抑制M2型丙酮酸激酶是萘醌类化合物影响肿瘤细胞代谢和导致肿瘤细胞死亡的重要分子机制之一
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007年至2008,本研究小组报道了一系列萘醌类化合物——紫草素及其衍生物绕过耐药肿瘤细胞的抗凋亡——apoptosis和外排药物的机制,诱导肿瘤细胞发生程序性坏死——necroptosis,达到高效杀伤耐药肿瘤细胞的目的,为研发新的抗肿瘤药物提供了新的思路,即以紫草素及其衍生物的分子结构为模板来开发对肿瘤细胞的杀伤效果更好的药物,但是由于这些萘醌类化合物诱导肿瘤细胞程序性坏死的分子机制不确定,为新药开发方向带来一定的盲目性。本研究以发掘紫草素在肿瘤细胞中的靶蛋白为切入点,深入探讨紫草素及其衍生物,以及与紫草素分子结构类似的维生素K等萘醌类化合物参与肿瘤细胞中哪些分子机制,打乱了肿瘤细胞哪方面的生理平衡。首先通过solid-phase实验,我们发现紫草素与肿瘤细胞裂解液中M2型丙酮酸激酶特异结合,M2型丙酮酸激酶可能是紫草素的重要的靶蛋白。通过酶学实验,我们发现紫草素及其衍生物能够有效抑制M2型丙酮酸激酶的活性,其抑制效率远高于之前报道的M2型丙酮酸激酶小分子抑制剂一一compound3,并且紫草素对丙酮酸激酶不同的同工酶的抑制效果不同,其中对M2型丙酮酸激酶抑制效果最好。已知M2型丙酮酸激酶在肿瘤细胞里特异表达,是肿瘤细胞糖酵解代谢的最后一个限速酶,抑制了M2型丙酮酸激酶可能会对肿瘤细胞糖酵解代谢的有一定的抑制作用,药物处理后检测细胞培养液中葡萄糖和乳酸的含量,我们发现葡萄糖的消耗显著减少,乳酸的产生也显著降低,结果证实紫草素抑制了肿瘤细胞糖酵解的速率,并且对敏感肿瘤细胞株(MCF-7)和耐药细胞株(MCF-7/Adr、MCF-7/Bcl-2、MCF-7/Bcl-xL)的糖酵解代谢有类似的抑制效果。由于糖酵解调控肿瘤细胞能量和合成代谢基础物质的重要来源,抑制糖酵解很可能对肿瘤细胞造成致命打击,我们推测抑制M2型丙酮酸激酶的活性和糖酵解代谢可能是紫草素诱导肿瘤细胞产生程序性坏死的重要机制之一。通过细胞活性试验,我们发现M2型丙酮酸激酶mRNA被siRNA敲减以后,紫草素诱导产生程序性坏死的细胞比例变大,说明M2型丙酮酸激酶和紫草素诱导的程序性坏死有关。而将M1型丙酮酸激酶基因转染到肿瘤细胞中,导致细胞内丙酮酸激酶活性增加,细胞对紫草素的敏感度降低,再次证实细胞内M2型丙酮酸激酶是紫草素杀伤肿瘤细胞的重要的靶蛋白。通过相同的研究方法,我们发现维生素K3和K5对M2型丙酮酸激酶也有特异的抑制效果,它们也能够抑制肿瘤细胞糖酵解的速率,以及M2型丙酮酸激酶活性被抑制与维生素K3和K5单独杀伤肿瘤细胞的效果和作为辅助药物增加阿霉素毒性的效果相关。总之,本研究首次证实萘醌类化合物是M2型丙酮酸激酶的特异抑制剂,它们对肿瘤细胞的毒性和对M2型丙酮酸激酶活性的抑制相关,这为我们开发有前景的肿瘤药物提供了重要依据。
From2007to2008, our group has reported a serial of naphthoqinones-shikonin and its derivatives were necroptosis inducers that could bypass cancer drug resistance, which provides a new direction to develop anti-cancer drugs. However, the mechanism was unclear, which brought blindness in developing new drugs. This study tries to uncover the target of shikonin in cancer cells, and explore the mechanism of necroptosis caused by shikonin and its derivatives. Vitamin Ks are another serial of naphthoquinones with similar chemical structure of shikonin, and they are discovered to be potential in cancer therapy. This study also tries to find out whether the mechanism of vitamin Ks in killing cancer cells is similar to shikonin, and which homeostasis they break in cancer cells. First, the result of solid-phase experiment showed that shikonin could bind to pyruvate kinase M2(PKM2) in cell lysate, which implies that PKM2would be an important target of shikonin in vivo. Through the enzyme activity assay, we found that shikonin and its derivatives could inhibit the activity of PKM2, and they were much more efficient than the reported small chemical inhibitor of PKM2compound3. Furthermore, we found that shikonin inhibited isozymes of pyruvate kinase in different extent, and PKM2among its isozymes was inhibited the most by shikonin. Since PKM2is specifically expressed in cancer cells, and the last rate-limiting enzyme of glycolysis, the inhibition of PKM2's activity might induce the inhibition of glycolysis. Through quantifying glucose and lactate in culture medium after the treatment of cancer cells with shikonin, we proved that the consumption of glucose and the production of lactate were reduced, which demonstrated that the rate of glycolysis flux was attenuated by shikonin. And we also found that shikonin was efficient in inhibiting glycolysis of both sensitive cancer cell (MCF-7, MCF-7/Neo) and drug-resistant cancer cells (MCF-7/Adr, MCF-7/Bcl-2and MCF-7/Bcl-xL). Glycolysis is an important resource of energy and anabolism blocks in cancer cells. The inhibition of glycolysis might cause lethal damage to cancer cells. We hypothesized that shikonin might cause necroptosis partly by inhibiting PKM2and glycolysis. According to cell viability assay, we found that cancer cells were more sensitive to shikonin-induced necroptosis after the knock-down of PKM2by siRNA, which suggested that PKM2be related to shikonin-induced necroptosis. After the trasfection of PKM1into cancer cells, the activity of pyruvate kinase increased and cells were less sensitive to shikonin, which proved again that PKM2was an important target of shikonin in killing cancer cells. By similar experiments, we found that vitamin K3and K5inhibited PKM2specifically, as well as the rate of glycolysis. And we also discovered that PKM2was related to the toxicity caused by vitamin K3and K5alone or with doxorubicin. In conclusion, this study demonstrated for the first time that these naphthaquinones were specific inhibitors of PKM2, and the inhibition of PKM2was relevant to cancer cells' sensitivity to naphthoquinones, which provides important clues in developing promising anti-cancer drugs.
引文
[1]F.H. Igney, P.H. Krammer, Death and anti-death:tumour resistance to apoptosis. Nat Rev Cancer 2 (2002) 277-288.
    [2]D.B. Longley, P.G. Johnston, Molecular mechanisms of drug resistance. J Pathol 205 (2005) 275-292.
    [3]Y. Pommier, O. Sordet, S. Antony, R.L. Hayward, K.W. Kohn, Apoptosis defects and chemotherapy resistance:molecular interaction maps and networks. Oncogene 23 (2004) 2934-2949.
    [4]P. Hersey, X.D. Zhang, Overcoming resistance of cancer cells to apoptosis. J Cell Physiol 196 (2003) 9-18.
    [5]C.D. Gerharz, U. Ramp, M. Dejosez, C. Mahotka, B. Czarnotta, U. Bretschneider, I. Lorenz, M. Muller, P.H. Krammer, H.E. Gabbert, Resistance to CD95 (APO-1/Fas)-mediated apoptosis in human renal cell carcinomas:an important factor for evasion from negative growth control. Lab Invest 79 (1999) 1521-1534.
    [6]M.M. Gottesman, T. Fojo, S.E. Bates, Multidrug resistance in cancer:role of ATP-dependent transporters. Nat Rev Cancer 2 (2002) 48-58.
    [7]A.H. Schinkel, J.W. Jonker, Mammalian drug efflux transporters of the ATP binding cassette (ABC) family:an overview. Adv Drug Deliv Rev 55 (2003) 3-29.
    [8]R.G. Deeley, C. Westlake, S.P. Cole, Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 86 (2006) 849-899.
    [9]P.H. Krammer, P.R. Galle, P. Moller, K.M. Debatin, CD95(APO-1/Fas)-mediated apoptosis in normal and malignant liver, colon, and hematopoietic cells. Adv Cancer Res 75 (1998) 251-273.
    [10]P.H. Krammer, CD95(APO-1/Fas)-mediated apoptosis:live and let die. Adv Immunol 71 (1999) 163-210.
    [11]I. Schmitz, S. Kirchhoff, P.H. Krammer, Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 32 (2000) 1123-1136.
    [12]N. Zamzami, G. Kroemer, The mitochondrion in apoptosis:how Pandora's box opens. Nat Rev Mol Cell Biol 2 (2001) 67-71.
    [13]J.C. Martinou, D.R. Green, Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2 (2001) 63-67.
    [14]S.A. Susin, H.K. Lorenzo, N. Zamzami, I. Marzo, B.E. Snow, G.M. Brothers, J. Mangion, E. Jacotot, P. Costantini, M. Loeffler, N. Larochette, D.R. Goodlett, R. Aebersold, D.P. Siderovski, J.M. Penninger, G. Kroemer, Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397 (1999) 441-446.
    [15]N. Joza, S.A. Susin, E. Daugas, W.L. Stanford, S.K. Cho, C.Y. Li, T. Sasaki, A.J. Elia, H.Y. Cheng, L. Ravagnan, K.F. Ferri, N. Zamzami, A. Wakeham, R. Hakem, H. Yoshida, YY. Kong, T.W. Mak, J.C. Zuniga-Pflucker, G. Kroemer, J.M. Penninger, Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410 (2001) 549-554.
    [16]S. Fulda, K.M. Debatin, Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25 (2006) 4798-4811.
    [17]E. Bremer, G. van Dam, B.J. Kroesen, L. de Leij, W. Helfrich, Targeted induction of apoptosis for cancer therapy:current progress and prospects. Trends Mol Med 12(2006)382-393.
    [18]G. Mor, M.K. Montagna. A.B. Alvero, Modulation of apoptosis to reverse chemoresistance. Methods Mol Biol 414 (2008) 1-12.
    [19]S.K. Calderwood, D.R. Ciocca, Heat shock proteins:stress proteins with Janus-like properties in cancer. Int J Hyperthermia 24 (2008) 31-39.
    [20]S. Danson, E. Dean, C. Dive, M. Ranson, IAPs as a target for anticancer therapy. Curr Cancer Drug Targets 7 (2007) 785-794.
    [21]S.G. Prabhudesai, S. Rekhraj, G. Roberts, A.W. Darzi, P. Ziprin, Apoptosis and chemo-resistance in colorectal cancer. J Surg Oncol 96 (2007) 77-88.
    [22]S.J. Park, C.H. Wu, A.R. Safa, A P-glycoprotein- and MRP 1-independent doxorubicin-resistant variant of the MCF-7 breast cancer cell line with defects in caspase-6,-7,-8,-9 and-10 activation pathways. Anticancer Res 24 (2004) 123-131.
    [23]M. Weller, U. Malipiero, A. Aguzzi, J.C. Reed, A. Fontana, Protooncogene bcl-2 gene transfer abrogates Fas/APO-1 antibody-mediated apoptosis of human malignant glioma cells and confers resistance to chemotherapeutic drugs and therapeutic irradiation. J Clin Invest 95 (1995) 2633-2643.
    [24]L. Campos, J.P. Rouault, O. Sabido, P. Oriol, N. Roubi, C. Vasselon, E. Archimbaud, J.P. Magaud, D. Guyotat, High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81 (1993)3091-3096.
    [25]O. Hermine, C. Haioun, E. Lepage, M.F. d'Agay, J. Briere, C. Lavignac, G. Fillet, G. Salles, J.P. Marolleau, J. Diebold, F. Reyas, P. Gaulard, Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin's lymphoma. Groupe d'Etude des Lymphomes de l'Adulte (GELA). Blood 87 (1996) 265-272.
    [26]T. Miyashita, J.C. Reed, bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res 52 (1992) 5407-5411.
    [27]C.A. Schmitt, C.T. Rosenthal, S.W. Lowe, Genetic analysis of chemoresistance in primary murine lymphomas. Nat Med 6 (2000) 1029-1035.
    [28]H.W. Findley, L. Gu, A.M. Yeager, M. Zhou, Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia. Blood 89 (1997) 2986-2993.
    [29]L.H. Boise, M. Gonzalez-Garcia, C.E. Postema, L. Ding, T. Lindsten, L.A. Turka, X. Mao, G. Nunez, C.B. Thompson, bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74 (1993) 597-608.
    [30]M.G. Dole, R. Jasty, M.J. Cooper, C.B. Thompson, G. Nunez, V.P. Castle, Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res 55 (1995) 2576-2582.
    [31]M. Nagane, A. Levitzki, A. Gazit, W.K. Cavenee, H.J. Huang, Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci U S A 95 (1998) 5724-5729.
    [32]A.J. Minn, C.M. Rudin, L.H. Boise, C.B. Thompson, Expression of bcl-xL can confer a multidrug resistance phenotype. Blood 86 (1995) 1903-1910.
    [33]B. Xiao, Y.Q. Shi, Y.Q. Zhao, H. You, Z.Y. Wang, X.L. Liu, F. Yin, T.D. Qiao, D.M. Fan, Transduction of Fas gene or Bcl-2 antisense RNA sensitizes cultured drug resistant gastric cancer cells to chemotherapeutic drugs. World J Gastroenterol 4 (1998)421-425.
    [34]B. Jansen, H. Schlagbauer-Wadl, B.D. Brown, R.N. Bryan, A. van Elsas, M. Muller, K. Wolff, H.G. Eichler, H. Pehamberger, bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med 4 (1998) 232-234.
    [35]J.S. Waters, A. Webb, D. Cunningham, P.A. Clarke, F. Raynaud, F. di Stefano, F.E. Cotter, Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma. J Clin Oncol 18(2000) 1812-1823.
    [36]C.H. Choi, ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int 5 (2005) 30.
    [37]S.V. Ambudkar, S. Dey, C.A. Hrycyna, M. Ramachandra, I. Pastan, M.M. Gottesman, Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39 (1999) 361-398.
    [38]B. Sarkadi, L. Homolya, G. Szakacs, A. Varadi, Human multidrug resistance ABCB and ABCG transporters:participation in a chemoimmunity defense system. Physiol Rev 86 (2006) 1179-1236.
    [39]G. Szakacs, J.K. Paterson, J.A. Ludwig, C. Booth-Genthe, M.M. Gottesman, Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5 (2006) 219-234.
    [40]Y.N. Chen, L.A. Mickley, A.M. Schwartz, E.M. Acton, J.L. Hwang, A.T. Fojo, Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J Biol Chem 265 (1990) 10073-10080.
    [41]M. Dean, T. Fojo, S. Bates, Tumour stem cells and drug resistance. Nat Rev Cancer 5(2005)275-284.
    [42]C. Hirschmann-Jax, A.E. Foster, G.G. Wulf, J.G Nuchtern, T.W. Jax, U. Gobel, M.A. Goodell, M.K. Brenner, A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101 (2004) 14228-14233.
    [43]H. Okada, T.W. Mak, Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4 (2004) 592-603.
    [44]P. Golstein, G. Kroemer, A multiplicity of cell death pathways. Symposium on apoptotic and non-apoptotic cell death pathways. EMBO Rep 8 (2007) 829-833.
    [45]X. Hu, Y. Xuan, Bypassing cancer drug resistance by activating multiple death pathways--a proposal from the study of circumventing cancer drug resistance by induction of necroptosis. Cancer Lett 259 (2008) 127-137.
    [46]X. Hu, W. Han, L. Li, Targeting the weak point of cancer by induction of necroptosis. Autophagy 3 (2007) 490-492.
    [47]A. Degterev, Z. Huang, M. Boyce, Y. Li, P. Jagtap, N. Mizushima, G.D. Cuny, T.J. Mitchison, M.A. Moskowitz, J. Yuan, Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1 (2005)112-119.
    [48]A. Degterev, J. Hitomi, M. Germscheid, I.L. Ch'en, O. Korkina, X. Teng, D. Abbott, G.D. Cuny, C. Yuan, G. Wagner, S.M. Hedrick, S.A. Gerber, A. Lugovskoy, J. Yuan, Identification of RIP 1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4 (2008) 313-321.
    [49]黄河,刘宗潮,紫草素及其衍生物的抗肿瘤作用.肿瘤防治杂志12(2005)4.
    [50]周延萌,高允生,中药紫草的药理作用与临床应用.医药导报27(2008)3.
    [51]V.P. Papageorgiou, A.N. Assimopoulou, E.A. Couladouros, D. Hepworth, K.C. Nicolaou, The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angew Chem Int Edit 38 (1999) 270-301.
    [52]S.H. Kim, G.Y. Song, G.Z. Jin, B.Z. Ahn, Antitumor activity of arylacetylshikonin analogues. Arch Pharm Res 19 (1996) 416-422.
    [53]S.H. Kim, G.Y. Song, D.E. Sok, B.Z. Ahn, Anti-cell adhesive effect of phenylacetylshikonin analogues related to their cytotoxicity in A549 cells. Arch Pharm Res 20 (1997) 155-157.
    [54]J.S. Driscoll, G.F. Hazard, H.B. Wood, A. Goldin, Structure-Antitumor Activity Relationships among Quinone Derivatives. Cancer Chemoth Rep 24 (1974) 1-27.
    [55]U. Sankawa, Y. Ebizuka, T. Miyazaki, Y. Isomura, H. Otsuka, Antitumor activity of shikonin and its derivatives. Chem Pharm Bull (Tokyo) 25 (1977) 2392-2395.
    [56]U. Sankawa, H. Otsuka, Y. Kataoka, Y. Iitaka, A. Hoshi, K. Kuretani, Antitumor activity of shikonin, alkannin and their derivatives. Ⅱ. X-ray analysis of cyclo-alkannin leucoacetate, tautomerism of alkannin and cyclo-alkannin and antitumor activity of alkannin derivatives. Chem Pharm Bull (Tokyo) 29 (1981) 116-122.
    [57]X.P. Guo, X.Y. Zhang, S.D. Zhang, [Clinical trial on the effects of shikonin mixture on later stage lung cancer]. Zhong Xi Yi Jie He Za Zhi 11 (1991) 598-599,580.
    [58]W. Han, L. Li, S. Qiu, Q. Lu, Q. Pan, Y. Gu, J. Luo, X. Hu, Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6 (2007) 1641-1649.
    [59]Y. Xuan, X. Hu, Naturally-occurring shikonin analogues--a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett 274 (2009) 233-242.
    [60]W. Han, J. Xie, L. Li, Z. Liu, X. Hu, Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis 14 (2009) 674-686.
    [61]M.G. Miller, A. Rodgers, G.M. Cohen, Mechanisms of toxicity of naphthoquinones to isolated hepatocytes. Biochem Pharmacol 35 (1986) 1177-1184.
    [62]H.W. Moore, Bioactivation as a model for drug design bioreductive alkylation. Science 197 (1977) 527-532.
    [63]M. Tomasz, C.M. Mercado, J. Olson, N. Chatterjie, The mode of interaction of mitomycin C with deoxyribonucleic acid and other polynucleotides in vitro. Biochemistry 13 (1974) 4878-4887.
    [64]B.Z. Ahn, K.U. Baik, G.R. Kweon, K. Lim, B.D. Hwang, Acylshikonin analogues: synthesis and inhibition of DNA topoisomerase-I. J Med Chem 38 (1995) 1044-1047.
    [65]N. Fujii, Y. Yamashita, Y. Arima, M. Nagashima, H. Nakano, Induction of topoisomerase Ⅱ-mediated DNA cleavage by the plant naphthoquinones plumbagin and shikonin. Antimicrob Agents Chemother 36 (1992) 2589-2594.
    [66]K.G. Mann, Biochemistry and physiology of blood coagulation. Thromb Haemost 82(1999) 165-174.
    [67]P.A. Price, Role of vitamin-K-dependent proteins in bone metabolism. Annu Rev Nutr 8 (1988) 565-583.
    [68]P.A. Price, M.K. Williamson, J.W. Lothringer, Origin of the vitamin K-dependent bone protein found in plasma and its clearance by kidney and bone. J Biol Chem 256(1981) 12760-12766.
    [69]R.J. Lilford, J.G. Thornton, Vitamin K and childhood cancer. BMJ 305 (1992) 890.
    [70]E. Hey, Vitamin K--what, why, and when. Arch Dis Child Fetal Neonatal Ed 88 (2003)F80-83.
    [71]R. Pratt, P.P. Sah, J. Dufrenoy, V.L. Pickering, Vitamin K(5) as an Inhibitor of the Growth of Fungi and of Fermentation by Yeast. Proc Natl Acad Sci U S A 34 (1948)323-328.
    [72]L.S. Merrifield, H.Y. Yang, Vitamin K5 as a fungistatic agent. Appl Microbiol 13 (1965)660-662.
    [73]S. Taketomi, T. Fujita, K. Yokono, Insulin receptor and postbinding defects in KK mouse adipocytes and improvement by ciglitazone. Diabetes Res Clin Pract 5 (1988) 125-134.
    [74]H. Maegawa, M. Kobayashi, N. Watanabe, O. Ishibashi, Y. Takata, Y. Shigeta, Inhibition of down regulation by chloroquine in cultured lymphocytes (RPMI-1788 line). Diabetes Res Clin Pract 1 (1985) 145-153.
    [75]D.W. Lamson, S.M. Plaza, The anticancer effects of vitamin K. Altern Med Rev 8 (2003)303-318.
    [76]M. Ogawa, S. Nakai, A. Deguchi, T. Nonomura, T. Masaki, N. Uchida, H. Yoshiji, S. Kuriyama, Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells. Int J Oncol 31 (2007)323-331.
    [77]M. Hitomi, F. Yokoyama, Y. Kita, T. Nonomura, T. Masaki, H. Yoshiji, H. Inoue, F. Kinekawa, K. Kurokohchi, N. Uchida, S. Watanabe, S. Kuriyama, Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo. Int J Oncol 26 (2005) 713-720.
    [78]F.Y. Wu, W.C. Liao, H.M. Chang, Comparison of antitumor activity of vitamins K1, K2 and K3 on human tumor cells by two (MTT and SRB) cell viability assays. Life Sci 52 (1993) 1797-1804.
    [79]H.K. Parekh, H. Mansuri-Torshizi, T.S. Srivastava, M.P. Chitnis, Circumvention of adriamycin resistance:effect of 2-methyl-1,4-naphthoquinone (vitamin K3) on drug cytotoxicity in sensitive and MDR P388 leukemia cells. Cancer Lett 61 (1992) 147-156.
    [80]L.M. Nutter, A.L. Cheng, H.L. Hung, R.K. Hsieh, E.O. Ngo, T.W. Liu, Menadione: spectrum of anticancer activity and effects on nucleotide metabolism in human neoplastic cell lines. Biochem Pharmacol 41 (1991) 1283-1292.
    [81]J. Gold, In vivo synergy of vitamin K3 and methotrexate in tumor-bearing animals. Cancer Treat Rep 70 (1986) 1433-1435.
    [82]P.G. Frick, G. Riedler, H. Brogli, Dose response and minimal daily requirement for vitamin K in man. J Appl Physiol 23 (1967) 387-389.
    [83]V. Noto, H.S. Taper, Y.H. Jiang, J. Janssens, J. Bonte, W. De Loecker, Effects of sodium ascorbate (vitamin C) and 2-methyl-1,4-naphthoquinone (vitamin K3) treatment on human tumor cell growth in vitro. I. Synergism of combined vitamin C and K3 action. Cancer 63 (1989) 901-906.
    [84]E. Ervin, J.M. Jamison, J. Gilloteaux, J.J. Docherty, J. Jasso, J.L. Summers, Characterization of the early events in vitamin C and K3-induced death of human bladder tumor cells. Scanning 20 (1998) 210-211.
    [85]H.S. Taper, J.M. Jamison, J. Gilloteaux, C.A. Gwin, T. Gordon, J.L. Summers, In vivo reactivation of DNases in implanted human prostate tumors after administration of a vitamin C/K(3) combination. J Histochem Cytochem 49 (2001) 109-120.
    [86]C.J. Lin, J.H. Kang, R.L. Zheng, Vitamin K3 triggers human leukemia cell death through hydrogen peroxide generation and histone hyperacetylation. Pharmazie 60(2005)765-771.
    [87]W. Zhang, T. Negoro, K. Satoh, Y. Jiang, K. Hashimoto, H. Kikuchi, H. Nishikawa, T. Miyata, Y. Yamamoto, K. Nakano, E. Yasumoto, T. Nakayachi, K. Mineno, T. Satoh, H. Sakagami, Synergistic cytotoxic action of vitamin C and vitamin K3. Anticancer Res 21 (2001) 3439-3444.
    [88]H.S. Taper, J. Degerlache, M. Lans, M. Roberfroid, Nontoxic Potentiation of Cancer-Chemotherapy by Combined Vitamin-C and Vitamin-K3 Pretreatment. International Journal of Cancer 40 (1987) 575-579.
    [89]J. Gilloteaux, J.M. Jamison, H.E. Lorimer, D. Jarjoura, H.S. Taper, P.B. Calderon, D.R. Neal, J.L. Summers, Autoschizis:a new form of cell death for human ovarian carcinoma cells following ascorbate:menadione treatment. Nuclear and DNA degradation. Tissue Cell 36 (2004) 197-209.
    [90]J. Verrax, J. Cadrobbi, M. Delvaux, J.M. Jamison, J. Gilloteaux, J.L. Summers, H.S. Taper, P. Buc Calderon, The association of vitamins C and K3 kills cancer cells mainly by autoschizis, a novel form of cell death. Basis for their potential use as coadjuvants in anticancer therapy. Eur J Med Chem 38 (2003) 451-457.
    [91]J. Verrax, S. Vanbever, J. Stockis, H. Taper, P.B. Calderon, Role of glycolysis inhibition and poly(ADP-ribose) polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemic cells. Int J Cancer 120 (2007) 1192-1197.
    [92]W.C. Liao, F.Y. Wu, C.W. Wu. Binary/ternary combined effects of vitamin K3 with other antitumor agents in nasopharyngeal carcinoma CG1 cells. Int J Oncol 17 (2000) 323-328.
    [93]M. Tetef, K. Margolin, C. Ahn, S. Akman, W. Chow, P. Coluzzi, L. Leong, R.J. Morgan, Jr., J. Raschko, S. Shibata, et al., Mitomycin C and menadione for the treatment of advanced gastrointestinal cancers:a phase Ⅱ trial. J Cancer Res Clin Oncol 121 (1995)103-106.
    [94]S. Waxman, H. Bruckner, The enhancement of 5-fluorouracil anti-metabolic activity by leucovorin, menadione and alpha-tocopherol. Eur J Cancer Clin Oncol 18 (1982)685-692.
    [95]J.S. Mitchell, D. Brinkley, J.L. Haybittle, Clinical trial of radiosensitizers, including synkavit and oxygen inhaled at atmospheric pressure. Acta Radiol Ther Phys Biol 3 (1965) 329-341.
    [96]L.M. Nutter, E.O. Ngo, G.R. Fisher, P.L. Gutierrez, DNA strand scission and free radical production in menadione-treated cells. Correlation with cytotoxicity and role of NADPH quinone acceptor oxidoreductase. J Biol Chem 267 (1992) 2474-2479.
    [97]Y. Nishikawa, B.I. Carr, M. Wang, S. Kar, F. Finn, P. Dowd, Z.B. Zheng, J. Kerns, S. Naganathan, Growth inhibition of hepatoma cells induced by vitamin K and its analogs. J Biol Chem 270 (1995) 28304-28310.
    [98]D. Ross, H. Thor, S. Orrenius, P. Moldeus, Interaction of menadione (2-methyl-1,4-naphthoquinone) with glutathione. Chem Biol Interact 55 (1985) 177-184.
    [99]P.C. Brown, D.M. Dulik, T.W. Jones, The toxicity of menadione (2-methyl-1,4-naphthoquinone) and two thioether conjugates studied with isolated renal epithelial cells. Arch Biochem Biophys 285 (1991) 187-196.
    [100]R. Caricchio, D. Kovalenko, W.K. Kaufmann, P.L. Cohen, Apoptosis provoked by the oxidative stress inducer menadione (vitamin K-3) is mediated by the Fas/Fas ligand system. Clin Immunol 93 (1999) 65-74.
    [101]S. Osada, S. Saji, K. Osada, Critical role of extracellular signal-regulated kinase phosphorylation on menadione (Vitamin K-3) induced growth inhibition. Cancer 91 (2001) 1156-1165.
    [102]F.Y. Wu, T.P. Sun, Vitamin K3 induces cell cycle arrest and cell death by inhibiting Cdc25 phosphatase. Eur J Cancer 35 (1999) 1388-1393.
    [103]S.W. Ham, H.J. Park, D.H. Lim, Studies on menadione as an inhibitor of the cdc25 phosphatase. Bioorg Chem 25 (1997) 33-36.
    [104]K. Imamura, K. Taniuchi, T. Tanaka, Multimolecular forms of pyruvate kinase. Ⅱ. Purification of M 2-type pyruvate kinase from Yoshida ascites hepatoma 130 cells and comparative studies on the enzymological and immunological properties of the three types of pyruvate kinases, L, M 1, and M 2. J Biochem 72(1972)1001-1015.
    [105]K. Imamura, T. Tanaka, Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. I. Electrophoretic studies. J Biochem 71 (1972) 1043-1051.
    [106]K. Imamura, T. Tanaka, T. Nishina, K. Nakashima, S. Miwa, Studies on pyruvate kinase (PK) deficiency. Ⅱ. Electrophoretic, kinetic and immunological studies on pyruvate kinase of erythrocytes and other tissues. J Biochem 74 (1973) 1165-1175.
    [107]K.H. Ibsen, Interrelationships and functions of the pyruvate kinase isozymes and their variant forms:a review. Cancer Res 37 (1977) 341-353.
    [108]M.GV. Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 324 (2009) 1029-1033.
    [109]S. Mazurek, C.B. Boschek, F. Hugo, E. Eigenbrodt, Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15 (2005) 300-308.
    [110]S. Mazurek, Pyruvate kinase type M2:A key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell B 43 (2011) 969-980.
    [111]S. Mazurek, W. Zwerschke, P. Jansen-Durr, E. Eigenbrodt, Metabolic cooperation between different oncogenes during cell transformation:interaction between activated ras and HPV-16 E7. Oncogene 20 (2001) 6891-6898.
    [112]H.R. Christofk, M.G. Vander Heiden, M.H. Harris, A. Ramanathan, R.E. Gerszten, R. Wei, M.D. Fleming, S.L. Schreiber, L.C. Cantley, The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452 (2008) 230-U274.
    [113]M.G. Vander Heiden, H.R. Christofk, E. Schuman, A.O. Subtelny, H. Sharfi, E.E. Harlow, J. Xian, L.C. Cantley, Identification of small molecule inhibitors of pyruvate kinase M2. Biochemical Pharmacology 79 (2010) 1118-1124.
    [114]W.H. Guo, Y. Zhang, T. Chen, Y.S. Wang, J.X. Xue, Y.G. Zhang, W.J. Xiao, X.M. Mo, Y. Lu, Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model. J Cancer Res Clin 137 (2011) 65-72.
    [115]A. Hoshino, J.A. Hirst, H. Fujii, Regulation of cell proliferation by interleukin-3-induced nuclear translocation of pyruvate kinase. Journal of Biological Chemistry 282 (2007) 17706-17711.
    [116]T. Noguchi, H. Inoue, T. Tanaka, The Ml-Type and M2-Type Isozymes of Rat Pyruvate-Kinase Are Produced from the Same Gene by Alternative Rna Splicing. Journal of Biological Chemistry 261 (1986) 3807-3812.
    [117]T. Noguchi, K. Yamada, H. Inoue, T. Matsuda, T. Tanaka, The L-Type and R-Type Isozymes of Rat Pyruvate-Kinase Are Produced from a Single Gene by Use of Different Promoters. Journal of Biological Chemistry 262 (1987) 14366-14371.
    [118]J.D. Dombrauckas, B.D. Santarsiero, A.D. Mesecar, Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44 (2005) 9417-9429.
    [119]M.S. Jurica, A. Mesecar, P.J. Heath, W. Shi, T. Nowak, B.L. Stoddard, The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6 (1998) 195-210.
    [120]C. Parkison, K. Ashizawa, P. Mcphie, K.H. Lin, S.Y. Cheng, The Monomer of Pyruvate-Kinase, Subtype-M1, Is Both a Kinase and a Cytosolic Thyroid-Hormone Binding-Protein. Biochem Bioph Res Co 179 (1991) 668-674.
    [121]K. Liu, H. Lu, L. Hou, Z. Qi, C. Teixeira, F. Barbault, B.T. Fan, S.W. Liu, S.B. Jiang, L. Xie, Design, Synthesis, and Biological Evaluation of N-Carboxyphenylpyrrole Derivatives as Potent HIV Fusion Inhibitors Targeting gp41. Journal of Medicinal Chemistry 51 (2008) 7843-7854.
    [122]王彦广,苏叶华,谢建胜,胡汛,氨基甲酸紫草素酯及其制备方法和用途。中国专利,专利申请号:CN200910153139.9(2009).
    [123]王彦广,苏叶华,谢建胜,胡汛,紫草素乙酰糖及其制备方法和用途。 中国专利,专利申请号:200910152938.4(2009).
    [124]Y. Ikeda, T. Noguchi, Allosteric regulation of pyruvate kinase M2 isozyme involves a cysteine residue in the intersubunit contact. J Biol Chem 273 (1998) 12227-12233.
    [125]N. Shimada, T. Shinagawa, S. Ishii, Modulation of M2-type pyruvate kinase activity by the cytoplasmic PML tumor suppressor protein. Genes Cells 13 (2008) 245-254.
    [126]S.R. Anderson, J.R. Florini, C.S. Vestling, Rat Liver Lactate Dehydrogenase.3. Kinetics and Specificity. J Biol Chem 239 (1964) 2991-2997.
    [127]R.A. Cardone, V. Casavola, S.J. Reshkin, The role of disturbed pH dynamics and the Na+/H+exchanger in metastasis. Nat Rev Cancer 5 (2005) 786-795.
    [128]A. Hirayama, K. Kami, M. Sugimoto, M. Sugawara, N. Toki, H. Onozuka, T. Kinoshita, N. Saito, A. Ochiai, M. Tomita, H. Esumi, T. Soga, Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69 (2009) 4918-4925.
    [129]P. Presek, M. Reinacher, E. Eigenbrodt, Pyruvate-Kinase Type M2 Is Phosphorylated at Tyrosine Residues in Cells Transformed by Rous-Sarcoma Virus. Febs Letters 242 (1988) 194-198.
    [130]O. Warburg, On the origin of cancer cells. Science 123 (1956) 309-314.
    [131]M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg effect:the metabolic requirements of cell proliferation. Science 324 (2009) 1029-1033.
    [132]S. Mazurek, C.B. Boschek, F. Hugo, E. Eigenbrodt, Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15 (2005) 300-308.
    [133]S. Mazurek, Pyruvate kinase type M2:a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43 (2011) 969-980.
    [134]P.P. Hsu, D.M. Sabatini, Cancer cell metabolism:Warburg and beyond. Cell 134 (2008) 703-707.
    [135]M.C. Brahimi-Horn, J. Chiche, J. Pouyssegur, Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19 (2007) 223-229.
    [136]G.A. Spoden, S. Mazurek, D. Morandell, N. Bacher, M.J. Ausserlechner, P. Jansen-Durr, E. Eigenbrodt, W. Zwerschke, Isotype-specific inhibitors of the glycolytic key regulator pyruvate kinase subtype M2 moderately decelerate tumor cell proliferation. Int J Cancer 123 (2008) 312-321.
    [137]W.B. Luo, H.X. Hu, R. Chang, J. Zhong, M. Knabel, R. O'Meally, R.N. Cole, A. Pandey, G.L. Semenza, Pyruvate Kinase M2 Is a PHD3-Stimulated Coactivator for Hypoxia-Inducible Factor 1. Cell 145 (2011) 732-744.
    [138]L. Li, W.D. Han, Y. Gu, S.A. Qiu, Q.H. Lu, J. Jin, J.H. Luo, X. Hu, Honokiol induces a necrotic cell death through the mitochondrial permeability transition pore. Cancer Research 67 (2007) 4894-4903.
    [139]V. Gupta, P. Kalaiarasan, M. Faheem, N. Singh, M.A. Iqbal, R.N. Bamezai, Dominant negative mutations affect oligomerization of human pyruvate kinase M2 isozyme and promote cellular growth and polyploidy. J Biol Chem 285 (2010) 16864-16873.
    [140]M.J. Shearer, Vitamin K. Lancet 345 (1995) 229-234.
    [141]C.J. David, M. Chen, M. Assanah, P. Canoll, J.L. Manley, HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463 (2010) 364-368.
    [142]Q.A. Sun, X.X. Chen, J.H. Ma, H.Y. Peng, F. Wang, X.J. Zha, Y.N. Wang, Y.L Jing, H.W. Yang, R.R. Chen, L. Chang, Y. Zhang, J. Goto, H. Onda, T. Chen, M.R. Wang, Y.Y. Lu, H. You, D. Kwiatkowski, H.B. Zhang, Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. P Natl Acad Sci USA 108 (2011) 4129-4134.
    [143]F.R. Garcia-Gonzalo, C. Cruz, P. Munoz, S. Mazurek, E. Eigenbrodt, F. Ventura, R. Bartrons, J.L. Rosa, Interaction between HERC1 and M2-type pyruvate kinase. Febs Letters 539 (2003) 78-84.
    [144]E. Marchut, M. Guminska, T. Kedryna, The Inhibitory Effect of Various Fatty-Acids on Aerobic Glycolysis in Ehrlich Ascites Tumor-Cells. Acta Biochim Pol 33 (1986) 7-16.
    [145]T. Hitosugi, S.K. Kang, M.G.V. Heiden, T.W. Chung, S. Elf, K. Lythgoe, S.Z. Dong, S. Lonial, X. Wang, G.Z. Chen, J.X. Xie, T.L. Gu, R.D. Polakiewicz, J.L. Roesel, T.J. Boggon, F.R. Khuri, D.G. Gilliland, L.C. Cantley, J. Kaufman, J. Chen, Tyrosine Phosphorylation Inhibits PKM2 to Promote the Warburg Effect and Tumor Growth. Sci Signal 2 (2009).
    [146]P.A. Weernink, G. Rijksen, M.C. van der Heijden, G.E. Staal, Phosphorylation of pyruvate kinase type K in human gliomas by a cyclic adenosine 5'-monophosphate-independent protein kinase. Cancer Res 50 (1990) 4604-4610.
    [147]H.R. Christofk, M.G. Vander Heiden, N. Wu, J.M. Asara, L.C. Cantley, Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452 (2008) 181-U127.
    [148]M. Engel, S. Mazurek, E. Eigenbrodt, C. Welter, Phosphoglycerate mutase-derived polypeptide inhibits glycolytic flux and induces cell growth arrest in tumor cell lines. Journal of Biological Chemistry 279 (2004) 35803-35812.
    [149JM.W. Hentze, Enzymes as Rna-Binding Proteins-a Role for (Di)Nucleotide-Binding Domains. Trends Biochem Sci 19 (1994) 101-103.
    [150]S. Mazurek, F. Hugo, K. Failing, E. Eigenbrodt, Studies on associations of glycolytic and glutaminolytic enzymes in MCF-7 cells:Role of p36. Journal of Cellular Physiology 167 (1996) 238-250.
    [151]E. Nagy, W.F.C. Rigby, Glyceraldehyde-3-Phosphate Dehydrogenase Selectively Binds Au-Rich Rna in the Nad(+)-Binding Region (Rossmann Fold). Journal of Biological Chemistry 270 (1995) 2755-2763.
    [152]G.A. Spoden, S. Mazurek, D. Morandell, N. Bacher, M.J. Ausserlechner, P. Jansen-Durr, E. Eigenbrodt, W. Zwerschke, Isotype-specific inhibitors of the glycolytic keyregulator pyruvate kinase subtype M2 moderately decelerate tumor cell proliferation. International Journal of Cancer 123 (2008) 312-321.
    [153]N. Shimada, T. Shinagawa, S. Ishii, Modulation of M2-type pyruvate kinase activity by the cytoplasmic PML tumor suppressor protein. Genes to Cells 13 (2008) 245-254.
    [1]O. Warburg, On the origin of cancer cells. Science 123 (1956) 309-314.
    [2]M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg effect:the metabolic requirements of cell proliferation. Science 324 (2009) 1029-1033.
    [3]O. Warburg, On respiratory impairment in cancer cells. Science 124 (1956) 269-270.
    [4]S. Weinhouse, The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol 87 (1976) 115-126.
    [5]V.R. Fantin, J. St-Pierre, P. Leder, Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9 (2006) 425-434.
    [6]R. Moreno-Sanchez, S. Rodriguez-Enriquez, A. Marin-Hernandez, E. Saavedra, Energy metabolism in tumor cells. FEBS J 274 (2007) 1393-1418.
    [7]S. Mazurek, C.B. Boschek, F. Hugo, E. Eigenbrodt, Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15 (2005) 300-308.
    [8]S. Mazurek, Pyruvate kinase type M2:a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43 (2011) 969-980.
    [9]P.P. Hsu, D.M. Sabatini, Cancer cell metabolism:Warburg and beyond. Cell 134 (2008) 703-707.
    [10]M.C. Brahimi-Horn, J. Chiche, J. Pouyssegur, Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19 (2007) 223-229.
    [11]T. Yamamoto, Y. Seino, H. Fukumoto, G. Koh, H. Yano, N. Inagaki, Y. Yamada, K. Inoue, T. Manabe, H. Imura, Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 170 (1990) 223-230.
    [12]R.S. Brown, R.L. Wahl, Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 72 (1993) 2979-2985.
    [13]M.L. Macheda, S. Rogers, J.D. Best, Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202 (2005) 654-662.
    [14]A. Rempel, S.P. Mathupala, C.A. Griffin, A.L. Hawkins, P.L. Pedersen, Glucose catabolism in cancer cells:amplification of the gene encoding type Ⅱ hexokinase. Cancer Res 56 (1996) 2468-2471.
    [15]S.P. Mathupala, A. Rempel, P.L. Pedersen, Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for type Ⅱ hexokinase. J Biol Chem 270 (1995) 16918-16925.
    [16]T. El-Bacha, M.S. de Freitas, M. Sola-Penna, Cellular distribution of phosphofructokinase activity and implications to metabolic regulation in human breast cancer. Mol Genet Metab 79 (2003) 294-299.
    [17]S. Vora, J.P. Halper, D.M. Knowles, Alterations in the activity and isozymic profile of human phosphofructokinase during malignant transformation in vivo and in vitro:transformation- and progression-linked discriminants of malignancy. Cancer Res 45 (1985)2993-3001.
    [18]P. Zancan, M. Sola-Penna, C.M. Furtado, D. Da Silva, Differential expression of phosphofructokinase-1 isoforms correlates with the glycolytic efficiency of breast cancer cells. Mol Genet Metab 100 (2010) 372-378.
    [19]K. Imamura, K. Taniuchi, T. Tanaka, Multimolecular forms of pyruvate kinase. Ⅱ. Purification of M 2-type pyruvate kinase from Yoshida ascites hepatoma 130 cells and comparative studies on the enzymological and immunological properties of the three types of pyruvate kinases, L, M 1, and M 2. J Biochem 72(1972) 1001-1015.
    [20]K. Imamura, T. Tanaka, Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. I. Electrophoretic studies. J Biochem 71 (1972) 1043-1051.
    [21]K. Imamura, T. Tanaka, T. Nishina, K. Nakashima, S. Miwa, Studies on pyruvate kinase (PK) deficiency. Ⅱ. Electrophoretic, kinetic and immunological studies on pyruvate kinase of erythrocytes and other tissues. J Biochem 74 (1973) 1165-1175.
    [22]K.H. Ibsen, Interrelationships and functions of the pyruvate kinase isozymes and their variant forms:a review. Cancer Res 37 (1977) 341-353.
    [23]T. Noguchi, K. Yamada, H. Inoue, T. Matsuda, T. Tanaka, The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem 262 (1987) 14366-14371.
    [24]T. Noguchi, H. Inoue, T. Tanaka, The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem 261 (1986) 13807-13812.
    [25]Y.G. Yoo, M. Hayashi, J. Christensen, L.E. Huang, An essential role of the HIF-1alpha-c-Myc axis in malignant progression. Ann N Y Acad Sci 1177 (2009) 198-204.
    [26]K. Podar, K.C. Anderson, A therapeutic role for targeting c-Myc/Hif-1-dependent signaling pathways. Cell Cycle 9 (2010) 1722-1728.
    [27]W. Luo, H. Hu, R. Chang, J. Zhong, M. Knabel, R. O'Meally, R.N. Cole, A. Pandey, G.L. Semenza, Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145 (2011) 732-744.
    [28]C.J. David, M. Chen. M. Assanah, P. Canoll. J.L. Manley, HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463 (2010) 364-368.
    [29]Q. Sun, X. Chen, J. Ma, H. Peng, F. Wang, X. Zha, Y. Wang, Y. Jing, H. Yang, R. Chen, L. Chang, Y. Zhang, J. Goto, H. Onda, T. Chen, M.R. Wang, Y. Lu, H. You, D. Kwiatkowski, H. Zhang, Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci U S A 108 (2011) 4129-4134.
    [30]K. Ashizawa, M.C. Willingham, C.M. Liang, S.Y. Cheng, In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-bisphosphate. J Biol Chem 266 (1991) 16842-16846.
    [31]M. Reinacher, E. Eigenbrodt, Immunohistological demonstration of the same type of pyruvate kinase isoenzyme (M2-Pk) in tumors of chicken and rat. Virchows Arch B Cell Pathol Incl Mol Pathol 37 (1981) 79-88.
    [32]S. Mazurek, E. Eigenbrodt, The tumor metabolome. Anticancer Res 23 (2003) 1149-1154.
    [33]S. Mazurek, W. Zwerschke, P. Jansen-Durr, E. Eigenbrodt, Metabolic cooperation between different oncogenes during cell transformation:interaction between activated ras and HPV-16 E7. Oncogene 20 (2001) 6891-6898.
    [34]H.W. Wechsel, E. Petri, K.H. Bichler, G. Feil, Marker for renal cell carcinoma (RCC):the dimeric form of pyruvate kinase type M2 (Tu M2-PK). Anticancer Res 19(1999)2583-2590.
    [35]P. Presek, M. Reinacher, E. Eigenbrodt, Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by Rous sarcoma virus. FEBS Lett 242 (1988) 194-198.
    [36]S. Mazurek, W. Zwerschke, P. Jansen-Durr, E. Eigenbrodt, Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis:role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem J 356 (2001)247-256.
    [37]W. Zwerschke, S. Mazurek, P. Massimi, L. Banks, E. Eigenbrodt, P. Jansen-Durr, Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci U S A 96 (1999) 1291-1296.
    [38]S. Mazurek, C.B. Boschek, E. Eigenbrodt, The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy. J Bioenerg Biomembr 29 (1997)315-330.
    [39]P. Steinberg, A. Klingelhoffer, A. Schafer, G. Wust, G. Weisse, F. Oesch, E. Eigenbrodt, Expression of pyruvate kinase M2 in preneoplastic hepatic foci of N-nitrosomorpholine-treated rats. Virchows Arch 434 (1999) 213-220.
    [40]J. Schneider, K. Neu, H. Grimm, H.G. Velcovsky, G. Weisse, E. Eigenbrodt, Tumor M2-pyruvate kinase in lung cancer patients:immunohistochemical detection and disease monitoring. Anticancer Res 22 (2002) 311-318.
    [41]F. Hugo, G. Fischer, E. Eigenbrodt, Quantitative detection of tumor M2-PK in serum and plasma. Anticancer Res 19 (1999) 2753-2757.
    [42]H. Cerwenka, R. Aigner, H. Bacher, G. Werkgartner, A. el-Shabrawi, F. Quehenberger, H.J. Mischinger, TUM2-PK (pyruvate kinase type tumor M2), CA19-9 and CEA in patients with benign, malignant and metastasizing pancreatic lesions. Anticancer Res 19 (1999) 849-851.
    [43]D. Luftner, J. Mesterharm, C. Akrivakis, R. Geppert, P.E. Petrides, K.D. Wernecke, K. Possinger, Tumor type M2 pyruvate kinase expression in advanced breast cancer. Anticancer Res 20 (2000) 5077-5082.
    [44]G. Schulze, The tumor marker tumor M2-PK:an application in the diagnosis of gastrointestinal cancer. Anticancer Res 20 (2000) 4961-4964.
    [45]M. Ventrucci, A. Cipolla, C. Racchini, R. Casadei, P. Simoni, L. Gullo, Tumor M2-pyruvate kinase, a new metabolic marker for pancreatic cancer. Dig Dis Sci 49(2004) 1149-1155.
    [46]B. Zhang, J.Y. Chen, D.D. Chen, G.B. Wang, P. Shen, Tumor type M2 pyruvate kinase expression in gastric cancer, colorectal cancer and controls. World J Gastroenterol 10 (2004) 1643-1646.
    [47]P.D. Hardt, S. Mazurek, M. Toepler, P. Schlierbach, R.G. Bretzel, E. Eigenbrodt, H.U. Kloer, Faecal tumour M2 pyruvate kinase:a new, sensitive screening tool for colorectal cancer. Br J Cancer 91 (2004) 980-984.
    [48]B. Kaura, R. Bagga, F.D. Patel, Evaluation of the Pyruvate Kinase isoenzyme tumor (Tu M2-PK) as a tumor marker for cervical carcinoma. J Obstet Gynaecol Res 30(2004)193-196.
    [49]G.M. Oremek, S. Teigelkamp, W. Kramer, E. Eigenbrodt, K.H. Usadel, The pyruvate kinase isoenzyme tumor M2 (Tu M2-PK) as a tumor marker for renal carcinoma. Anticancer Res 19 (1999) 2599-2601.
    [50]H. Pelicano, D.S. Martin, R.H. Xu, P. Huang, Glycolysis inhibition for anticancer treatment. Oncogene 25 (2006) 4633-4646.
    [51]G.A. Spoden, S. Mazurek, D. Morandell, N. Bacher, M.J. Ausserlechner, P. Jansen-Durr, E. Eigenbrodt, W. Zwerschke, Isotype-specific inhibitors of the glycolytic key regulator pyruvate kinase subtype M2 moderately decelerate tumor cell proliferation. Int J Cancer 123 (2008) 312-321.
    [52]H.R. Christofk, M.G. Vander Heiden, M.H. Harris, A. Ramanathan, R.E. Gerszten, R. Wei, M.D. Fleming, S.L. Schreiber, L.C. Cantley, The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(2008)230-233.
    [53]M.G. Vander Heiden, H.R. Christofk, E. Schuman, A.O. Subtelny, H. Sharfi, E.E. Harlow, J. Xian, L.C. Cantley, Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol 79 (2010) 1118-1124.
    [54]W. Guo, Y. Zhang, T. Chen, Y. Wang, J. Xue, W. Xiao, X. Mo, Y. Lu, Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model. J Cancer Res Clin Oncol 137 (2011) 65-72.
    [55]J. Chen, J. Xie, Z. Jiang, B. Wang, Y. Wang, X. Hu, Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene 30 (2011)4297-4306.
    [56]J. Chen, Z. Jiang, B. Wang, Y. Wang, X. Hu, Vitamin K3 and K5 are inhibitors of tumor pyruvate kinase M2 Cancer Letters (2011) Accepted.
    [57]A. Hoshino, J.A. Hirst, H. Fujii, Regulation of cell proliferation by interleukin-3-induced nuclear translocation of pyruvate kinase. J Biol Chem 282 (2007)17706-17711.
    [58]V. Gupta, P. Kalaiarasan, M. Faheem, N. Singh, M.A. Iqbal, R.N. Bamezai, Dominant negative mutations affect oligomerization of human pyruvate kinase M2 isozyme and promote cellular growth and polyploidy. J Biol Chem 285 (2010) 16864-16873.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700