [107]Nowak, M.A., May, R.M.,1993. The spatial dilemmas of evolution. Int. J. Bi-furcation and chaos.3,35-78.
    [108]Okuyama, T.,2008. Intraguild predation with spatially structured interactions. Basic. Appl. Ecol.9,135-144.
    [109]Otto,S.P., Nuismer, S.L.,2004. Species interactions and the evolution of sex. Science,3.4,1018-1020.
    [110]Ovaskainen, O., Sato, K., Bascompte, J., Hanski, I.,2002. Metapopulation mod-els for extinction threshold in spatially correlated landscapes. J. Theor. Biol.215, 95-108.
    [111]Peck, J. R., Yearsley, J., Barreau, G.,1999 The maintenance of sexual reproduc-tion in a structured population. Proc. R. Soc. B 266,1857-1863.
    [112]Pecthey, O.,L.,Gonzalez, A., Wilson, H.b.,1997. Effect on population persis-tence:the interaction between enviromental noise color, intraspecific competition and space. Proc. R. Soc. B.264,1841-1847.
    [113]Rankin, D.J., Kokko, H.,2007. Do males matter? The role of males in population dynamics. Oikos 116,335-348.
    [114]Ranta, E., Kaitala, V., Lindstrom, J., Linden, H.,1995. Synchrony in population-dynamics. Proc. R. Soc. Lond.B.262,113-118.
    [115]Ranta, E., Kaitala, V., Lindstrom, J., Linden, H.,1997. The moran effect and synchrony in population dynamics. Oikos.78,136-142.
    [116]Ranta, E.,Kaitala, V., Lindstrom, J.,1999. Sex in space:population dynamic consequences. Proc. R. Soc. Lond.266,1155-1160.
    [117]Ripa, J., Lundberg. P., Kaitala, V.,1998. A general theory of Enviromental Noise in Ecological Food webs. Am. Nat.151,256-263.
    [118]Ryan, M.J., Drues, L.A., Batra, P., Hills, D.M.,1996. Male mate preferences in a gynogenetic species complex of Amazon mollies. Anim. Behav.52,1225-1236.
    [119]Ruxton, G.D.,1995. Population models with sexual reproduction show a reduced propensity to exhibit chaos. J. Thero. Biol.175,595-601.
    [120]Salathe, M., Salathe, R., Schmid-Hempel, P., Bonhoeffer, S.,2006. Mutation accumulation in space and the maintenance of sexual reproduction. Ecol. Lett.9, 941-946.
    [121]Sato, K., Matsuda, H., Sasaki, A.,1994. Pathogen invasion and host extinction in lattice structured populations. J. Math. Biol.32,251-268.
    [122]Sato, k., Iwasa, Y.,2000. pair approximation for Lattice-based ecological mod-els. In Dieckmann, U., Law, R., Metz, J. A. J.(Eds). The Geometry of Ecological Interactions:Simplifying Spatial complexity. Cambridge University Press. Cam-bridge.
    [123]Sayama, H.,2004. Self-protection and diversity in self-replicating cellular au-tomata. Artif. Life.10,83-98.
    [124]Schley, D., Doncaster, C. P., Sluckin, T.,2004. Population models of sperm-dependent parthenogenesis. J. Thero. Biol.229,559-572.
    [125]Schlupp, I.,2005. The evolutionary ecology of gynogenesis. Annu. Rev. Ecol. Evol. Syst.36,399-417.
    [126]Schlupp, I., Nanda, I., Dobler, M., Lamatsch, D. K., Epplen, J. T., Parzefall, J., Schmid, M., Schartl, M.,1998. Dispensable and indispensable genes in an ameiotic fish, the Amazon molly Poecilia formosa. Cytogenet. Cell Genet.80,193-198.
    [127]Schlupp, I., Plath, M.2005. Male mate choice and sperm allocation in a sex-ual/asexual mating complex of Poecilia (Poeciliidae, Teleostei). Biol. Lett.1, 169-171.
    [128]Silvertown, J., Antonovics, J.(Eds),2001. Intergrating Ecology and Evolution in a spatial Context. Blackwell Science. Oxfold, British Ecological Society Sympo-sium.
    [129]Singh, B.K., Rao, J.S., Ramaswamy, R., Sinha, S.,2004. The role of het-erogeneity on spatiotemporal dynamics of host-parasite metapopulation. Ecol. Model.180,435-443.
    [130]Stauffer, R.C.,1960. Ecology in the long manuscript version of Darwin's Origin of Species and Linnaeus's Oeconomy of Nature. Proc. Am. Philo. Soc.104,235-241.
    [131]Stewart-Cox, J.A., Britton, N.F., Mogie, M.2005. Space mediates coexistence of females and hermaphrodites. Bull. Math. Biol.67,1273-1302.
    [132]Su, M., Zhang, Y., Hui, C., Li, Z.,2008. The effect of migration on the spatial structure of intraguild predation in metapopulation. Phys. A.387,4195-4203.
    [133]Su,M., Li,Z., Li, W., Zhang, F., Hui, C.,2009. The effect of landscape hetero-geneity on host-parasite dynamics. Ecol. Res.24,889-896.
    [134]Taylor, A.D.1990. Metapopulations, dispersal, and predator-prey dynamics:an overview. Ecology 71,429-433.
    [135]Tilman, D., Karieva, P.,1997. Spatial ecology:the role of space in population dynamics and interspecific interactions. Princeton University Press. Princeton.
    [136]Uzzell,T.M.,Goldblatt, S.M.,1967. Serum proteins of salamanders of the Am-bystoma jeffersonianum complex, and the origin of the triploid species of the group. Evolution 21,345-354.
    [137]van Baalen, M.,2000. Pair Approximation for Different Spatial Geometric. In Dieckmann, U., Law, R., Metz, J. A. J.(Eds). The Geometry of Ecological Interac-tions:Simplifying Spatial complexity. Cambridge University Press. Cambridge.
    [138]Vrijenhoek, R. C.,1984. Ecological differentiation among clones:the frozen niche variation model. In Population biology and evolution (eds K. Wohrmann, V. Loeschcke),pp.217-231. Berlin, Germany:Springer.
    [139]Waller I., Kapral R.,1984. Spatial and temporal structure in system of coupled nonlinear oscillators Phys. Rev. A.30,2047-2051.
    [140]Williams, G.C.,1979. The question of adaptive sex ratio in outcrossed verte-brates Proc. R. Soc. Lond. B.205,567-580.
    [141]Wilson, W.G., de Roos, A.M., McCauley, E.,1981. Spatial Instabilities within the Diffusive Lotka-Volterra System:Individual-Based Simulation Results. Theor. Popul.Biol.43,91-127.
    [142]Worster, D.,1994. Nature's Economy:A history of Ecological Ideas. Combridge university Press. New York.
    [143]Ylikarjula, J., Alaja, S., Laakso, J., Tesar, D.,2000. Effects of patch number and dispersal patterns on population dynamics and synchrony. J. Theor. Biol.207, 377-387.
    [144]Young, A.G., Clarke, G.M.,(Eds) 2000. Genetics Demography and Viability of Fragmented Populations. Cambridge University Press, New York.
    [145]Zhang, F., Li, Z.Z., Hui, C.,2005. Evolution of cooperation in patchy habitat under patch decay and isolation. Ecological research.20,461-496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700