牡丹开花与衰老的生理生化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牡丹是原产中国的特有花卉,属于芍药属牡丹组植物。由于牡丹花大色艳,广泛的用于园艺观赏。近些年,牡丹作为新型切花受到广泛的重视。然而,人们对牡丹开花和衰老的生理生化机制的研究尚不够深入。本研究围绕牡丹开花和衰老过程中糖代谢、抗氧化代谢和内源激素变化,以及保鲜剂对切花衰老的调节效应进行了探索,为延长牡丹切花的瓶插寿命与贮藏技术提供了理论与实践依据。现将研究结果报告如下:
     1.在牡丹品种‘洛阳红’和‘胡红’花开放和衰老过程中伴随花瓣的迅速扩张生长,总可溶性糖呈现迅速增加的趋势,特别是己糖(葡萄糖和果糖)含量显著增加,盛开后己糖水平达到最高,而蔗糖含量呈现逐渐下降的变化。己糖和蔗糖降解指数(SDI)与花枝重呈现极显著的正相关;‘洛阳红’和‘胡红’花瓣的酸性转化酶(AI)活性维持较高水平,开花过程中AI活性逐渐升高,开放后逐渐下降。经主成份回归分析,可溶性糖的代谢依赖于酸性转化酶、中性转化酶(NI)、蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)四种酶的共同作用。结果表明,花瓣中己糖的积累在牡丹花开放和衰老过程中起着重要作用。
     2.牡丹开花和衰老过程中,花瓣中MDA显著积累导致细胞膜透性持续升高,2个牡丹品种花瓣脂质过氧化代谢有一定差异。‘洛阳红’花瓣中O2-、H2O2含量与MDA含量呈极显著的正相关,‘胡红’花瓣中O2-含量与MDA呈显著正相关。O2-对MDA含量有较大的正向直接效应,而H2O2、AsA-POD、CAT和PPO在2个牡丹品种中的效应表现不同。牡丹开花和衰老的过程,是膜脂过氧化加剧引起细胞膜损伤的过程,O2-是影响牡丹开花和衰老过程中花瓣内膜脂过氧化作用的最主要因素。
     3.牡丹花瓣提取液能显著降低DPPH的吸光值、抑制O3-介导的氮兰四唑(NBT)光化学还原和·OH作用下的水杨酸羟基化作用,显著抑制卵黄组织匀浆的脂质过氧化作用,其中牡丹花瓣提取液清除DPPH自由基的活性高于200μg·mL-1 BHT但低于80μg·mL-1 Vc。6个试样在四种测定系统中均具有一定程度的抗氧化能力,水提取液的抗氧化活性略高于50%乙醇提取液,深色花瓣提取液对不同自由基的清除能力较强。
     4.牡丹花瓣富含多酚、类黄酮与花色素苷,牡丹开花和衰老过程中花瓣总酚含量呈下降趋势。开花前期的花瓣提取液维持较高的抗氧化活性和自由基清除能力,开花后抗氧化活性和自由基清除能力明显下降。牡丹花瓣多酚含量与清除DPPH自由基活性之间呈现显著的正相关。提示花瓣多酚类功能成分减少与清除自由基的能力显著降低是导致牡丹花衰老的重要生理原因。营养上从初开期到盛开期是牡丹花的适宜采收期。
     5.‘洛阳红’和‘胡红’呼吸速率均呈现典型的跃变特征,呼吸峰分别出现在盛开期和半开期。牡丹开花和衰老过程中内源IAA、ZR和GA3含量降低,内源ABA含量上升,‘洛阳红’属于类似乙烯跃变型花卉,‘胡红’属于类似乙烯末期上升型花卉;而花瓣ACO活性随花朵的开放逐渐下降,ACO活性变化与内源乙烯的释放不相关。结果提示,牡丹开花和衰老过程中花瓣内源激素代谢失衡是导致花瓣衰老的重要原因。
     6.花朵衰老时花托、雄蕊和花瓣是乙烯释放的主要部位,雄蕊在初开期有—明显的乙烯峰,花朵的乙烯主要来自于花瓣;‘胡红’开放过程中花瓣的ACC含量缓慢减少,进入衰老期ACC含量又有快速上升的趋势;而茎的ACC含量一直处于下降趋势;叶柄和叶片的ACC含量在花朵的整个开放过程中变化不大。结果提示器官之间乙烯和ACC梯度在‘胡红’花朵开放和衰老前后起着重要调节作用,而乙烯和ACC在花器不同部位间的运输及分配上有差异。
     7.瓶插试验结果表明,随着切花开放级别的升高,瓶插寿命和最佳观赏期相应缩短,保鲜液能够延长牡丹切花的瓶插寿命和最佳观赏期,提高最大花径和花枝鲜样质量;牡丹切花瓶插期间花枝吸水量和失水量持续下降,水分平衡值在瓶插1d达到最大,保鲜液能够提高花枝的吸水量和失水量,延迟水分平衡值趋于0的时间,牡丹切花瓶插期水分平衡值降为零的时间与瓶插寿命呈显著的正相关。牡丹切花的适宜采收期为绽口期到初开期,保鲜液能够改善切花的品质。
Tree peony (Paeonia suffruticosa Andr.), originating in China, belongs to the section Moutan in genus Paeonia of the Paeoniaceae famliy. It is widely used as an ornamental plant because of its large showy flowers and ornamental foliage. Little was known by human being to the mechanism of bloosming and senescence of tree peony. To deeping the acknownlage of the mechanism in florescence and flower senescence, we investigated sucrose metabolism, antioxidative activity and endogenous hormones in two tree peony (Paeonia suffruticosa) petal and its chemical regulations, which will be very useful to establish a solid theretical and practical foudation for prolonging vase life and storage period of the cut flowers. The results showed as follow:
     1. The results showed that total soluble sugar content was ripidly increasing in company with cell enlargement of two peony petal of florescence and flower senescence. The contents of hexose (glucose and fructose) were markedly increased in florescence period and get highest level at full-opening, whereas the content of sucrose was reduction in different developmental stages. The hexose content and sucrose degration index (SDI) were postively correlated with the fresh weight of flower. The activity for acid invertase (AI) increased in florescence and decreased after flower opening and remained at high levels during development periods. The soluble sugars metabolism rely on the 4 enzymes activities of acid invertase(AI), neutral invertase(NI), sucrose synthase(SS) and sucrose phosphate synthase (SPS), which was deduced from principal component analysis. Our results suggest that hexose accumulation might be important for florescence and flower senescence of some tree peony cultivars.
     2. The results showed that a ripid accmulation of MDA content lead to the continuous increase of petal cell membrance permeability during florescence and flower senescence. There were some differences of lipid peroxidation metabolisam in 'Luoyanghong' and 'Huhong'. There was significantly positive correlation between O2- production and H2O2 and MDA content in 'Luoyanghong', samely there was significantly positive correlation between O2- production and MDA content in 'Huhong'. O2- production has positively and significantly direct effect to MDA content, but others of main factors as H2O2, AsA-POD, CAT and PPO have different effect in two tree peony. The active oxygen turned into imbalance in lipid peroxidation during during florescence and flower senescence of two tree peony. It implied that O2- production was the key factor affecting the membrane lipid peroxidation metabolism in two tree peony during florescence and flower senescence.
     3. The extracts from 6 peonies petals were isolated using water and 50% ethanol. Their antioxidation activities were detected and evaluated by four systems of DPPH, O2-,·OH and PUFA with controls for Vc and BHT. Based on the generating and detecting systems of DPPH radical、hydroxyl radical (·OH)、superoxide radical (O2-) and PUFA peroxidation of yolk lipoprotein, water or 50% ethanol extracts of 6 peonies petals were investigated for the competitive abilities to active reactions. The results indicated that the water or 50% ethanol extracts from tree peonies petals could reduce light absorption of DPPH and·OH initiated hydroxylation of salicylate, and inhibit O2- mediated light chemical reduction of nitroblue tetrazolium (NBT) effectively. Both have significant inhibitions to lipid peroxidation of polyunsaturated fatty from yolk lipoprotein, in which DPPH scavenging activities of 6 peonies water extracts were higher than that of 200μg·mL-1 BHT, but lower than 80μg·mL-1 Vc. In 4 kinds of detecting systems of antioxidation, the peroxidation activity of deep colored flowers of tree peonies was higher than that of light colored flowers of tree peonies.
     4. There were rich with total phenolics, flavonoids and anthocyanin of petal in 'Luoyanghong' and 'Huhong', while the content of total phenolics decreased in petal during florescence and flower senescence of tree peonies. The antioxidative activity and secavenging ridical ability were keeping at a high level during florescence and declined ripidly after blooming. Significantly positive correlation existed between content of total phenolics and IC50 of DPPH secavenging ability in both the tree peony cultivars. It was proposed that decrease of content of poly phenolics and antioxidative activity was a main reason for petal senescence of tree peonies. Tree peonies flowers, from early bloom to full opening, were confirmed to be the optional stage in view of the nutritional consideration.
     5. The respiration changes in 'Luoyanghong' and 'Huhong' have those characterstics of a typical respiratory climacteric type in the flower opening and natural senescence in tree peonies. The peaks of respiratory climacteric were at full-opening stages and middle-opening stage, respectively. With florescence and senescence in tree peonies, the contents of endogenous IAA, ZR and GA3 decreased and the content of endogenous ABA accumulated in petal. The change pattern of ethylene production in 'Luoyanghong' was consistent to an ethylene climacteric of cut flower, but 'Huhong' behaved a like increase during later stage cut flower. The activities of ACO in tree peonies petal declined slowly, while ACO activity has uncorrlated to ethylene production. It suggested that the tree peonies petal senescence is caused by unbalance of endogenous hormones levels during florescence and flower senescence.
     6. The production of ethylene over senescent stage mainly results from receptacle, stamens and petals, whereas the most part of ethylene production in intact flowers depended on petals. Peak of ethylene production from stamen occurred at initial bloom stage. ACC content of petals decreased slowly over flowering and increased rapidly at senscent stage. ACC content of stem fell continuingly over flowering and senscence. ACC content of petiole and leaf remained virtually unchanged in flowering process. Those results indicated that the difference in ethylene and ACC content in various parts of flower played an key role in regulation of inflorescence and senscence, and difference in transporttion and distribution of ethylene and ACC was present among organs of tree peony flower.
     7. The vase life and the optimum ornamental period of cut tree peony flowers are relatively short when kept in distilled water (control) with the flower opening index change. The vase life could be prolonged when kept in the floral preservative, which could raise the max flower diameter and the fresh weight of flowering branches. In vase period, the water absorption and loss of flowering branches decreased continuously, and the water balance value reached the maximum at 1 day of inserting in distilled water condition. However, fresh-keeping solution could improve water status, and delay the time of hydrologic balance value from positive to 0, which showed significantly positive correlation to vase life. It is therefore proposed that the optimum harvesting period of cut tree peony flowers is from soft bud to the beginning of opening, and the floral preservative could improve the quality of cut tree peony flowers in vase-holding.
引文
1. 蔡永萍,聂凡,张鹤英,于红秀.水杨酸对月季切花的保鲜效果和生理作用.园艺学报,2000,27(3):228-230
    2. 蔡永萍,严景华, 张鹤英.冷藏对唐菖蒲切花瓶插的生理代谢和观赏品质的影响.安徽农业科学,2000,28(3):386-388,400
    3. 陈健辉,陈润坚,谢鸿.含苯甲酸钠保鲜剂对切花的保鲜效果研究.广西科学,2006,13(1):65-70
    4. 陈新露,韩劲,王莲英,苏雪痕.牡丹冬季室内催花过程中内源激素含量的变化.植物资源与环境学报,1999,8(4):42-46
    5.丛日晨,赵喜亭,刘晓辉,高俊平.月季切花采后花瓣内肽酶活性的变化.园艺学报,2003,30(2):232-235
    6.杜秀敏,殷文璇,赵彦修,张慧.植物中活性氧的产生及清除机制.生物工程学报,2001,17(2):121-125
    7. 范美华,王健鑫,石戈,史丽娜,李若帆.水杨酸和6-BA对非洲菊切花保鲜的研究.北方园艺,2008,(8):117-120
    8.丰亚南,郑国生,王宗正,高辉远.牡丹开花前后碳水化合物的分配与光合速率的关系.园艺学报,2007,34(1):153-156
    9.冯志文,杨霞光,潘剑,任光辉,张二喜,范丙友,史国安.6个品种牡丹花瓣的抗氧化活性分析.西北农林科技大学学报(自然科学版),2009,37(1):205-210
    10.高俊平,张晓红,黄绵佳,叶新民,孙自然.月季切花开花和衰老进程中乙烯变化类型初探. 园艺学报,1997,24(3):274-278
    11.高俊平.观赏植物采后生理与技术.北京:中国农业大学出版社,2002
    12.高勇,吴绍锦.切花保鲜剂研究综述. 园艺学报,1989,16(2):139-145
    13.高勇.月季切花水分平衡、鲜重变化和瓶插寿命的相关性研究初报.园艺学报,1989,12(3):86-88
    14.高勇.月季切花衰老期游离氨基酸变化动态初探.园艺学报,1991,18(4):369-370
    15.高勇,杨美蓉.保鲜剂延缓月季切花衰老及其对碳水化合物代谢的影响.江苏农业学报,1992,8(1):43-46
    16.高志民,王雁,李振坚,周伟伟,朱耀军,严彦.牡丹开花前后营养变化分析研究.林业科学研究,2007,20(3):390-393
    17.关军锋,束怀瑞.苹果果实衰老与活性氧代谢的关系.园艺学报,1996,23(4):326-328
    18.郭维明,曾武清,陈发棣.乙烯对切花菊衰老的调节.南京农业大学学报,1997,20(4):24-29
    19.郭闻文,陈瑞修,董丽,刘爱青,王莲英.几个牡丹切花品种的采后衰老特征与水分平衡研究.林业科学,2004,19(4):89-93
    20.郭香凤,梁华,赵胜娟,朱文学,史国安.1-MCP对杏果实采后贮藏品质的影响.农业机械学报,2006,37(8):107-110
    21.郭香凤,史国安,张继澍.杏果实采后色泽的转变及GA3的延缓作用.西北植物学报,1999,19(1):162-165
    22.郭香凤,史国安.牡丹花水提液对氧自由基的清除作用.植物生理学通讯,2004,40(1):37-38
    23.郭秀璞,史国安,李雪英.保鲜剂对牡丹切花水分状况及衰老的影响.经济林研究,2005,23(2):27-29
    24.何开跃,李晓储,樊亚苏,张双全,毕慧敏.广玉兰叶片抗氧化活性评价.林业科学研究,2007,20(5):644-649
    25.何生根,冯常虎.切花生产与保鲜.北京:中国农业出版社,1996
    26.何钟佩.农作物化学控制实验指导.北京:中国农业大学出版社,1993,60-68
    27.贺苏丹,肖德兴,刘季平,何生根,涂淑萍,吕培涛.非洲菊切花茎堵塞的解剖结构观察.园艺学报,2009,36(7):1077-1082
    29.洪德元,潘开玉.芍药属牡丹组的分类历史和分类处理.植物分类学报,1999,37(4):351-368
    30.胡绪岚.切花保鲜技术.北京:中国农业出版社,1996
    31.胡志群,王惠聪,胡桂兵.高效液相色谱测定荔枝果肉中的糖、酸和维生素C.果树学报,2005,22(5):582—585
    32.姜玉东,王子华,高俊平.谷胱甘肽对切花月季'Samantha'失水胁迫耐性的影响.园艺学报,2010,37(4):597-606
    33.柯德森,王爱国,罗广华.花的脱落与乙烯、生长素类似物及超氧自由基的关系.植物生理学通讯,1995,31(1):18-21
    34.李柏林,梅慧生.燕麦叶片衰老与活性氧代谢的关系.植物生理学报,1989,15(1):6-12
    35.李嘉珏.中国牡丹和芍药,北京:中国林业出版社,1999
    36.李伶俐,杨青华,李文.棉花幼铃脱落过程中IAA、ABA、MDA含量及SOD、POD活性的变化.植物生理学报,2001,27(3):215-220
    37.李堂察,李咋,蔡平里.苄基腺嘌呤对夜来香保鲜效果之研究.中国园艺,1992,38(2):91-99
    38.李霞,孟祥霞,蒙广艳,郭绍霞.芍药切花瓶插期水分代谢的研究.北方园艺,2007,(12):112-114.
    39.李霞,张玉刚,郑国生,李瑞梅,郭绍霞.芍药切花瓶插期衰老进程及膜脂过氧化研究.园艺学报,2007,34(6):1491-149
    40.李永红,张常青,谭辉,金基石,高俊平. 抗氧化剂对月季切花失水胁迫耐性和SOD、POD活性的影响.中国农业大学学报,2003,8(5):14-17
    41.廖立新,彭永宏,李玲.35种鲜花的抗氧化活性.植物资源与环境学报,2002,11(2):21-24
    42.林植芳,李双顺,张东林,林桂珠,李月标,刘淑娴,陈绵达.采后荔枝果皮色素、总酚及有关酶活性的变化.植物学报,1988,30(1):40-45
    43.刘娟,董丽.牡丹切花保鲜研究进展.湖北林业科技,2007,(1):43-46
    44.刘建新,赵国林,叶子花衰老过程中抗氧化酶、乙烯生成速率和多胺含量的变化.园艺学报,2005,32(4):722-724
    45.刘雅丽,王飞,黄森.百合花朵不同发育期乙烯释放量与膜脂过氧化作用的研究.西北植物学报,1999,19(6):143-147
    46.刘燕.芍药采后贮藏生理研究.北京林业大学学报,1996,18(1):89-92
    47.马小燕,刘秀英.二氧化氯的应用研究与进展.环境与健康杂志,1998,15(2):94-96
    48.孟敏锡.糖分在玫瑰花采后保鲜中的有害作用.农业工程学报,2001,17(1):105-109
    49.莫惠栋.农业试验统计.上海:上海科学技术出版社.1992,510-579
    50.彭长连,陈少薇,林植芳,林桂珠.用清除有机自由基DPPH法评价植物抗氧化能力.生物化学与生物物理进展,2000,27(7):658-661
    51.沈红香,刘晓辉,谭辉,马男,蔡蕾,高俊平.三类切花月季品种花器乙烯生成量和ACC含量的时空变化.中国农业科学,2004,37(12):1899-1903
    52.盛爱武,郭维明,孙智华.腊梅切花内源激素动态及衰老有关因子的研究.北京林业大学报,1999,21(2):48-53
    53.史国安,郭香风,韩建国,孙鲜明,杨正申.牡丹开花和衰老期间乙烯及脂质过氧化的研究.西北农业大学学报,1999,27(5):50-53
    54.史国安,包满珠.植物切花乙烯致衰的机理及其化学调节.河南科技大学学报,2003,23(2):1-4
    55.史国安,郭香凤,包满珠.不同类型牡丹花的营养成分及体外抗氧化活性分析.农业机械学报,2006,37(8):111-114
    56.史国安,郭香凤,包满珠.牡丹花不同发育时期脂质过氧化代谢的相关性研究.西北农林科技大学学报(自然科学版),2008,36(8):183-189
    58.史国安,郭香凤,韩建国,孙鲜明,杨正申.牡丹开花和衰老过程中乙烯产生与膜脂过氧化的研究.西北农业大学学报,1999,27(5):50-53
    59.史国安,郭香凤,李春丽,范丙友,施江,包满珠.牡丹花枝不同发育时期各器官乙烯释放和ACC含量的变化.园艺学报,2010,37(1):77-82
    60.史国安,郭香凤,吴庭才,薛邦群.茵陈水提液的体外抗氧化活性.植物资源与环境学报,1999,8(4):7-10
    61.史国安,郭香凤,张国海,包满珠.牡丹开花和衰老期间花瓣糖代谢的研究.园艺学报,2009,36(8):1184-1190
    62.史国安,郭香凤,张国海,包满珠.芍药花开放与衰老过程中生理指标的变化.西北植物学报,2008,28(3):506-511
    63.史国安,郭香凤,张国海,张益民.沙梨果实多酚类活性成分及抗氧化活性分析.植物资源与环境学报,2000,9(3):57-58
    64.史国安,郭香凤,张益民,王淑芳.GA3和乙烯利对杏果实采后活性氧代谢的影响.园艺学报,1997,24(1):87-88
    65.史国安,杨正申,王长忠,金志伟,韩向阳.温度和化学药剂对牡丹切花乙烯释放及贮藏品质的影响.北方园艺,1997,(6):62-63
    67.宋纯鹏.植物衰老生物学.北京:北京大学出版社,1998
    68.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,26(6):55-57
    69.王华,张继澍,王飞.郁金香切花瓶插期间的衰老与膜脂过氧化的关系.西北植物学报,1995,22(2):220-224
    70.王荣花,刘雅莉,李嘉瑞.不同发育阶段牡丹和芍药切花开花生理特性的研究.园艺学报,2005,32(5):861-865
    71.魏文辉,王力军,覃瑞,杨秋生.牡丹切花衰老过程中内源激素水平变化的研究.湖北民族学院学报(自然科学版),2000,18(4):1-6
    72.魏潇潇,刘燕,高荣孚.芍药切花贮存过程中抗氰呼吸变化及其作用的研究.北京林业大学学报,2007,29(6):206-210
    73.吴岚芳,黄绵佳,蔡世英.两种热带切花衰老过程中呼吸代谢的调控.热带作物学报,2002,23(1):40-46
    74.吴岚芳,黄绵佳,蔡世英.非洲菊切花活性氧代谢的研究,园艺学报,2002,30(1):69-73
    75.夏宜平,陈声明,王直一.月季切花采后的微生物变化及杀菌剂的生理效应.园艺学报,1997,24(1):63-66
    76.熊元,孙锐锋,王文华.保鲜剂对非洲菊切花瓶插时间的影响.贵州农业科学,2001,29(6):30-31
    77.许申鸿,杭瑚.29种鲜花提取液对羟自由基的清除作用.植物资源与环境学报,1999,8(3):59-60
    78.许旭旦,陈国参,白阳明,杨正申.不同药剂对牡丹切花保鲜效果的研究.园艺学报,1987,14(2):27-29
    79.薛秋华,林如.月季萨蔓莎切花衰老过程中内源激素水平变化.热带作物学报,2005,26(2):62-67
    80.严景华,蔡永萍,李东林.保鲜剂对玫瑰切花几个衰老指标的影响.植物生理学通讯,1997,33(2):109-111
    82.杨秋生,籍越,何松林,宋鸿雁,黄晓书.保鲜液对郁金香切花寿命和内源激素含量的影响.1995,32(6):416-419
    83.应振土,陈昆松.乙烯拮抗剂—硫代硫酸银的生理作用.植物生理学通讯,1990,(1):63-64
    84.余义勋,包满珠.反义ACO基因导入获得瓶插寿命长的香石竹植株.园艺学报,2004,31(5):633-636
    85.曾佑炜,徐良雄,彭永宏.45种花卉清除自由基能力的比较.应用与环境生物学报,2004,10(6):699-702
    86.张翠华,郑成淑,孙宪芝,林桂玉.6-BA对牡丹切花保鲜及生理生化特性的影响.山东农业大学学报(自然科学版),2008,39(2):203-206
    87.张尔贤,俞丽君,周意琳,肖湘.Fe2+诱发脂蛋白PUFA过氧化体系及对若干天然产物抗氧化作用的评价.生物化学与生物物理学报,1996,28(2):218-222
    88.张明方,李志凌.高等植物中与蔗糖代谢相关的酶.植物生理学通讯,2002,38(3):289-295
    89.张木清,陈如凯,余松烈.水分胁迫下蔗叶活性氧代谢的数学分析.作物学报,1996,22(6):729-735
    90.张圣旺,郑荣生,孟丽,郑国生.牡丹花衰老过程中的生理生化变化.山东农业大学学报(自然科学版),2002,33(2):166-169
    91.张微,张慧,谷祝平,张建军.几种花衰老原因的研究.植物学报,1991,33(6):419-426
    92.赵世杰,史国安,董新纯.植物生理学实验指导.北京:中国农业科学技术出版社,2002
    93.郑丽.ABA和IAA对切花菊衰老调节的研究及切花菊低温干藏技术探讨.[硕士学位论文].南京:南京农业大学图书馆,1997
    95.周琳,贾培义,刘娟,王玮然,霍志鹏,董丽.乙烯对‘洛阳红’牡丹切花开放衰老进程及内源乙烯生物合成的影响.园艺学报,2009,36(2):239-244
    96.周毅,尤忠胜,俞越汉.化学药剂对唐菖蒲切花衰老的影响.园艺学报,1994,21(2):189-192.
    97.周志钦,潘开玉,洪德元.牡丹组野生种间亲缘关系和栽培牡丹起源研究进展.园艺学报,2003,30(6):751-757
    98.朱诚,刘非燕, 郭达初, 沈立新.桂花开花和衰老过程中乙烯及脂质过氧化水平初探.园艺学报,1998,25(3):68-72
    99.朱诚,曾广文.桂花花衰老过程中的某些生理生化变化,园艺学报,2000,27(5): 356-360
    100. Abeles F. Ethylene in plant biology. New York:Academic press,2thed,1992
    101. Adams DO, Yang SF. Methionine metabolism in apple tissue implication of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol,1977,60:892-896
    102.Adams DO, Yang SF. Ethylene biosynthesis identification of 1-aminoyclopropane-l-carboxylic acid as an intermediate in the coversion of methionine to ethylene. Proc Natl Acad Sci USA,1979,76:170-174
    103. Alexander L, Grierson D. Ethylene biosynthesis and action in tomato:a model for climacteric fruit ripening. J Exp Bot,2002,53(377):2039-2055
    104. Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease. J Amer Chem Soc,1998,75:192-212
    105. Azad AK, Ishikawa T, Ishikawa T, Sawa Y, Shibata H. Intracellular energy depletion triggers programmed cell death during petal senescence in tulip. J Exp Bot,2008,59 (8):2085-2095
    106. Barthe P. Deformation of indicator of senescence in the rose:Efect of the application of plant hormones. Acta Hort,1991,298:61-68
    107. Bartoli CG, Simontacchi M, Guiamet JJ, Montaldi E, Puntarulo S. Antioxidant enzymes and lipid peroxidation during aging of Chrysanthemltm morifolium Ram. petals. Plant Sci,1995,104(2):161-168
    108. Bieleski RL. Fructan hydrolysis drives petal expansion in the ephemeral daylily flower. Plant Physiol,1993,103:213-219
    109. Bleecker AB, Kende H. Ethylene:a gaseous signal molecule in plants. Ann Rev Cell Dev Biol,2000,16:1-18
    110. Borochov A, Woodson WR.Physiology and biochemistry of flower petal senescence. Hortic Rev,1989,11:15-43
    111.Borochov A, Mayak S. The effect of simulated shipping-conditions on subsequent bud opening of cut spray cartion flowers. Sci Hort,1984,22:173-180
    112.Bosma T, Dole JM. Postharvest handling of cut Canpanula medium flowers. HortScience,2002,37(6):954-958
    113. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-249
    114. Celikel FG, Dodge LL, Reid MS. Efficacy of 1-MCP (1-methylcyclopropene) and Promalin for extending the postharvest life of Oriental lilies (Lilium×'MorgaLisa' and 'Stargazer'). Scientia Horticulturae,2002,93:149-155
    115. Chang H, Jones MJ, Banowetz GM. Overproduction of cytokinins in petunia flowers transformed with PSAG12-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol,2003,132(4):2174-2183
    116. Cichewicz RH, Nair MG. Isolation and characterization of stelladerol, a new antioxidant naphthalene glycoside, and other antioxidant glycosides from edible daylily (Hemerocallis) flowers. J Agric Food Chem,2002,50(1):87-91
    117. Cooper WC, Horanic G. Induction of abscission at hypobaric pressures. Plant Physiol,1973,51:1002-1004
    118. Du J, Han Y, Linton RH. Efficacy of chlorine dioxide gas in reducing Escherichia coli 0157:H7 on apple surfaces. Food Microbiology,2003,20: 583-591
    119. Evans RY, Reid MS. Changes in carbohydrates and osmotic potential during rhythmic expension of rose petals. J Am Soc Hort Sci,1988,113:884-88
    120. Eze JMO, Mayak S, Thompson JE, Dumbroff EB. Senescence in cut carnation flowers:Temporal and physiological relationships among water status, ethylene, abscisic acid and membrance permeability. Physiol Plant,1986,68:323-328
    121. Elgar J, Woolf A, Bieleski RH. Research publication-screening of peony cultivar ethylene sensitivity. Plant Growth Regulation,1998,23:63-65
    122. Gao J, Kubo Y, Nakamura R, Inaba A. Biosynthesis of trace-ethylene in some fruits. J Japan Soc Hort Sci,1992,61:199-204
    123. Garello G, Menard C, Dansereau B, Le Page-Degivry MT. The influence of light on rose flowersenescence:involvement of abscisic acid. Plant Growth Regulation,1995,16:135-139
    124. Germano MP, Pasquale RD, Angelo VD. Evaluation of extracts and isolated fraction from Capparis spinosa L. buds as an antioxidant source. J Agric Food Chem,2002,50(5):1168-1171
    125. Germano MP, Pasquale RD, Angelo VD. Evaluation of extracts and isolated fraction from Capparis spinosa L. buds as an antioxidant source. J Agric Food Chem,2002,50(5):1168-1171
    126. Gueter-Dahan Y, Yaniv Z, Zilinskas. Salt and oxidative stress:similar and specific responses and their relation to salt tolerance in citrus. Planta,1997,203: 460-469
    127. Halevy AH. Flower senescence. In:Leshem YY, Halevy AH, Frenkel C eds., Processes and Control of Senescence. Amsterdm:Elselior Amsterdm,1986, 150-200
    128.Halevy AH, Mayak S. Senescence and postharvest physiology of cut flowers. Hort Rew,1981,3:59-143
    129. Halliwell B, Gutteridge JMC. Lipid peroxidation:a redical chain reaction. In free radical in biology and medicine. Oxford:Charendon Press,1989,188-276
    130. Halliwell B. Antioxidant defences mechanisms:from the beginning to the end (of the beginning). Free Radic Res,1999,31(3):261-272
    131. Hammond JBW. Changes in amylase activity during rose bud opening. Sci Hort, 1982,16:283-289
    132.Han XY, Wang LS, Shu QY, Liu ZA, Xu SX, Tetsumura T. Molecular characterization of tree peony germplasm using sequence-related amplified polymorphism markers. Biochem Genet,2008,46:162-179
    133. Hanlry KM, Bramlage WJ. Endogenous levels of abscisic acid in aging carnation flower parts. J Plant Growth Regulation,1989,8:225-236
    134. Harman D. University of California radiation laboratory report. California: California Radiation Lab,1955,3078
    135. Heuser CW, Evensen KB. Cut flower longevity of peony. J Amer Soc Hort Sci, 1986,111(6):896-899
    136. Ho LC, Nichols R. Translocation of 14C-surcose in lation to changes in carbon-hydrate content in rose corollas cut at different stages of development. Ann Bot, 1977,41:227-242
    137. Hoeberichts FA, van Doom WG, Vorst O, Hall RD, van Wordragen MF. Sucrose prevents up-regulation of senescence -associated genes in carnation petals. J Exp Bot,2007,58(11):2873-2885
    138. Honer K, Cervellati R. Measurements of the antioxidant capacity of fruits and vegetables using the BR reaction method. Eur Food Res Technol,2002,215: 437-442
    139.Hubbard NL, Huber SC, Pharr DM. Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developimng muskmelon (Cucumis melo L.) fruits. Plant Physiol,1989,91:1527-1534
    140. Hung CY, Yen GC. Antioxidant activity of phenolic compounds isolated from Mesona procumbens Hemsl. J Agric Food Chem,2002,50(10):2993-2997
    141.Johnson PR, Ecker JR. The ethylene gas signal transduction pathway:a molecular perspective. Annu Rev Genet,1998,32:227-254
    142. Jones ML, Kim Eun-Sun, Newman SE. Role of ethylene and 1-MCP in flower development and petal abscission in Zonal Geraniums. HortScience,2001,36: 1187-1351
    143. Joyce DC, Shorter AJ, Joyce PA, Beal PR. Respiration and ethylene production by harvested Grevillea 'Sylvia' flowers and inflorescences. Acta-hortic, Leuven, Belgium:International Society for Horticultural Science,1995,405:224-231
    144. Kahkonun MP, Hopia AI, Heinonen M. Berry phenolics and their antioxidant activity. J Agric Food Chem,2001,49(8):4076-4082
    145. Kahkonun MP, Hopia AI, Heinonen M. Berry phenolics and their antioxidant activity. J A gric Food Chem,2001,49(8):4076-4082
    146.Kaur N, Palta JP. Postharvest dip in a natural lipid, lysophosphatidylethanolamine, may prolong vaselife of snapdragon flowers. HortScience,1997,32(5):888-890
    147.Keller F, Ludlow MM. Carbohydrate metabolism in drought-stressed leaves of pigeonpea (Cajanus cajan). J Exp Bot,1993,44:1351-359
    148. Kende H. Enzymes of ethylene synthesis. Plant Physiol,1989,91:1-4
    149. Kende H. Ethylene biosynthesis. Ann Rev Plant Physiol Plant Mol Biol,1993,44: 283-307
    150. Kenza M, Nakdimon V, Borochov A. The involvement of ethylene in the senescence of ranunculus cut flower. Postharvest Biology and Technology,2000, 19:287-290
    151. King AD, Ho LC, Baker DA. Activity of sucrose hydrolysing enzymes and sugar accumulation during tomato fruit development. Plant Growth Regulation,1997, 22:193-201
    152. Kuiper D, Ribot S, van Reenen HS, Marissen N. The effect of sucrose on the flower bud opening of 'Madelon' cut rose. Scientia Horticurae,1995,60: 325-336
    153. Larrauri JA, Sanchez-Moreno C, Saura-Calixto F. Effect of temperature on the free radical scavenging capacity of extracts from red and white grape pomace peels. J Agric Food Chem,1998,46(7):2694-2697
    154. Lay-Yee M, Stead AD, Ried MS. Flower senescence in daylily (Hemerocallis). Physiol Plant,1992,86:308-314
    155. Lieberman M, Kunishi A, Mapson LW, Wardale DA. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol,1966,41(3): 376-382
    156. Lizada MCC, Yang SF. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem,1979,100:140-145
    157. Llop-Tous I, Barry CS, Grierson D. Regulation of ethylene biosythesis in response to pollination in tomato flower. Plant Physiol,2000,123(3):971-978
    158. Louband M, van Doom WG. Wound-induced and bacteria-induced xylem blockage in rose, Astilbe, and Vibumum. Postharvest Biology and Technology, 2004,32(3):281-288
    159. Macnish AJ, Leonard RT, Nell TA. Potential of chlorine dioxide to extend the longevity of cut flowers. HortScience,2006,41:503
    160. Mayak S, Meeteren UV. Senescence of cut flowers. Hort Sci,1987,22 (5): 863-865
    161. Mega K. The history of tree peony. In:Mega K, Somei T eds., Tree Peony and Paeonia. Tokyo:NHK publisher,1983,131
    162. Meir S, Philosoph-Hadas S, Michaeli R, Davidson H. Improvement of the keeping quality of mini-gladiolusspikes during prolonged storage by sucrose pulsing and modified atmosphere packaging. Acta Hort,1995,405:335-342
    163. Nichols R. Sites of ethylene production in the pollinated andunpollinated scenscing carnation (Dianthus caryophyllus) in florescence. Planta,1977, 135:155-159
    164. Nowak J, Veen H. Effects of silver thiosulfate on abscisic acid content in cut carnations as related to flower senescence. J Plant Growth Regul,1982,1: 153-159
    165. O'Donoghue EM, Somerfield SD, Heyes JA. Vase solutions containing sucrose result in changes to cellwalls of sandersonia(Sandersonia aurantiaca) flowers. Postharvest Biology and Technology,2002,26:285-294
    166. O'Neill SD, Nadeau JA, Zhang XS, Bui AQ, Halevy AH. Interorgan regulation of ethylene biosythesis genes by pollination. The Plant Cell,1993,5(4):419-432
    167. Onoue T, Mikami M, Yoshioka T, Hashiba T, Satoh S. Characteristics of the inhibitory action 1,1-dimethyl-4-(phenylsulfonyl)semicarbazide(DPSS) on ethylene production in carnation (Dianthus caryophyllus L.) flowers. Plant growth regulation,2000,30(3):201-207
    168. Pandjaitan N, Howard LR, morelock T, Gil MI. Antioxidative capacity and phenoilic content of spinach as affect by genetics and maturation. J Agric Food Chem,2005,53:8618-8623.
    169.Peleman D, Saito K, Cottyn B. Structure and expression analyses of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana. Gene, 1989,84:359-369
    170. Que F, Mao LC, Zheng XJ. In vitro and vivo antioxidant activities of daylily flowers and the involvement of phenolic compounds. Asia Pacific Journal of Clinical Nutrition,2007,16,196-203, Suppl.1
    171.Ranwala AP, Iwanami SS, Masuda H. Acid and neutral invertases in the mesocarp of developing muskmelon(Cucumis melo L. cv Prince) fruit. Plant Physiol,1991, 96:881-886
    172. Raskin I. Salicylate, A new plant hormone. Plant Physiol,1992,99(3):799-803
    173. Redman PB, Dole JM, Maness NO, Anderson JA. Postharvest handling of nine specialty cut flower species. Scientia Horticulturae,2002,92:293-303
    174. Reid MS, Evans RY. Control of cut flower opening. Acta Hort,1986,181:45-54
    175. Reid MS, Wu MJ. Ethylene in flower development and senescence. In:Mattoo AK, Suttle JC eds., The Hormone Ethylene, Boca Raton:CRC Press,1991
    176. Rogers MN. An historical and critical review postharvest physiology research on cut flowers. HortScience,1973,8:189-194
    177. Ronen M, Mayak S. nterrelationship betwween abscisic acid and ethylene in the control of senescence processce in carnation flowers. J Exp Bot,1981,32(4): 759-765
    178. Rufty TW, Kerr PS, Huber SC. Characterization of diurnal changes in activities of enzymes involved in sucrose biosynthesis. Plant Physiol,1983,73:428-433
    179. Serek M, Jones RB, Reid MS. Role of ethylene in opening and senescence of Gladiolus sp. Flowers. J Amer Soc Hort Sci,1994,119(5):1014-1019
    180. Serek M, Sisler EC, Tamari G, Borochov A. Inhibition of ethylene-induced cellular senescence symptoms by 1-methyleyelopropene. Acta Hort,1995,405: 264-268
    181.Serrano M, Amoros A, Pretel MT, Martinez-Madrid MC, Romojaro F. Preservative solution containing boric acid delay senescence of carnation flowers. Posrharvest Biology and Technology,2001,23:133-142
    182.Sharma AD. CO2 Evolution rate decrease of anthurirms affected in storage. Hortculture,1986,56:425
    183. Shu QY, Wischnitzki E, Liu ZA, Rren HX, Han XY, Hao Q, Gao FF, Xu SX, Wang LS. Functional annotation of expressed sequnce tags as atool to understand the molecular mechanism controlling flower bud development intree peony. Physiol Plant,2009,135:436-449
    184. Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochem,1989,28(4):1057-1060
    185. Smirnoff N. The role of active oxygen in response of plants to water deficit and desiccation. New Phytologist,1993,125:27-58
    186. Sood S, Vyas D, Nagar K. Physiological and biochemical studies during flower development in two rose species. Scientia Horticurae,2006,108:390-396
    187. Stewart RC, Bewley JD. Lipid peroxidation associtated with accelerated aging of soybean axes. Plant Physiol,1980,65(2):245-248
    188. Thomas H, Ougham HJ, Wagstaff C, Stead AD. Difining senescence and death. J Exp Bot,2003,54:1127-1132
    189. van Doom WG, Groenewegen G, van de Pol P, Berkholst EM. Effects of carbihydrate and water status on flower opening of cut Madelon roses. Postharvest Biol Technol,1991,1:47-57
    190. van Doom WG. Water relations of cut flowers. Horticultural Reviews,1997,18: 1-85
    191. Van Doom WG, van Meeteren U. Flower opening and closure:a review. J Exp Bot,2003,54:1801-1812
    192. van Doom WG. Is petal senescence due to sugar starvation? Plant Physiol, 2004,134(1):35-42
    193.van Doom WG, Woltering EJ. Physiology and molecular biology of petal senescence. J Exp Bot,2008,59(3):453-480
    194. Wagstaff C, Chanasut U, Harren FJM, Laarhoven LJ, ThomasB, Rogers HJ, Stead AD. Ethylene and flower longevity in Alstroemeria:Relationship between tepal senescence, abscission, and ethylene biosynthesis. J Exp Bot,2005,56(413): 1007-1016
    195. Wang KL-C, Li H, Ecker J. Ethylene biosynthesis and signaling networks. The Plant Cell,2002,14:131-151
    196. Weltering EJ. Interorgan translocation of 1-aminocyclopropane-l-carboxylic acid and ethylene coordinates senescence in emasculated cymbidium flower. Plant Physiol,1990,92(3):837-845
    197. Woodson WR, Park KY, Drory A, Larsen PB, Wang H. Exp ression of ethylene biosynthetic pathway transcrip ts in enescence carnation flowers. Plant Physiol, 1992,99(2):26-532
    198. Xue JQ, Li YH, Tan H, Yang F, Ma N, Gao JP. Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening. J Exp Bot,2008,59(8):2161-2169
    199. Yamada K, Ito M, Oyama T, Nakada M, Maesaka M, Yamaki S. Analysis of sucrose metabolism during petal growth of cut roses, Postharvest Biol Tech, 2007,43:174-177
    200. Yang SF, Hoffman NE. Ethylene biosynthesis and itsregulation in higher plants. Ann Rev Plant Physiol,1984,35:155-189
    201. Yang SF. Biosynthesis and action of ethylene. Hort Sci,1985,20(1):41-45
    202. Yokozawa T, Dong E, Natagawa T, Kashiwagi H, Nakagawa H, Takeuchi S, Chung HY. In vitro and in vivo studies on the radical-scavenging activity of tea. J Agric Food Chem,1998,46 (6):2143-2150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700