植物间正相互作用对种群动态与群落结构的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物间相互作用是生态学研究的核心内容,当前大部分生态学理论均建立在生物间负相互作用基础之上。然而,随着胁迫环境下大量野外工作的出现,研究人员发现生物间不仅存在竞争等负相互作用,而且还存在促进的正相互作用。如何将正相互作用融入主要以竞争为基础的生态学理论就成了生态学家们亟需解决的问题。本论文以此为出发点,结合计算机模拟、野外实验与统计推断等手段,系统探讨植物间正相互作用对种群动态与群落结构的影响,以期建立综合正负相互作用于一体的生态学理论框架。
     在青藏高原东缘高寒草甸地区,通过多物种邻体去除、多性状测量与多变量统计推断,发现在青藏高原高寒草甸恶劣生境下植物间正相互作用是广泛存在的,但不同物种、不同性状之间存在一定的差异,即正相互作用是物种特异与性状特异的;同时,局部微环境也对正相互作用的发生频率和强度施加影响。这为随后构建种群与群落模型、验证模型预测提供了基础。
     在单物种种群中,通过扩展著名的影响域模型建立了基于正负相互作用动态平衡的植物生长速率方程。模拟结果表明,正相互作用显著改变了种群的生物量—密度关系,即经典的恒定产量法则,提高了种群的个体大小不整齐性。高寒草甸地区垂穗披碱草种植实验支持了模型的预测:在中等密度水平下平均个体生物量最大而种群的个体大小不整齐性最小。同时,理论模拟还发现胁迫环境本身减小了自疏斜率(负值,即绝对值增大),而正相互作用则能够缓解胁迫条件对自疏轨迹的影响,即增大自疏斜率(负值,即绝对值减小)。上述结果表明,正相互作用对种群动态的作用不可忽视,尤其是在相对胁迫的生境条件下。
     基于物种差异、生态位—中性连续体及正相互作用物种特异性的认识,将生物间正相互作用引入Lin等(2009)出生—死亡权衡的中性模型,结果表明一定强度的正相互作用可以显著增长两物种群落的共存时间,提高多物种群落的物种丰富度。高寒与亚高寒草甸地区物种丰富度沿海拔梯度的分布模式与该理论结果相一致,即单位面积内高寒植物群落的物种数目明显高于亚高寒草甸群落的物种数目。Klein等(2004)增温实验从侧面支持了模型的假定与预测,这意味着改变高寒生境的全球变暖所导致的正相互作用强度减弱甚至消失将会对脆弱生态系统如高寒草甸产生灾难性的影响,加速生物多样性的丧失。
     由此可见,植物间正相互作用对种群动态与群落结构具有重要的影响,构建基于正负两种相互作用的生态学理论势在必行。在全球气候变化的大背景下,该研究具有重要的理论与现实意义。
The study of biotic interactions among organisms has been one of the most critical issues in community ecology during the last decades. The majority of current ecological theories on plant community structure and dynamics are permeated with negative interactions (i.e. competition). However, many experiments conducted in the last 20 years, especially conducted in physically harsh environments, have demonstrated that positive interactions (i.e. facilitation) also play an essential role in natural systems. How to incorporate facilitation into mainstream ecological theories mainly based on competition has been an emerging task for ecologists. By combining field experiments, model simulations and statistical inference, the present dissertation explores the potential effects of positive interactions among plants on population dynamics and community structures, and attempts to construct a holistic theoretical framework accounting for both facilitation and competition.
     Using two constrasted sites, six species, and five plant traits, we exploited the effects of the various factors on the outcome of plant interactions in an alpine meadow of the Qinghai-Tibetan Plateau. The results demonstrated that the responses to the removal of neighbors were species-and trait-specific, as well as the local environmental conditions. These experiments shed light upon the assumptions and prediction tests of population and community models we constructed.
     By using an extended version of an individual-based'Zone-Of-Influence'model, we constructed grow-rate equations for individual plants in monoculture to test the hypothesis that the balance between facilitative and competitive interactions determined biomass-density relationships (i.e. constant final yield), size inequality and self-thinning trajectories. Our results showed that positive interactions profoundly affect biomass-density relationships, and increase the size inequality of model populations with and without density-dependent mortality. The modelling results were supported by field experiments, in which the greatest individual and the lowest size inequality of E. nutans populations were found at intermediate densities in a high-stress alpine habitat. Additionally, facilitation ameliorated the impact of the abiotic environment per se on. the allometric slopes, which significantly sharpened the self-thinning trajectory for survivors. All these results emphasized that positive interactions among individuals could be another key factor to determine plant population dynamics.
     With the recognition of species difference, niche-neutrality continuum and species-specific facilitation in mind, based on recently developed tradeoff-based neutral models of Lin et al. (2009), we elucidated the potential effects of facilitative interactions on the spatial distribution of species richness along an elevation gradient. The results illustrated that facilitation could improve the time of coexistence in two-species systems, and greatly increase the number of species in multiple-species systems. The results from field experiments conducted in alpine and subalpine meadows agreed with those from simulation patterns:the number of species in an alpine meadow was higher than that found in a subalpine meadow. Results from warming experiments, such as that of Klein et al. (2004), are in line with those from our simulations, implying that the alleviation of temperature limitation expected under global warming could destroy the interaction webs among plants, resulting in a sharp decline of species richness, especially in fragile ecosystems such as alpine meadows.
     Taken together, we conclude that facilitation among individuals could be an important factor in shaping population dynamics and community structures. In the context of global climate change, it is imperative to include positive interactions into mainstream ecological theories. This will facilitate the development of new theories and conceptual models, as well as the establishment of sound management actions.
引文
Allee W.C. (1931). Animal aggregations:A study in general sociology. University of Chicago Press, Chicago, USA.
    Allen A.P.& Gillooly J.F. (2009). Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecology Letters,12,369-384.
    Allen A.P., Gillooly J.F.& Brown J.H. (2005). Linking the global carbon cycle to individual metabolism. Functional Ecology,19,202-213.
    Alonso D., Etienne R.S.& McKane A.J. (2006). The merits of neutral theory. Trends in Ecology and Evolution,21,451-457.
    Anderson M.J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology,26,32-46.
    Anderson M.J.& Willis T.J. (2003). Canonical analysis of principal coordinates:A useful method of constrained ordination for ecology. Ecology,84,511-525.
    Armas C, Ordiales R.& Pugnaire F.I. (2004). Measuring plant interactions:A new comparative index. Ecology,85,2682-2686.
    Arroyo M.T.K., Cavieres L.A., Penaloza A.& Arroyo-Kalin M.A. (2003). Positive associations between the cushion plant Azorella monantha (Apiaceae) and alpine plant species in the Chilean Patagonian Andes. Plant Ecology,169, 121-129.
    Atsatt P.R.& O'Dowd D. (1976). Plant defense guilds. Science,193,24-29.
    Bai Y.Y., Zhang W.P., Jia X., Wang N., Zhou L., Xu S.S.& Wang G.X. (2010). Variation in root:shoot ratios induced the differences between above and belowground mass-density relationships along an aridity gradient. Acta Oecologica, in press.
    Bell G. (2001). Neutral macroecology. Science,293,2413-2418.
    Bertness M.D. (1989). Intraspecific competition and facilitation in a northern acorn barnacle population. Ecology,70,257-268.
    Bertness M.D.& Callaway R; (1994). Positive interactions in communities. Trends in Ecology and Evolution,9,191-193.
    Bertness M.D.& Ewanchuk P.J. (2002). Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes. Oecologia,132,392-401.
    Bertness M.D.& Leonard GH. (1997). The role of positive interactions in communities:lessons from intertidal habitats. Ecology,78,1976-1989.
    Bertness M.D., Leonard G.H., Levine J.M.& Bruno J.F. (1999). Climate-driven interactions among rocky intertidal organisms caught between a rock and a hot place. Oecologia,120,.446-450.
    Bertness M.D.& Shumway S.W. (1993). Competition and facilitation in marsh plants. American Naturalist,142,718-724.
    Bhattarai K.R.& Vetaas O.R. (2006). Can Rapoport's rule explain tree species richness along the Himalayan elevation gradient, Nepal? Diversity and Distributions,12,373-378.
    Bolker B. (2008). Ecological models and data in R. Princeton University Press, Princeton, New Jersry, USA.
    Bonan G.B. (1991). Density effects on the size structure of annual plant populations: An indication of neighbourhood competition. Annals of Botany,68,341-347.
    Bonsall M.B., Jansen V.A.A.& Hassell M.P. (2004). Life history trade-offs assemble ecological guilds. Science,306,111-114.
    Brett M.T. (2004). When is a correlation between non-independent variables "spurious"? Oikos,105,647-656.
    Bronstein J.L. (2009). The evolution of facilitation and mutualism. Journal of Ecology,97,1160-1170.
    Brooker R.W. (2006). Plant-plant interactions and environmental change. New Phytologist,171,271-284.
    Brooker R.W.& Callaghan T.V. (1998). The balance between positive and negative plant interactions and its relationship to environmental gradients:A model. Oikos,81,196-207.
    Brooker R.W.& Callaway R.M. (2009). Facilitation in the conceptual melting pot. Journal of Ecology,97,1117-1120.
    Brooker R.W.& Kikvidze Z. (2008). Importance:An overlooked concept in plant interaction research. Journal of Ecology,96,703-708.
    Brooker R.W., Kikvidze Z., Pugnaire F.I., Callaway R.M., Choler P., Lortie C.J.& Michalet R. (2005). The importance of importance. Oikos,109,63-70.
    Brooker R.W., Maestre F.T., Callaway R.M., Lortie C.L., Cavieres L.A., Kunstler G, Liancourt P., Tielborger K., Travis J.M.J., Anthelme F., Armas C, Coll L., Corcket E., Delzon S., Forey E., Kikvidze Z., Olofsson J., Pugnaire F., Quiroz C.L., Saccone P., Schiffers K., Seifan M., Touzard B.& Michalet R. (2008). Facilitation in plant communities:the past, the present, and the future. Journal of Ecology,96,18-34.
    Brown J.H., Gillooly J.F., Allen A.P., Savage V.M.& West GB. (2004). Toward a metabolic theory of ecology. Ecology,85,1771-1789.
    Bruno J.F., Stachowicz J.J.& Bertness M.D. (2003). Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution,18,119-125.
    Cadotte M.W. (2007a). Competition-colonization trade-offs and disturbance effects at multiple scales. Ecology,88,823-829.
    Cadotte M.W. (2007b). Concurrent niche and neutral processes in the competition-colonization model of species coexistence. Proceedings of the Royal Society of London-Biological Sciences,274,2739-2744.
    Calcagno V., Mouquet N., Jarne P.& David P. (2006). Coexistence in a metacommunity:the competition-colonization trade-off is not dead. Ecology Letters,9,2006.
    Callaway R.M. (1991). Facilitation and interference of Quercus douglasii on understory productivity in central California. Ecology,72,1484-1499.
    Callaway R.M. (1995). Positive interactions among plants. Botanical Review,61, 306-349.
    Callaway R.M. (1997). Positive interactions in plant communities and the individualistic-continuum concept. Oecologia,112,143-149.
    Callaway R.M. (1998a). Are positive interactions species-specific? Oikos,82, 202-207.
    Callaway R.M. (1998b). Competition and facilitation on elevation gradients in subalpine forests of the northern Rocky Mountains, USA. Oikos,82,561-573.
    Callaway R.M. (2007). Positive interactions and interdependence in plant communities. Springer, Dordrecht, The Netherlands.
    Callaway R.M., Brooker R.W., Choler P., Kikvidze Z., Lortie C.J., Michalet R., Paolini L., Pugnaire F.I., Newingham B., Aschehoug E.T., Armas C, Kikodze D.& Cook B.J. (2002). Positive interactions among alpine plants increase with stress. Nature,417,844-848.
    Callaway R.M., Kikodze D., Chiboshvili M.& Khetsuriani L. (2005). Unpalatable plants protect neighbors from grazing and increase plant community diversity. Ecology,86,1856-1862.
    Callaway R.M., Nadkarni N.M.& Mahall B.E. (1991). Facilitation and interference of Quercus douglasii on understory productivity in central California. Ecology, 72,1484-1499.
    Callaway R.M.& Pennings S.C. (2000). Facilitation may buffer competitive effects: Indirect and diffuse interactions among salt marsh plants. American Naturalist, 156,416-424.
    Capellini I., Venditti C.& Barton R.A. (2010). Phylogeny and metabolic scaling in mammals. Ecology, in press.
    Castro J., Zamora R., Hodar J.A.& Gomez J.M. (2002). Use of shrubs as nurse plants: A new technique for reforestation in Mediterranean Mountains. Restoration Ecology,10,297-305.
    Cavieres L.& Badano E.I. (2009). Do facilitative interactions increase species richness at the entire community level? Journal of Ecology,97,1181-1191.
    Chase J.M.& Leibold M.A. (2003). Ecological niche:Linking classical and contemporary approaches. University of Chicago Press, Chicago, USA.
    Chave J., Muller-Landau H.C.& Levin S.A. (2002). Comparing classical community models:Theoretical consequences for patterns of diversity. American Naturalist,159,1-23.
    Chen K., Kang H.M., Bai J., Fang X.W.& Wang G. (2008). Relationship between the virtual dynamic thinning line and the self-thinning boundary line in simulated plant populations. Journal of Integrative Plant Biology,50,280-290.
    Chen L., Mi X.C., Comita L., Zhang L.W., Ren H.B.& Ma K.P. (2010). Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest. Ecology letters, In press.
    Cheng D.L., Wang G.X., Chen B.M.& Wei X.P. (2006). Positive interactions:Crucial organizers in a plant community. Journal of Integrative Plant Biology,48, 128-136.
    Chesson P. (1982). The stabilizing effect of a random environment. Journal of Mathematical Biology,15,1-36.
    Chesson P. (1984). The storage effect in stochastic population models. Lecture Notes in Biomathematics,54,76-89.
    Chesson P. (2000a). General theory of competitive coexistence in spatially varying environments. Theoretical Population Biology,58,211-237.
    Chesson P. (2000b). Mechanisms of maintenance of species diversity. Annual Review of Ecology, Evolution, and Systematics,31,343-366.
    Chesson P.& Huntly N. (1997). The roles of harsh and fluctuating conditions in the dynamics of ecological communities. American Naturalist,150,519-553.
    Chesson P.& Rees M. (2007). Commentary:Resolving the biodiversity paradox. Ecology Letters,10,659-661.
    Chesson P.& Warner R.R. (1981). Environmental variability promotes coexistence in lottery competitive systems. American Naturalist,117,923-943.
    Choler P., Michalet R.& Callaway R.M. (2001). Facilitation and competition on gradients in alpine plant communities. Ecology,82,3295-3308.
    Chu C.J., Maestre F., Xiao S., Weiner J., Wang Y.S., Duan Z.H.& Wang G. (2008). Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters,11, 1189-1197.
    Chu C.J., Wang Y.S., Du G.Z., Maestre T, Luo Y.J.& Wang G (2007). On the balance between niche and neutral processes as drivers of community structure along a successional gradient:Insights from alpine and sub-alpine meadow communities. Annals of Botany,100,807-812.
    Chu C.J., Wang Y.S., Li Q., Zhao L.Q., Ren Z.W., Xiao S., Yuan J.L.& Wang G (2009a). Effects of traits, species identity and local environmental conditions on the assessment of interactions:insights from an alpine meadow community. Journal of Plant Ecology,2,135-141.
    Chu C.J., Weiner J., Maestre F.T., Xiao S., Wang Y.S., Li Q., Yuan J.L., Zhao L.Q., Ren Z.W.& Wang G (2009b). Positive interactions can increase size inequality in plant populations. Journal of Ecology,97,1401-1407.
    Clements F.E. (1916). Plant succession:An analysis of the development of vegetation. Carnegic Institution of Washington, Washington, USA.
    Connell J.H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In:(eds. Boer BJ.& Gradwell GR.). Centre for Agricultural Publishing and Documentation, Wageningen, pp.298-310.
    Courchamp F., Clutton-Brock T.& Grenfell B. (1999). Inverse density dependence and the Allee effect. Trends in Ecology and Evolution,14,405-410.
    Crain C.M. (2008). Interactions between marsh plant species vary in direction and strength depending on environmental and consumer context. Journal of Ecology,96,166-173.
    Damgaard C.& Weiner J. (2000). Describing inequality in plant size or fecundity. Ecology,81,1139-1142.
    Damuth J. (1981). Population density and body size in mammals. Nature,290, 699-700.
    Damuth J. (1991). Of size and abundance. Nature,351,268-269.
    Darwin C. (1859). The origin of species by means of natural selection. Murrary, London, UK.
    Day R.W.& Quinn G.P. (1989). Comparison of treatments after an analysis of variance in ecology. Ecological Monographs,59,433-463.
    DeAngelis D.L., Post W.M.& Travis C.C. (1986). Positive feedback in natural systems. Springer, Berlin, Germany.
    Deng J.M., Wang GX., Morris E.C., Wei X.P., Li D.X., Chen B.M., Zhao C.M., Liu J. & Wang Y. (2006). Plant mass-density relationship along a moisture gradient in north-west China. Journal of Ecology,94,953-958.
    Dickie.I.A., Schnitzer S.A., Reich P.B.& Hobbie S.E. (2005). Spatially disjunct effects of co-occurring competition and facilitation. Ecology Letters,8, 1191-1200.
    Dieckmann U., Law R.& Metz J.A.J. (2000). The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, Cambridge, UK.
    Dixon P.M., Weiner J., Mitchell-Olds T.& Woodley R. (1987). Bootstrapping the Gini coefficient of inequality. Ecology,68,1548-1551.
    Dormann C.F.& Brooker R.W. (2002). Facilitation and competition in the high Arctic: The importance of the experimental approach. Acta Oecologica,23,297-301.
    Du G.Z.& Wang G (1992). A study on size hierachies of individuals of Elymus nutans population under different densities. Journal of Plant Ecology (formly Acta Botanica Sinica),34,937-944.
    Ellwood M.D.F., Manica A.& Foster W. (2009). Stochastic and deterministic processes jointly structure tropical arthropod communities. Ecology Letters,12, 277-284.
    Elton C.S. (1927). Animal Ecology. Sedgwick and Jackson, London, UK.
    Eskelinen A. (2008). Herbivore and neighbour effects on tundra plants depend on species identity, nutrient availability and local environmental conditions. Journal of Ecology,96,155-165.
    Flores J.& Jurado E. (2003). Are nurse-protege interactions more common among plants from arid environments? Journal of Vegetation Science,14,911-916.
    Fuentes M. (2004). Slight differences among individuals and the unified neutral theory of biodiversity. Theoretical Population Biology,66,199-203.
    Gause G.F.& Witt A. A. (1935). Behavior of mixed populations and the problem of natural selection. American Naturalist,69,596-609.
    Gilbert B.& Lechowicz M.J. (2004). Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences of USA, 101,7651-7656.
    Gilbert B., Wright J., Muller-Landau H.C., Kitajima K.& Hernandez A. (2006). Life history trade-offs in tropical trees and lianas. Ecology,87,1281-1288.
    Gilman S.E., Urban M.C., Tewksbury J., Gilchrist G.W.& Holt R.D. (2010). A framework for community interactions under climate change. Trends in Ecology and Evolution, in press.
    Glazier D.S. (2006). The 3/4-power law is not universal:evolution of isometric, ontogenetic metabolic scaling in pelagic animals. BioScience,56,325-332.
    Glazier D.S. (2009). Activity affects intraspecific body-size scaling of metabolic rate in ectothermic animals. Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology,179,821-828.
    Gleason H.A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club,53,7-26.
    Goldberg D.E.& Barton A.M. (1992). Patterns and consequences of interspecific competition in natural communities:A review of field experiments with plants. American Naturalist,139,771-801.
    Goldberg D.E., Rajaniemi T., Gurevitch J.& Stewart-Oaten A. (1999). Empirical approaches to quantifying interaction intensity:Competition and facilitation along productivity gradients. Ecology,80,1118-1131.
    Gotelli N.J., Graves G.R.& Rahbek C. (2010). Macroecological signals species interactions in the Danish avifauna. Proceedings of the National Academy of Science of USA,107,5030-5035.
    Grace J.B., Anderson T.M., Smith M.D., Seabloom E., Andelman S.J., Meche G, Weiher E., Allain L.K., Jutila H., Sankaran M., Knops J., Ritchie M.& Willig M.R. (2007). Does species diversity limit productivity in natural grassland communities? Ecology Letters,10,680-689.
    Gravel D., Canham C.D., Beaudet M.& Messier C. (2006). Reconciling niche and neutrality:The continuum hypothesis. Ecology Letters,9,399-409.
    Grime J.P. (1974). Competitive exclusion in herbaceous vegetation. Nature,242, 344-347.
    Grimm V.& Railsback S.F. (2005). Individual-based modeling and ecology. Princeton University Press, Princeton, New Jersry, USA.
    Grimm V., Revilla E., Berger U., Jeltsch F., Mooij W.M., Railsback S.F., Thulke H., Weiner J., Wiegand T.& DeAngelis D.L. (2005). Pattern-oriented modeling of agent-based complex systems:Lessons from ecology. Science,310,987-991.
    Grinnell J. (1917). The niche-relationships of the California Thrasher. Auk,34, 427-433.
    Gross K. (2008). Positive interactions among competitors can produce species-rich communities. Ecology Letters,11,929-936.
    Grytnes J.A.& Vetaas O.R. (2002). Species richness and altitude:a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. American Naturalist,159,294-304.
    Herault B. (2007). Reconciling niche and neutrality through the Emergent Group approach. Perspectives in Plant Ecology, Evolution and Systematics,9,71-78.
    Hacker S.D.& Bertness M.D. (1999). Experimental evidence for factors maintaining plant species diversity in a new England salt marsh. Ecology,80,2064-2073.
    Hacker S.D.& Gaines S.D. (1997). Some implications of direct positive interactions for community species diversity. Ecology,78,1990-2003.
    Harper J.L. (1977). Population biology of plants. Academic Press, London, UK.
    Harpole W.S.& Tilman D. (2006). Non-neutral patterns of species abundance in grassland communities. Ecology Letters,9,15-23.
    Harpole W.S.& Tilman D. (2007). Grassland species loss resulting from reduced niche dimension. Nature,446,791-793.
    Harrison S.& Cornell H. (2008). Toward a better understanding of the regional causes of local community richness. Ecology Letters,11,969-979.
    Holzapfel C.& Mahall B.E. (1999). Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology,80,1747-1761.
    Holzapfel C, Tielborger K., Paragb H.A., Kigel J.& Sternberga M. (2006). Annual plant-shrub interactions along an aridity gradient. Basic and Applied Ecology, 7,268-279.
    Hubbell S. (2001). The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, New Jersry, USA.
    Hubbell S.P. (1979). Tree dispersion, abundance, and diversity in a tropical dry forest. Science,203,1299-1309.
    Hunter A.F.& Aarssen L.W. (1988). Plants helping plants. BioScience,38,34-40.
    Hutchinson G.E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology,22,415-427.
    Isaac N.J.B.& Carbone C. (2010). Why are metabolic scaling exponents so controversial? Quantifying variance and testing hypotheses. Ecology Letters, m press.
    Janzen D.H. (1970). Herbivores and the number of tree species in tropical forests. American Naturalist,104,501-508.
    Korner C. (1998). Alpine plants:Stressed or adapted? In:Physiological plant ecology (eds. Press M.C., Scholes J.D.& Barker M.G). Blackwell Science, Oxford, UK, pp.297-311.
    Korner C. (1999). Alpine plant life. Springer, Heidelberg, DE.
    Korner C. (2003). Limitation and stress-always or never? Journal of Vegetation Science,14,141-143.
    Kessler M. (2009). The impact of population processes on patterns of species richness: Lessons from elevational gradients. Basic and Applied Ecology,10,295-299.
    Kikvidze Z., Khetsuriani L., Kikodze D.& Callaway R.M. (2001). Facilitation and interference in subalpine meadows of the central Caucasus. Journal of Vegetation Science,12,833-838.
    Kikvidze Z., Khetsuriani L., Kikodze D.& Callaway R.M. (2006). Seasonal shifts in competition and facilitation in subalpine plant communities of the central Caucasus. Journal of Vegetation Science,17,77-82.
    Kikvidze Z., Pugnaire F.I., Brooker R.W., Choler P., Lortie C.J., Michalet R.& Callaway R.M. (2005). Linking patterns and processes in alpine plant communities:A global study. Ecology,86,1395-1400.
    Kimura M. (1968). Evolutionary rate at the molecular level. Nature,217,624-626.
    Klanderud K. (2005). Climate change effects on species interactions in an alpine plant community. Journal of Ecology,93,127-137.
    Klanderud K. (2008). Species-specific responses of an alpine plant community under simulated environmental change. Journal of Vegetation Science,19,363-372.
    Kneitel J.M.& Chase J.M. (2004). Trade-offs in community ecology:Linking spatial scales and species coexistence. Ecology Letters,7,69-80.
    Kolokotrones T., Savage V.M., Deeds E.J.& Fontana W. (2010). Curvature in metabolic scaling. Nature,464,753-756.
    Leslie H.M. (2005). Positive intraspecific effects trump negative effects in high-density barnacle aggregations. Ecology,86,2716-2725.
    Levine J.M.& D'Antonio C.M. (1999). Elton revisited:A review of evidence linking diversity and invasibility. Oikos,87,15-26.
    Liancourt P., Callaway R.M.& Michalet R. (2005). Stress tolerance and competitive-response ability determine the outcome of biotic interactions. Ecology,86,1611-1618.
    Lin K., Zhang D.Y.& He F.L. (2009). Demographic trade-offs in a neutral model explain death-rate-abundance-rank relationship. Ecology,90,31-38.
    Liu J., Wei L., Wang C.M., Wang GX.& Wei X.P. (2006). Effect of water deficit on self-thinning line in spring wheat (Triticum aestivum L.) populations. Journal of Integrative Plant Biology,48,415-419.
    Lonsdale W.M. (1990). The self-thinning rule:Dead or alive? Ecology,71, 1373-1388.
    Lonsdale W.M.& Watkinson A.R. (1982). Light and self-thinning. New Phytologist, 90,431-445.
    Loreau M.& Hector A. (2001). Partitioning selection and complementarity in biodiversity experiments. Nature,412,72-76.
    Loreau M., Naeem S.& Inchausti P. (2002). Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, UK.
    Lortie C.J., Brooker R.W., Choler P., Kikvidze Z., Michalet R., Pugnaire F.I.& Callaway R.M. (2004a). Rethinking plant community theory. Oikos,107, 433-438.
    Lortie C.J., Brooker R.W., Kikvidze Z.& Callaway R.M. (2004b). The value of stress and limitation in an imperfect world:A reply to Korner. Journal of Vegetation Science,15,577-580.
    Lortie C.J.& Callaway R.M. (2006). Re-analysis of meta-analysis:Support for the stress-gradient hypothesis. Journal of Ecology,94,7-16.
    Maestre F.T., Callaway R.M., Valladares F.& Lortie C.J. (2009). Refining the stress-gradient hypothesis, for competition and facilitation in plant communities. Journal of Ecology,97,199-205.
    Maestre F.T.& Cortina J. (2004). Do positive interactions increase with abiotic stress? A test from a semi-arid steppe. Proceedings of the Royal Society of London-Biological Sciences,271, S331-S333.
    Maestre F.T., Valladares F.& Reynolds J.F. (2005). Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. Journal of Ecology,93,748-757.
    Maestre F.T., Valladares F.& Reynolds J.F. (2006). The stress-gradient hypothesis does not fit all relationships between plant-plant interactions and abiotic stress: Further insights from arid environments. Journal of Ecology,94,17-22.
    Malkinson D.& Tielborger K. (2010). What does the stress-gradient hypothesis predict? Resolving the discrepancies. Oikos, In press.
    Manly B.F.J. (1997). Randomization, Bootstrap and Monte Carlo methods in biology. Chapman and Hall, London, UK.
    May R.& McLean A. (2007). Theoretical ecology:Principles and applications. Oxford University Press, Oxford, UK.
    McGill B.J. (2010). Matters of scale. Science,328,575-576.
    Miao S.L., Carstenn S.& Nungesser M. (2009). Real world ecology:Large-scale and long-term case studies and methods. Springer Verlag, New York, USA.
    Michalet R. (2006). Is facilitation in arid environments the result of direct or complex interactions? New Phytologist,169,3-6.
    Michalet R. (2007). Highlighting the multiple drivers of change in interactions along stress gradients. New Phytologist,173,3-5.
    Michalet R., Brooker R.W., Cavieres L.A., Kikvidze Z., Lortie C.J., Pugnaire F.I., Valiente-Banuet A.& Callaway R.M. (2006). Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecology Letters,9,767-773.
    Miriti M.N. (2006). Ontogenetic shift from facilitation to competition in a desert shrub. Journal of Ecology,94,973-979.
    Molofsky J.& Bever J.D. (2002). A novel theory to explain species diversity in landscapes:Positive frequency dependence and habitat suitability. Proceedings of the Royal Society of London-Biological Sciences,269, 2389-2393.
    Molofsky J., Bever J.D.& Antonovics J. (2001). Coexistence under positive frequency dependence. Proceedings of the Royal Society of London Biological Sciences,2001,268-277.
    Mulder C.P.H., Uliassi D.D.& Doak D.F. (2001). Physical stress and diversity-productivity relationships:The role of positive interactions. Proceedings of the National Academy of Sciences of USA,98,6704-6708.
    Muller-Landau H.C., Condit R.S., Chave J., Thomas S.C., Bohlman S.A., Bunyavejchewin S., Davies S., Foster R., Gunatilleke S., Gunatilleke N., Harms K.E., Hart T., Hubbell S.P., Itoh A., Kassim A.R., LaFrankie J.V., Lee H.S., Losos E., Makana J.R., Ohkubo T., Sukumar R., Sun I.F., Nur Supardi M.N., Tan S., Thompson J., Valencia R., Munoz G.V., Wills C., Yamakura T., Chuyong G., Dattaraja H.S., Esufali S., Hall P., Hernandez C., Kenfack D.& Kiratiprayoon S. (2006). Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters,9, 575-588.
    Newton P. F. (2006). Asymptotic size-density relationships within self-thinning black spruce and jack pine stand-types:Parameter estimation and model reformulations. Forest Ecology and Management,226,49-59.
    Nicolson M.& McIntosh R.P. (2002). H. A. Gleason and the individualistic hypothesis revisited. Bulletin of the Ecological Society of America,83, 133-142.
    Niu S.L.& Wan S.Q. (2008). Warming changes species competitive hierarchy in a temperate steppe of northern China. Journal of Plant Ecology,1,103-110.
    Noy-Meir I.& Van der Maarel E. (1987). Relations between community theory and community analysis in vegetation science:Some historical perspectives. Vegetatio,69,5-15.
    Ohta T. (1992). The nearly neutral theory of molecular evolution. Annual Review of Ecology and Systematics,23,263-286.
    Oksanen L., Sammul M.& Magi M. (2006). On the indices of plant-plant competition and their pitfalls. Oikos,112,149-155.
    Olofsson J. (2004). Positive and negative plant-plant interactions in two contrasting arctic-alpine plant communities. Arctic, Antarctic, and Alpine Research,36, 464-467.
    Olofsson J., Moen J.& Oksanen L. (1999). On the balance between positive and negative plant interactions in harsh environments. Oikos,86,539-543.
    Oommen M.A.& Shanker K. (2005). Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. Ecology,86, 3039-3047.
    Pakeman R.J., Pugnaire F.I., Michalet R., Lortie C.J., Schiffers K., Maestre F.T.& Travis J.M.J. (2009). Is the cask of facilitation ready for bottling? A symposium on the connectivity and future directions of positive plant interactions. Biology Letters,5,577-579.
    Pan X.Y., Wang G.X., Yang H.M.& Wei X.P. (2003). Effect of water deficits on within-plot variability in growth and grain yield of spring wheat in northwest China. Field Crops Research,80,195-205.
    Pennings S.C., Selig E.R., Houser L.T.& Bertness M.D. (2003). Geographic variation in positive and negative interactions among salt marsh plants. Ecology,84, 1527-1538.
    Qiu B.& Du GZ. (2004). Light competition can cause a decline in diversity with increased productivity in an alpine meadow. Acta Botanica Boreali-Occidentalia Sinica,24,1646-1650.
    Quero J.L., G6mez-Aparicio L., Zamora R.& Maestre F.T. (2008). Shifts in the regeneration niche of an endangered tree (Acer opalus subsp. granatense) during ontogeny:Using an ecological concept for application. Basic and Applied Ecology,9,635-644.
    Rahbek C.& Graves GR. (2001). Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Science of USA,98, 4534-4539.
    Rangel T.F.L.V.B.& Diniz-Filho J.A.F. (2005). Neutral community dynamics, the mid-domain effect and spatial patterns in species richness. Ecology Letters,8, 783-790.
    Reisman-Berman O. (2007). Age-related change in canopy traits shifts conspecific facilitation to interference in a semi-arid shrubland. Ecography,30,459-470.
    Richardson D.M., Allsopp N., D'Antonio C.M., Milton S.J.& Rejmanek M. (2000). Plant invasions-the role of mutualisms. Biological Reviews,75,65-93.
    Roughgarden J.& Diamond J. (1986). The role of interactions in community ecology. In:Community ecology (eds. Diamond J.& Case T.J.). Harper and Row, New York, USA, pp.333-343.
    Sanders N.J.& Gordon D.M. (2003). Resource-dependent interactions and the organization of desert ant communities. Ecology,84,1024-1031.
    Schiffers K.& Tielborger K. (2006). Ontogenetic shifts in interactions among annual plants. Journal of Ecology,94,336-341.
    Schwinning S.& Weiner J. (1998). Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia,113,447-455.
    Seifan M., Seifan T., Ariza C.&. Tielborger K. (2010). Facilitating an importance index. Journal of Ecology,98,356-361.
    Shen G.C., Yu M.J, Hu X.S., Mi X.C., Ren H.B., Sun I.F.& Ma K.P. (2009). Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecology,90,3033-3041.
    Shinozaki K.& Kira T. (1956). Intraspecific competition among higher plants. Ⅶ. Logistic theory of the C-D effect. Journal of the Institute of Polytechnics, Osaka City University, Series D,7,35-72.
    Sieg A.E., O'Connor M.P., McNair J.N., Grant B.W., Agosta S.J.& Dunham A.E. (2009). Mammalian metabolic allometry:Do intraspecific variation, phylogeny, and regression models matter? American Naturalist,174,720-733.
    Simberloff D.& Von Holle B. (1999). Positive interactions of nonindigenous species: Invasional meltdown? Biological Invasions,1,21-32.
    Song M., Tian Y, Xu X., Hu Q.& Ouyang H. (2006). Interactions between shoot and root competition among four plant species in an alpine meadow on the Tibetan Plateau. Acta Oecologica,29,214-220.
    Stachowicz J.J., Fried H., Osman R.W.& Whitlatch R.B. (2002). Reconciling pattern and process in marine bioinvasions:How important is diversity in determining community invasibility? Ecology,83,2575-2590.
    Stevens M.H.H.& Carson W.P. (1999). Plant density determines species richness along an experimental fertility gradient. Ecology,80,455-465.
    Stoll P., Weiner J., Muller-Landau H., Miiller E.& Hara T. (2002). Size symmetry of competition alters biomass-density relationships. Proceedings of the Royal Society of London-Biological Sciences,269,2191-2195.
    Sumanta B. (2007). Relationship between size hierarchy and density of trees in a tropical dry forest of western India. Journal of Vegetation Science,18, 389-394.
    Thompson R.& Townsend C. (2006). A truce with neutral theory:Local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. Journal of Animal Ecology,75,476-484.
    Tilman D. (1982). Resource competition and community structure. Princeton University Press, Princeton, New Jersry, USA.
    Tilman D. (1994). Competition and biodiversity in spatially structured habitats. Ecology,75,2-16.
    Tilman D. (2004). Niche tradeoffs, neutrality, and community structure:A stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences of USA,101,10854-10861.
    Travis J.M.J., Brooker R.W., Clark E.J.& Dytham C. (2006). The distribution of positive and negative species interactions across environmental gradients on a dual-lattice model. Journal of Theoretical Biology,241,896-902.
    Travis J.M.J., Brooker R.W.& Dytham C. (2005). The interplay of positive and negative species interactions across an environmental gradient:Insights from an individual-based simulation model. Biology Letters,1,5-8.
    Turner M.D.& Rabinowitz D. (1983). Factors affecting frequency distributions of plant mass:The absence of dominance and suppression in Festuca paradoxa. Ecology,64,469-475.
    Volkov I., Banavar J.R., He F., Hubbell S.P.& Maritan A. (2005). Density dependence explains tree species abundance and diversity in tropical forests. Nature,438, 658-661.
    Walker M.D., Wahren C.H., Hollister R.D., Henry G.H.R, Ahlquist L.E., Alatalo J.M., Bret-Harte M.S., Calef M.P., Callaghan T.V., Carroll A.B., Epstein H.E., Jonsdottir I.S., Klein J.A., Magnusson B., Molau U., Oberbauer S.F., Rewa S.P., Robinson C.H., Shaver GR., Suding K.N., Thompson C.C., Tolvanen A., Totland (?)., Turner, P.L., Tweedie C.E., Webber P.J.& Wookey P.A. (2006). Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Science of USA,103,1342-1346.
    Wang G, Yuan J.L., Wang X.Z, Xiao S.& Huang W.B. (2004). Competitive regulation of plant allometry and a generalized model for the self-thinning process. Bulletin of Mathematical Biology,66,1875-1885.
    Wang Y.S., Chu C.J., Maestre F.T.& Wang G. (2008). On the relevance of facilitation in alpine meadow communities:An experimental assessment with multiple species differing in their ecological optimum. Acta Oecologica,33,108-113.
    Watkins J.E., Cardelus C., Colwell R.K.& Moran R.C. (2006). Species richness and distribution of ferns along an elevational gradient in Costa Rica. American Journal of Botany,93,73-83.
    Weiner J. (1986). How competition for light and nutrients affects size variability in Ipomoea tricolor populations. Ecology,67,1425-1427.
    Weiner J. (1990). Aysmmetric competition in plant populations. Trends in Ecology and Evolution,5,360-364.
    Weiner J.& Damgaard C. (2006). Size-asymmetric competition and size-asymmetric growth in a spatially explicit zone-of-influence model of plant competition. Ecological Research,21,707-712.
    Weiner J.& Freckleton R.P. (2010). Constant final yield. Annual Review of Ecology, Evolution, and Systematics,41, in press.
    Weiner J., Stoll P., Muller-Landau H.& Jasentuliyana A. (2001). The effects of density, spatial pattern and competitive symmetry on size variation in simulated plant population. American Naturalist,158,438-450.
    Weiner J.& Thomas S.C. (1986). Size variability and competition in plant monocultures. Oikos,47,211-222.
    Weller D.E. (1987). A reevaluation of the-3/2 power rule of plant self-thinning. Ecological Monographs,57,23-43.
    West G.B.& Brown J.H. (2004). Life's universal scaling laws. Physics Today,57, 36-43.
    West G.B.& Brown J.H. (2005). The origin of allometric scaling laws in biology from genomes to ecosystems:Towards a quantitative unifying theory of biological structure and organization. The Journal of Experimental Biology,208, 1575-1592.
    West GB., Brown J.H.& Enquist B.J. (1997). A general model for the origin of allometric scaling laws in biology. Science,276,122-126.
    Westoby M. (1984). The self-thinning rule. Advances in Ecological Research,14, 167-225.
    White C.R., Cassey P.& Blackburn T.M. (2007a). Allometric exponents do not support a universal metabolic allometry. Ecology,88,315-323.
    White E.P., Ernest S.K.M., Kerkhoff A.J.& Enquist B.J. (2007b). Relationships between body size and abundance in ecology. Trends in Ecology and Evolution,22,323-330.
    White J. (1981). The allometric interpretation of the self-thinning rule. Journal of Theoretical Biology,89,475-500.
    Wilensky U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for connected learning and computer-based modeling. Northwestern University.
    Wootton J.T. (2004). Markov chain models predict the consequences of experimental extinctions. Ecology Letters,1,653-660.
    Wu G.L., Chen M., Zhou X.H., Wang Y.& Du G.Z. (2006). Response of morphological plasticity of three herbaceous seedlings to light and nutrient in the Qing-hai Tibetan Plateau. Asian Journal of Plant Sciences,5,635-642.
    Xiao S., Michalet R., Wang G.& Chen S.Y. (2009). The interplay between species' positive and negative interactions shapes the community biomass-species richness relationship. Oikos,118,1343-1348.
    Yoda K., Kira T., Ogawa H.& Hozumi K. (1963). Self-thinning in overcrowded pure stands under cultivated and natural conditions. (Intraspecific competition among higher plants. Xl.). Journal of Biology, Osaka City University,14, 107-129.
    Yu D.W., Terborgh J.W.& Potts M.D. (1998). Can high tree species richness be explained by Hubbell's null model? Ecology Letters,1,193-199.
    Zeide B. (1987). Analysis of the 3/2 power law of self-thinning. Forest Science,33, 517-537.
    Zhang D.Y.& Lin K. (1997). The effects of competitive asymmetry on the rate of competitive displacement:How robust is Hubbell's community drift model? Journal of Theoretical Biology,188,361-367.
    Zhang Q.G, Buckling A.& Godfray H.C.J. (2009). Quantifying the relative importance of niches and neutrality for coexistence in a model microbial system. Functional Ecology,23,1139-1147.
    Zhou S.R.& Zhang D.Y. (2006). Allee effects and the neutral theory of biodiversity. Functional Ecology,20,509-513.
    Zhou S.R.& Zhang D.Y. (2008). A nearly neutral model of biodiversity. Ecology,89, 248-258.
    Zhu Y, Mi X.C., Ren H.B.& Ma K.P. (2010). Density dependence is prevalent in a heterogeneous subtropical forest. Oikos,119,109-119.
    方精云。1995。一种描述植物种群自然稀疏过程的经验模型。林业科学,31:247-253。
    牛克昌,刘怿宁,沈泽昊,何芳良,方精云。2009。群落构建的中性理论和生态位理论。生物多样性,17:579-593。
    沈泽昊,卢绮妍。2009。物种分布区范围地理格局的Rapoport法则。生物多样性,17:560-567。
    王刚。1993。关于植物自疏过程的一般模型。兰州大学学报(自然科学版),29:215-218。
    王刚,张大勇。1996。生物竞争理论。陕西科学技术出版社,西安。
    王襄平,方精云,唐志尧。2009。中域效应假说:模型、证据和局限性。生物多样性,17:568-578。
    王志恒,唐志尧,方精云。2009。物种多样性地理格局的能量假说。生物多样性,17:613-624。
    赵新全。2009。高寒草甸生态系统与全球变化。科学出版社,北京。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700