维生素D免疫调节作用及其受体基因多态性与自身免疫性糖尿病的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分维生素D受体基因Fok I多态性与自身免疫性糖尿病的关系
     目的:①探讨维生素D受体(VDR)基因Fok I多态性与自身免疫性糖尿病(T1DM和LADA)的关系;②探讨VDR基因Fok I多态性对谷氨酸脱羧酶抗体(GADA)滴度的影响。
     对象与方法:研究对象为T1DM患者241例,LADA患者354例,T2DM患者473例,正常对照380例。采用PCR-RFLP方法检测VDR基因Fok I多态性,放射配体法检测GADA滴度,放射免疫法检测胰岛素和C肽;分析VDR基因Fok I多态性与糖尿病、GADA滴度及胰岛β细胞功能的关系。
     结果:①全体观察对象VDR基因Fok I基因型符合Hardy-Weinberg平衡;②VOR基因Fok I多态性在对照组和糖尿病组间比较,糖尿病组ff基因型和f等位基因频率(22.3%,48.1%)高于正常对照(17.9%,42.8%),而FF基因型和F等位基因频率(26.1%,51.9%)低于正常对照组(32.4%,57.2%)(P<0.05);③LADA组ff基因型分布频率(27.1%)高于正常对照组(17.9%),而T2DM组FF基因型分布频率(24.1%)低于正常对照组(32.4%),差异具有统计学意义(P值分别为0.028、0.011);;此外,T1DM组VDR基因Fok I基因型分布与LADA组基因型分布差异具有统计学意义(P=0.041),而与对照组比较无统计学差异;携带ff基因型人群中LADA患病相对危险性增加(OR值为1.707,95%的可信区间为1.201~2.427);④在LADA患者中,GADA滴度在ff组最高(0.1742),Ff基因型组次之(0.1363),FF基因型最低(0.1104),基因型ff组显著高于FF组(P<0.05);⑤分别以GADA滴度0.3和0.8为切点,将LADA组分为高滴度组(GADA≥0.3,0.8,LADA-1组)和低滴度组(GADA<0.3,0.8,LADA-2组),无论在切点0.3或者0.8,LADA-1组与正常对照比较,VDR基因Fok I基因型分布差异均具有统计学意义(P<0.01),而LADA-2的Fok I基因型分布与对照组比较无差异(P>0.10)。在切点0.8,LADA-1组与LADA-2组比较,VDR基因Fok I基因型分布差异具有统计学意义(P=0.009);而在切点0.3,VDR基因Fok I基因型在LADA-1组与LADA-2组中的分布差异无统计学意义(P=0.179)。⑥在T1DM组,VDR基因Fok I3种基因型之间临床及代谢指标差异均无统计学意义(P>0.05);Ff基因型组与ff基因型组的FCP、PCP均低于FF基因型组,差异具有统计学意义。⑦在LADA组,VDR基因Fok I 3种基因型之间临床及代谢指标无差异(P>0.05);Ff基因型组与ff基因型组的FCP低于FF基因型组,差异具有统计学意义(P<0.05)。HOMA-IS在FF组最高,Ff基因型组次之,ff基因型最低;HOMA-IR在ff组最高,Ff基因型组次之,FF基因型最低,但二者均无统计学意义(P>0.05)。
     结论:VDR基因Fok I多态性与T1DM遗传易感性不相关,与GADA滴度亦不相关。VDR基因Fok I ff基因型与LADA风险增加有关,可能是LADA遗传易感基因之一。LADA患者VDR基因Fok I多态性与GADA滴度相关,其VDR基因Fok I ff基因型与高GADA滴度呈正相关。
     第二部分自身免疫性糖尿病单核细胞表面CD14、TLR2和TLR4的表达
     目的:观察自身免疫性糖尿病患者外周单核细胞表面CD14、TLR2和TLR4的表达。
     对象与方法:1型糖尿病患者(T1DM)16例、成人隐匿性自身免疫糖尿病患者(LADA)18例、2型糖尿病患者(T2DM)22例和正常对照23例,用化学分离法获得外周血单个核细胞(PBMC)后,磁珠分离法获取纯化的单核细胞,使用流式细胞仪(FCM)检测单核细胞表面CD14、TLR2和TLR4的表达。用酶联免疫法(ELISA)检测血清IL-1β和TNF-α水平。
     结果:LADA患者单核细胞表面CD14表达显著高于T1DM、T2DM和正常对照人群(P<0.001),而T1DM患者单核细胞CD14的表达较正常人群低(P=0.002),T2DM患者单核细胞CD14水平与正常对照组相比无显著差异(P>0.05)。LADA和T2DM患者单核细胞表面TLR4表达高于T1DM和正常对照(P<0.05),LADA与T2DM比较无差异(P>0.05)。各组人群单核细胞TLR2表达均未发现有差异性(P>0.05)。各组糖尿病患者IL-1β和TNF-α水平均较高,正常人群IL-1β低于可检测值。
     结论:T1DM和LADA单核细胞表面CD14、TLR2和TLR4表达的变化,提示自身免疫性糖尿病可能存在天然免疫调控的改变。
     第三部分维生素D3对自身免疫性糖尿病单核细胞的免疫调节作用
     目的:探讨1,25(OH)_2D3对自身免疫性糖尿病单核细胞的免疫调节作用。
     方法:体外培养的外周单核细胞分别从23例正常对照、16例1型糖尿病患者(T1DM)、18例成人隐匿性自身免疫糖尿病患者(LADA)以及22例2型糖尿病患者(T2DM)中获得。观察1,25(OH)_2D3预干预后,单核细胞对TLR2配体(脂磷壁酸,LTA)和TLR4配体(脂多糖,LPS)的反应性变化以及单核细胞表面CD14,TLR2和TLR4表达变化。流式细胞仪分析单核细胞CD14,TLR2和TLR4表达以及NF-κB-p65磷酸化水平,IL-1β和TNF-α水平用酶联免疫吸附法(ELISA)检测。
     结果:LPS和LTA降低T1DM,T2DM和正常对照组单核细胞表面CD14的表达,而增加LADA组单核细胞表面CD14的表达(P<0.05);LTA对单核细胞表面TLR2表达的影响在T1DM、LADA、T2DM和正常对照组间比较无差异(P>0.05);LPS使正常对照组单核细胞表面TLR4表达下降的幅度明显高于T1DM、LADA和T2DM组(P<0.05)。LPS和LTA干预后,T1DM、LADA和T2DM单核细胞NF-κB-p65磷酸化水平和IL-1β和TNF-α浓度均明显高于正常对照组(P<0.001);1,25(OH)_2D3预干预后,LPS和LTA对单核细胞表面CD14、TLR2和TLR4表达、NF-κB-p65磷酸化水平和IL-1β和TNF-α浓度的影响各组间比较无差异(P>0.05)。
     结论:LPS和LTA刺激可降低正常对照组和T1DM单核细胞表面CD14的表达,而升高LADA单核细胞表面CD14的表达,这可能是LADA的一个特异性表现。1,25(OH)_2D3预干预后,T1DM和LADA单核细胞在TLR配体刺激下CD14、TLR2和TLR4的表达、NF-κB-p65磷酸化水平以及IL-1β和TNF-α浓度均与正常对照组相似。研究结果表明1,25(OH)_2D3对T1DM和LADA患者单核细胞的高反应性具有一定的免疫调节作用,这有助于我们近一步地认识和探讨1,25(OH)_2D3作为自身免疫性糖尿病治疗的价值。
Part one Association between the VDR gene Fok I polymorphism and autoimmune diabetes
     Object:To study the association between the VDR gene Fok I polymorphism and autoimmune diabetes.
     Subject and Methods:595 autoimmune diabetic patients including 241 typical type 1 diabetic patients and 354 latent autoimmune diabetes in adults(LADA),473 type 2 diabetic patients and 380 unrelated healthy subjects were recruited for this study from China.Genotyping for VDR gene Fok I polymorphism were performed by RFLP-PCR technique. Multiple linear regression was used to study for associations between autoimmune antibodies levels of GADA and IA-2A and VDR gene Fok I genotype in T1DM and LADA.
     Results:1) The distribution of VDR gene Fok I genotypes of all subjects was in compliance with the Hardy-Weinberg equilibrium (P=0.776).2) The distribution of VDR gene Fok I genotype and allele frequencies between diabetic patients and controls differed significantly (P<0.05) with the ff genotype occurring more frequently in diabetic patients.3) Moreover,there was a significant difference in frequencies of VDR gene Fok I genotype and allele between T1DM and LADA (P=0.041) whereas this difference was not observed between T1DM and controls.4) VDR gene Fok I ff genotype(odds ratio[OR]=1.707,95% CI 1.201~2.427) was the main susceptibility genotype in LADA.5) Multiple linear regression showed no association of the autoimmune antibodies,IA-2A and GADA with VDR Fok I genotype in T1DM. However,in LADA ff genotype was associated with higher GADA titer compared with FF genotype(P<0.05).6) LADA patients were divided into LADA-1 and LADA-2 according to the titers higher than 0.8 or not. The distribution of VDR gene Fok I genotype between LADA-1 and LADA-2 differed significantly(P=0.009).The distribution of VDR gene Fok I genotype in LADA-2 was no difference compared with that in controls.7) In T1DM,Ff and ff genotypes showed lower levels of FCP and PCP than FF genotype.Moreover,in LADA,Ff and ff genotypes showed lower level of FCP than FF genotype.Although low HOMA-IS and high HOMA-IR in LADA ff genotype,the difference was not significant compared with that in FF genotype(P=0.242,P=0.790; respectively).
     Conclusions:1) VDR gene Fok I genotype showed no association with T1DM.2) VDR gene Fok I ff genotype may be a genetic mark for predicting risk of LADA and was associated with higher GADA titer.
     Part two Monocyte surface CD14,TLR2 and TLR4 expression in autoimmune diabetes
     Object:To investigate the CD14,TLR2 and TLR4 expression of monocyte from T1DM,LADA and T2DM.
     Methods:Peripheral blood monocytes were collected from 23 healthy controls,16 type 1 diabetes mellitus(T1DM),18 latent autoimmune diabetes in adults(LADA),and 22 type 2 diabetes mellitus (T2DM),respectively.CD14,TLR2 and TLR4 expression were analyzed by flow cytometer.Serum IL-1βand TNF-αlevel were measured by enzyme linked immunosorbent assay(ELISA).
     Results:Monocytes showed significantly higher surface CD14 expression from LADA compared with that from T1DM,T2DM and controls(P<0.001).However,surface CD14 expression on monocytes from T1DM was lower than controls(P=0.002).Monocyte surface CD14 expression from T2DM showed no difference compared with controls (P>0.05).Higher TLR4 expression on freshly isolated monocytes from LADA and T2DM compared that from T1DM and controls(P<0.05).And no difference of monocyte TLR4 expressin between LADA and T2DM was found(P>0.05).The levels of TLR2 expression were no significant differences between patients and controls(P>0.05).Levels of IL-1βand TNF-α,as inflammation biomarkers,was high in patients,concentration of IL-1βin controls was under-detected.
     Conclusions:Changes of monocyte surface CD14,TLR2 and TLR4 expressions in T1DM and LADA suggests that the change of the innate immune may be involved in autoimmune diabetes.
     Part three Modulation of 1,25-dihydroxy-vitamin D3 on monocyte hyperresponsiveness from autoimmune diabetes
     Object:To investigate modulation of 1,25-dihydroxy-vitamin D3 on monocyte activity from autoimmune diabetes.
     Methods:Peripheral blood monocytes were collected from 23 healthy controls,16 type 1 diabetes mellitus(T1DM),18 latent autoimmune diabetes in adults(LADA),and 22 type 2 diabetes mellitus (T2DM),respectively.The effect of 1,25-dihydroxy-vitamin D3 (1,25(OH)_2D3) on monocyte response to TLR2 ligand(lipoteichoic acid, LTA) and TLR4 ligand(lipopolysaccharide,LPS) was evaluated in vitro by measuring phosphorylation level of NF-κB-p65 and associated cytokine production(IL-1βand TNF-α).In additional,effects of preincubation with 1,25(OH)_2D3 on moncyte CD14,TLR2 and TLR4 expression stimulated by LTA and LPS were observed.CD14,TLR2 and TLR4 expression and phosphorylation level of NF-κB-p65 were determined by flow cytometer(FCM).IL-1βand TNF-αconcentrations were measured by enzyme-linked immunosorbent assay(ELISA).
     Results:LPS and LTA decreased surface expressions of CD14 were observed on monocytes from T1DM,T2DM and controls,in contrast to increased on monocytes from LADA(P<0.05).After incubation with LPS,the levels of monocyte TLR4 expression remarkably decreased in controls,as compared with T1DM and LADA(P<0.05).There was no significant difference in the expression of TLR2 on monocyte between patients and controls after stimulation with LTA(P>0.05).Additionally, expressions of CD14,TLR2 and TLR4 on monocytes surface did not show significant changes between patients and controls when monocytes were pretreated with 1,25(OH)_2D3,and afterwards incubated with LPS or LTA(P>0.05).Activation of NF-κB and amounts of IL-1βand TNF-αproduction by stimulation with LTA and LPS significantly increased in T1DM and LADA,which was modulated by 1,25(OH)_2D3 to similar level,as compared to controls.
     Conclusions:Monocytes from T1DM and LADA showed similar high cellular reactivity towards ligands and 1,25(OH)_2D3 was observed to restore this defect to a certain extent in vitro.The modulation of 1,25(OH)_2D3 on monocytes makes us to consider more potency of vitamin D3 as therapy in autoimmune diabetes.
引文
[1] Bach JF. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev. 1994,15(4): 516-542.
    [2] Schmidt MI, Duncan BB, Sharrett AR, et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities Study): a cohort study. Lancet. 1999,353(9165): 1649-1652.
    [3] Festa A, D'Agostino R Jr, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the Insulin Resistance Atherosclerosis Study. Diabetes. 2002,51(4): 1131-1137.
    [4] Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001,286(3): 327-334.
    [5] Barzilay JI, Abraham L, Heckbert SR, et al. The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes. 2001,50(10): 2384-2389.
    [6] Han TS, Sattar N, Williams K, et al. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care. 2002,25(11): 2016-2021.
    [7] Vozarova B, Weyer C, Lindsay RS, et al. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002,51(2): 455-461.
    [8] Freeman DJ, Norrie J, Caslake MJ, et al. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes. 2002,51(5): 1596-1600.
    [9] Ford ES. Leukocyte count, erythrocyte sedimentation rate, and diabetes incidence in a national sample of US adults. Am J Epidemiol. 2002,155(1): 57-64.
    [10] Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003,52(7): 1799-1805.
    [11] Kim F, Pham M, Luttrell I, et al. Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res. 2007,100(11): 1589-1596.
    [12] Shi H, Kokoeva MV, Inouye K, et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006,116(11): 3015-3025.
    [13] Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007,56(7): 1761-1772.
    [14] V Burkart, M Ihira, C Kaneko, et al. Diabetes development in non-obese diabetic mice is under control of the toll-like receptor 4. Exp Clin Endocrinol Diabetes. 2006,114.
    [15] Baumgartl HL, Standl E, Schmidt-Gayk H, et al. Changes of vitamin D3 serum concentrations at the onset of immunemediated type 1 (insulin-dependent) diabetes mellitus. Diabetes Res. 1991,16(3): 145-148.
    [16] The EURODIAB Substudy 2 Study Group. Vitamin supplement in early childhood and risk for type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1999,42(1): 51-54.
    [17] Stene LC, Ulriksen J, Magnus P, Joner G. Use of cod liver oil during pregnancy associated with lower risk of Type I diabetes in the offspring Diabetologia. 2000,43(9): 1093-1098.
    [18] Hypponen E, Laara E, Reunanen A, et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet. 2001,358(9292): 1500-1503.
    [19] Christiansen C, Christensen MS, McNair P, et al. Vitamin D metabolites in diabetic patients: decreased serum concentration of 24,25-dihydroxyvitamin D. Scand J Clin Lab Invest. 1982,42(6): 487-491.
    [20] Nyomba BL, Bouillon R, Bidingija M, et al. Vitamin D metabolites and their binding protein in adult diabetic patients. Diabetes. 1986,35(8): 911-915.
    [21] Pietschmann P, Schernthaner G, Woloszczuk W. Serum osteocalcin levels in diabetes mellitus: analysis of the type of diabetes and microvascular complications. Diabetologia. 1988,31(12): 892-895.
    [22] Scragg R, Holdaway I, Singh V, et al. Serum 25-hydroxyvitamin D3 levels decreased in impaired glucose tolerance and diabetes mellitus. Diabetes Res ClinPract. 1995,27(3): 181-188.
    [23] Aksoy H, Akcay F, Kurtul N, et al. Serum 1,25 dihydroxy vitamin D (1,25(OH)2D3), 25 hydroxy vitamin D (25(OH)D) and parathormone levels in diabetic retinopathy. Clin Biochem. 2000,33(1): 47-51.
    [24] Isaia G, Giorgino R, Adami S. High prevalence of hypovitaminosis D in female type 2 diabetic population. Diabetes Care. 2001,24(8): 1496.
    [25] Cigolini M, Iagulli MP, Miconi V, et al. Serum 25-hydroxyvitamin D3 concentrations and prevalence of cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2006,29(3): 722-724.
    [26] Luong K, Nguyen LT, Nguyen DN. The role of vitamin D in protecting type 1 diabetes mellitus. Diabetes Metab Res Rev. 2005,21(4): 338-346.
    [27] Zhou Z, N Liao, X Li, M Lei. Vitamin D supplementation in adults with latent autoimmune diabetes (LADA) (abstract). Diabetologia. 2005,48: 87.
    [28] Giulietti A, van Etten E, Overbergh L, et al. Monocytes from type 2 diabetic patients have a pro-inflammatory profile 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract. 2007,77(1): 47-57.
    [29] Scherberich JE, Kellermeyer M, Ried C, et al. 1-alpha-calcidol modulates major human monocyte antigens and toll-like receptors TLR 2 and TLR4 in vitro. Eur J Med Res. 2005,10(4): 179-182.
    [30] Sadeghi K, Wessner B, Laggner U, et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol. 2006,36(2): 361-370.
    [31] Bhalla AK, Amento EP, Serog B, Glimcher LH. 1,25-Dihydroxyvitamin D3 inhibits antigen-induced T cell activation. J Immunol, 1984,133(4): 1748-1754.
    [32] Lemire JM. Immunomodulatory actions of 1,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol. 1995,53(1-6): 599-602.
    [33] Pani MA, Knapp M, Donner H, et al. Vitamin D receptor allele combinations influence genetic susceptibility to type 1 diabetes in Germans. Diabetes. 2000,49(3): 504-507.
    [34] Ban Y, Taniyama M, Yanagawa T, et al. Vitamin D receptor initiation codon polymorphism influences genetic susceptibility to type 1 diabetes mellitus in the Japanese population. BMC Med Genet. 2001,2:7.
    [35] Yokota I, Satomura S, Kitamura S, et al. Association between vitamin D receptor genotype and age of onset in juvenile Japanese patients with type 1 diabetes. Diabetes Care. 2002,25(7): 1244.
    [36] Koeleman BP, Valdigem G, Eerligh P, et al. Seasonality of birth in patients with type 1 diabetes.Lancet. 2002,359(9313): 1246-1247.
    [37] Zemunik T, Skrabic V, Boraska V, et al. Fok I polymorphism, vitamin D receptor, and interleukin-1 receptor haplotypes are associated with type 1 diabetes in the Dalmatian population. J Mol Diagn. 2005,7(5): 600-604.
    [38] Audi L, Marti G, Esteban C, et al. VDR gene polymorphism at exon 2 start codon (Fok Ⅰ) may have influenced Type 1 diabetes mellitus susceptibility in two Spanish populations. Diabet Med. 2004,21(4): 393-394.
    [39] San-Pedro JI, Bilbao JR, Perez de Nanclares G, et al. Heterogeneity of vitamin D receptor gene association with celiac disease and type 1 diabetes mellitus. Autoimmunity. 2005,38(6): 439-444.
    [40] Capoluongo E, Pitocco D, Concolino P, et al. Slight association between type 1 diabetes and "ff" VDR Fok I genotype in patients from the Italian Lazio Region. Lack of association with diabetes complications. Clin Biochem. 2006,39(9): 888-8892.
    [41] Guja C, Marshall S, Welsh K, et al. The study of CTLA-4 and vitamin D receptor polymorphisms in the Romanian type 1 diabetes population. J Cell Mol Med. 2002,6(1): 75-81.
    [42] Nejentsev S, Cooper JD, Godfrey L, et al. Analysis of the vitamin D receptor gene sequence variants in type 1 diabetes. Diabetes. 2004,53(10): 2709-2712.
    [43] Turpeinen H, Hermann R, Vaara S, et al. Vitamin D receptor polymorphisms: no association with type 1 diabetes in the Finnish population. Eur J Endocrinol. 2003,149(6): 591-596.
    [44] Gyorffy B, Vasarhelyi B, Krikovszky D, et al. Gender-specific association of vitamin D receptor polymorphism combinations with type 1 diabetes mellitus. Eur J Endocrino. 2002,147(6): 803-808.
    [45] Lemos MC, Fagulha A, Coutinho E, et al. Lack of association of vitamin D receptor gene polymorphisms with susceptibility to type 1 diabetes mellitus in the Portuguese population. Hum Immunol. 2008,69(2): 134-138.
    [1] Bach JF. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev. 1994,15(4): 516-542.
    [2] Bhalla AK, Amento EP, Serog B, Glimcher LH. 1,25-Dihydroxyvitamin D3 inhibits antigen-induced T cell activation. J Immunol. 1984,133(4): 1748-1754.
    [3] Machael A, Pani MA, Knapp M, et al. Vitamin D receptor allele combinations influence genetic susceptibility to type 1 diabetes in Germans. Diabetes. 2000,49(3): 504-507.
    [4] Ban Y, Taniyama M, Yanagawa T, et al. Vitamin D receptor initiation codon polymorphism influences genetic susceptibility to type 1 diabetes mellitus in the Japanese population. BMC Med Genet. 2001,2:7.
    [5] Yokota I, Satomura S, Kitamura S, et al. Association between vitamin D receptor genotype and age of onset in juvenile Japanese patients with type 1 diabetes. Diabetes Care. 2002,25(7): 1244.
    [6] Koeleman BP, Valdigem G, Eerligh P, et al. Seasonality of birth in patients with type 1 diabetes.Lancet. 2002,359(9313): 1246-1247.
    [7] Zemunik T, Skrabic V, Boraska V, et al. Fok I polymorphism, vitamin D receptor, and interleukin-1 receptor haplotypes are associated with type 1 diabetes in the Dalmatian population. J Mol Diagn. 2005,7(5): 600-604.
    [8] Audi L, Marti G, Esteban C, et al. VDR gene polymorphism at exon 2 start codon (Fok I) may have influenced Type 1 diabetes mellitus susceptibility in two Spanish populations. Diabet Med. 2004,21(4): 393-394.
    [9] San-Pedro JI, Bilbao JR, Perez de Nanclares G, et al. Heterogeneity of vitamin D receptor gene association with celiac disease and type 1 diabetes mellitus. Autoimmunity. 2005,38(6): 439-444.
    [10] Capoluongo E, Pitocco D, Concolino P, et al. Slight association between type 1 diabetes and "ff" VDR Fok I genotype in patients from the Italian Lazio Region. Lack of association with diabetes complications. Clin Biochem. 2006,39(9): 888-8892.
    [11] Guja C, Marshall S, Welsh K, et al. The study of CTLA-4 and vitamin D receptor polymorphisms in the Romanian type 1 diabetes population. J Cell Mol Med. 2002,6(1): 75-81.
    [12] Nejentsev S, Cooper JD, Godfrey L, et al. Analysis of the vitamin D receptor gene sequence variants in type 1 diabetes. Diabetes. 2004,53(10): 2709-2712.
    [13] Turpeinen H, Hermann R, Vaara S, et al. Vitamin D receptor polymorphisms: no association with type 1 diabetes in the Finnish population. Eur J Endocrinol. 2003,149(6): 591-596.
    [14] Gyorffy B, Vasarhelyi B, Krikovszky D, et al. Gender-specific association of vitamin D receptor polymorphism combinations with type 1 diabetes mellitus. Eur J Endocrino. 2002,147(6): 803-808.
    [15] Lemos MC, Fagulha A, Coutinho E,et al. Lack of association of vitamin D receptor gene polymorphisms with susceptibility to type 1 diabetes mellitus in the Portuguese population. Hum Immunol. 2008,69(2): 134-138.
    [16] Eerligh P, Koeleman BP, Dudbridge F, et al. Functional genetic polymorphisms in cytokines and metabolic genes as additional genetic markers for susceptibility to develop type 1 diabetes. Genes Immun. 2004,5(1): 36-40.
    [17] Motohashi Y, Yamada S, Yanagawa T, et al. Vitamin D receptor gene polymorphism affects onset pattern of type 1 diabetes. J Clin Endocrinol Metab. 2003,88(7): 3137-3140.
    [18] Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA-4 with susceptibility to autoimmune disease. Nature. 2003,423(6939): 506-511.
    [19] Hypponen E, Laara E, Reunanen A, et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet. 2001,358(9292): 1500-1503.
    [20] McDermott MF, Ramachandran A, Ogunkolade BW, et al. Allelic variation in the vitamin D receptor influences susceptibility to IDDM in Indian Asians. Diabetologia. 1997,40(8): 971-975.
    [21] Guo SW, Magnuson VL, Schiller JJ, et al. Meta-analysis of vitamin D receptor polymorphisms and type 1 diabetes: a HuGE review of genetic association studies. Am J Epidemiol. 2006,164(8): 711-724.
    [22] Mathieu C, Waer M, Laureys J, et al. Prevention of autoimmune diabetes in NOD mice by 1,25 dihydroxyvitamin D3. Diabetologia. 1994,37(6): 552-558.
    [23] Zella JB, McCary LC, DeLuca HF. Oral administration of 1,25-dihydroxyvitamin D3 completely protects NOD mice from insulin-dependent diabetes mellitus. Arch Biochem Biophys. 2003,417(1): 77-80.
    [24]Giarratana N,Penna G,Amuchastegui S,et al.A vitamin D analog down-regulates proinflammatory chemokine production by pancreatic islets inhibiting T cell recruitment and type 1 diabetes development.J Immunol.2004;173(4):2280-2287.
    [25]Zella JB,DeLuca HE Vitamin D and autoimmune diabetes.J Cell Biochem.2003,88(2):216-222.
    [26]Uitterlinden AG,Fang Y,Van Meurs JB,et al.Genetics and biology of vitamin D receptor polymorphisms.Gene.2004,338(2):143-156.
    [27]李慧敏,缪珩,鲁一兵,等.维生素D受体基因多态性与2型糖尿病易感性的研究.中国现代医学杂志.2005,15(7):989-992.
    [28]Malecki MT,Frey J,Moczulski D,et al.Vitamin D receptor polymorphism and association with type 2 diabetes mellitus in a Polish population.Exp Clin Endocrinol Diabetes.2003,111(8):505-509.
    [29]Gross C,Eccleshall TR,Malloy PJ,et al.The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women.J Bone Miner Res.1996,11(12):1850-1855.
    [30]Saijo T,Ito M,Takeda E,et al.A unique mutation in the vitamin D receptor gene in three Japanese patients with vitamin D-dependent rickets type Ⅱ:utility of single-strand conformation polymorphism analysis for heterozygous carrier detection.Am J Hum Genet.1991,49(3):668-673.
    [31]Sturzenbecker L.Scardaville B,Kratzeisen C,et al.Isolation and analysis of cDNA endocing a naturally occurring truncated form of the human vitamin D receptor.In Bouilon,R.,Norman,A.,Thomasset,M.(Eds.),Vitamin D:A Pluripotent Steroid Hormone:Structural Studies,Molecular Endocrinology and Clinical Applications.Walter de Gruyter,Berlin.1994,pp:253-257.
    [32]Arai H,Miyamoto K,Taketani Y,et al.A vitamin D receptor gene polymorphism in the translation initiation codon:effect on protein activity and relation to bone mineral density in Japanese women.J Bone Miner Res.1997,12(6):915-921.
    [33]Jurutka PW,Remus LS,Whitfield GK,et al.The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB.Mol Endocrinol. 2000,14(3): 401-420.
    [34] Colin EM, Weel AE, Uitterlinden AG, et al. Consequences of vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1, 25-dihydroxyvitamin D3. Clin Endocrinol (Oxf). 2000,52(2): 211-216.
    [35] Lohmann T, Kellner K, Verlohren HJ, et al. Titre and combination of ICA and autoantibodies to glutamic acid decarboxylase discriminate two clinically distinct types of latent autoimmune diabetes in adults (LADA). Diabetologia. 2001,44(8): 1005-1010.
    [36] Li X, Yang L, Zhou Z, et al. Glutamic acid decarboxylase 65 autoantibody levels discriminate two subtypes of latent autoimmune diabetes in adults. Chin Med J (Engl). 2003,116(11): 1728-1732.
    [37] Borg H, Gottsater A, Fernlund P, et al. A 12-year prospective study of the relationship between islet antibodies and beta-cell function at and after the diagnosis in patients with adult-onset diabetes. Diabetes. 2002,51(6): 1754-1762.
    [38] Borg H, Gottsater A, Landin-Olsson M, et al. High levels of antigen-specific islet antibodies predict future beta-cell failure in patients with onset of diabetes in adult age. J Clin Endocrinol Metab. 2001,86(7): 3032-3038.
    [39] Ogunkolade BW, Boucher BJ, Prahl JM, et al. Vitamin D receptor (VDR) mRNA and VDR protein levels in relation to vitamin D status, insulin secretory capacity, and VDR genotype in Bangladeshi Asians. Diabetes. 2002,51(7): 2294-300.
    [40] Haussler MR, Whitfield GK, Haussler CA, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res. 1998,3(3): 325-349.
    [41] Chiu KC, Chuang LM, Yoon C. The vitamin D receptor polymorphism in the translation initiation codon is a risk factor for insulin resistance in glucose tolerant Caucasians. BMC Med Genet. 2001,2:2.
    [1] Schmidt MI, Duncan BB, Sharrett AR, et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities Study): a cohort study. Lancet. 1999,353(9165): 1649-1652.
    [2] Festa A, D'Agostino R Jr, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the Insulin Resistance Atherosclerosis Study. Diabetes. 2002,51(4): 1131-1137.
    [3] Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001,286(3): 327-334.
    [4] Barzilay JI, Abraham L, Heckbert SR, et al. The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes. 2001,50(10): 2384-2389.
    [5] Han TS, Sattar N, Williams K, et al. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care. 2002,25(11): 2016-2021.
    [6] Vozarova B, Weyer C, Lindsay RS, et al. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002,51(2): 455-461.
    [7] Freeman DJ, Norrie J, Caslake MJ, et al. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes. 2002,51(5): 1596-1600.
    [8] Ford ES. Leukocyte count, erythrocyte sedimentation rate, and diabetes incidence in a national sample of US adults. Am J Epidemiol. 2002,155(1): 57-64.
    [9] Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003,52(7): 1799-1805.
    [10] Kim F, Pham M, Luttrell I, et al. Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res. 2007,100(11): 1589-1596.
    [11] Shi H, Kokoeva MV, Inouye K, et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006,116(11): 3015-3025.
    [12] Card PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007,56(7): 1761-1772.
    [13] Waltenberger J, Lange J, Kranz A. Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: a potential predictor for the individual capacity to develop collaterals. Circulation. 2000,102(2): 185-190.
    [14] Katz S, Klein B, Elian I, et al. Phagocytotic activity of monocytes from diabetic patients. Diabetes Care. 1983,6(5): 479-482.
    [15] Giulietti A, van Etten E, Overbergh L, et al. Monocytes from type 2 diabetic patients have a pro-inflammatory profile 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract, Diabetes Res Clin Pract. 2007,77(1): 47-57.
    [16] Beyan H, Buckley LR, Yousaf N, et al. A role for innate immunity in type 1 diabetes? Diabetes Metab Res Rev. 2003,19(2): 89-100.
    [17] Fernandez-Real JM, Pickup JC. Innate immunity, insulin resistance and type 2 diabetes. Trends Endocrinol Metab. 2008,19(1): 10-16.
    [18] Wen L, Peng J, Li Z, et al. The Effect of Innate Immunity on Autoimmune Diabetes and the Expression of Toll-Like Receptors on Pancreatic Islets. J Immunol. 2004,172(5): 3173-3180.
    [19] Song MJ, Kim KH, Yoon JM, et al. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun. 2006, 346(3): 739-745.
    [20] Rasschaert J, Ladriere L, Urbain M, et al. Toll-like receptor 3 and STAT-1 contribute to double-stranded RNA+ interferon-gamma-induced apoptosis in primary pancreatic beta-cells. J Biol Chem. 2005,280(40): 33984-33991.
    [21] Zipris D, Lien E, Xie JX, et al. TLR activation synergizes with Kilham rat virus infection to induce diabetes in BBDR rats. J Immunol. 2005,174(1): 131-142.
    [22] Mohammad MK, Morran M, Slotterbeck B, et al. Dysregulated Toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse. Int Immunol. 2006,18(7): 1101-1113.
    [23] Kim HS, Han MS, Chung KW, et al. Toll-like receptor 2 senses beta-cell death and contributes to the initiation of autoimmune diabetes. Immunity. 2007,27(2): 321-333.
    [24] LETICIA MORENO-FIERROS, Luis Enrique Martinez-Barrera. Impaired expression of Toll-like receptors in peripheral blood monocytes and granulocytes in type 2 diabetic subjects. J Immunol. 2007,178(Abstracts): 5215.
    [25] Devaraj S, Dasu MR, Rockwood J, et al. Increased Toll-Like Receptor (TLR) 2 and TLR4 Expression in Monocytes from Patients with Type 1 Diabetes: Further Evidence of a Proinflammatory State. J Clin Endocrin Metab. 2008,93(2): 578-583.
    [26] Stewart LK, Flynn MG, Campbell WW, et al. Influence of exercise training and age on CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav Immun. 2005;19(5): 389-397.
    [27] McFarlin BK, Flynn MG, Campbell WW, et al. Physical activity status, but not age, influences inflammatory biomarkers and toll-like receptor. J Gerontol A Biol Sci Med Sci. 2006.61(4): 388-393.
    [28] van Duin D, Mohanty S, Thomas V, et al. Age-associated defect in human TLR-1/2 function. J Immunol. 2007.178(2): 970-975.
    [29] Lien E, Means TK, Heine H, et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest. 2000,105(4): 497-504.
    [30] Schwandner R, Dziarski R, Wesche H, et al. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J Biol Chem. 1999,274(25): 17406-17409.
    [1] Fournier C, Gepner P, Sadouk M, et al. In vivo beneficial effects of cyclooporine A and 1,25 dihydroxyvitamin D3 on the induction of experimental autoimmune thyroiditis. Clin Immunol Immunopathol. 1990,54(l):53-63.
    [2] Lemire JM, Archer DC. 1,25-Dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalo-myelitis. J Clin Invest. 1991,87(3): 1103-1107.
    [3] Panichi V, Migliori M, Taccola D, et al. Effects of 1,25(OH)2D3 in experimental mesangial proliferative nephritis in rats. Kidney Int. 2001,60(1): 87-95.
    [4] Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006,311(5768): 1770-1773.
    [5] Giulietti A, van Etten E, Overbergh L, et al. Monocytes from type 2 diabetic patients have a pro-inflammatory profile 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract. 2007,77(1): 47-57.
    [6] Scherberich JE, Kellermeyer M, Ried C, et al. 1-alpha-calcidol modulates major human monocyte antigens and toll-like receptors TLR 2 and TLR4 in vitro. Eur J Med Res. 2005,10(4): 179-182.
    [7] Sadeghi K, Wessner B, Laggner U, et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol. 2006,36(2): 361-370.
    [8] Landmann R, Knopf HP, Link S, et al. Human monocyte CD14 is upregulated by lipopolysaccharide. Infect Immun. 1996,64(5): 1762-1769.
    [9] Bazil V, and JL, Strominger. Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. J Immunol. 1991,147(5): 1567-1774.
    [10] Hadley JS, Wang JE, Foster SJ, et al. Peptidoglycan of Staphylococcus aureus upregulates monocyte expression of CD 14, Toll-like receptor 2 (TLR2), and TLR4 in human blood: possible implications for priming of lipopolysaccharide signaling. Infect Immun. 2005,73(11): 7613-7619.
    [11] Maliszewski CR. CD14 and immune response to lipopolysaccharide. Science. 1991,31(252): 1321-1322.
    [12] Stewart LK, Flynn MG, Campbell WW, et al. Influence of exercise training and age on CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav Immun. 2005,19(5): 389-397.
    [13] McFarlin BK, Flynn MG, Campbell WW, et al. Physical activity status, but not age, influences inflammatory biomarkers and toll-like receptor a3. J Gerontol A Biol Sci Med Sci. 2006,61(4): 388-393.
    [14] van Duin D, Mohanty S, Thomas V, et al. Age-associated defect in human TLR-1/2 function. J Immunol. 2007,178(2): 970-975.
    [15] Nomura F, Akashi S, Sakao Y, et al. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol. 2000,164(7): 3476-3479.
    [16] Muta T, Takeshige K. Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR)2 as well as TLR4 Reconstitution of TLR2- and TLR4-activation by distinguishable ligands in LPS preparations. Eur J Biochem. 2001,268(16): 4580-4589.
    [17] Kennedy MN, Mullen GE, Leifer CA, et al. A complex of soluble MD-2 and lipopolysaccharide serves as an activating ligand for Toll-like receptor 4. J Biol Chem. 2004,279(33): 34698-34704.
    [18] Mueller T, Terada T, Rosenberg IM, et al. Th2 Cytokines Down-Regulate TLR Expression and Function in Human Intestinal Epithelial Cells. J Immuol. 2006,176(10): 5805-5814.
    [19] Flo TH, Halaas O, Torp S, et al. Differential expression of Toll-like receptor 2 in human cells. J Leukoc Biol. 2001,69(3): 474-481.
    [20] Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes. 2007,56(8): 1986-1998.
    [21] V Burkart, M Ihira, C Kaneko, et al. Diabetes development in non-obese diabetic mice is under control of the toll-like receptor 4. Exp Clin Endocrinol Diabetes. 2006,114.
    [22] Baumgartl HL, Standl E, Schmidt-Gayk H, et al. Changes of vitamin D3 serum concentrations at the onset of immunemediated type 1 (insulin-dependent) diabetes mellitus. Diabetes Res. 1991,16(3): 145-148.
    [23] The EURODIAB Substudy 2 Study Group. Vitamin supplement in early childhood and risk for type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1999,42(1): 51-54.
    [24] Stene LC, Ulriksen J, Magnus P, Joner G. Use of cod liver oil during pregnancy associated with lower risk of Type I diabetes in the offspring Diabetologia. 2000,43(9): 1093-1098.
    [25] Hypponen E, Laara E, Reunanen A, et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet. 2001,358(9292): 1500-1503.
    [26] Christiansen C, Christensen MS, McNair P, et al. Vitamin D metabolites in diabetic patients: decreased serum concentration of 24,25-dihydroxyvitamin D. Scand J Clin Lab Invest. 1982,42(6): 487-491.
    [27] Nyomba BL, Bouillon R, Bidingija M, et al. Vitamin D metabolites and their binding protein in adult diabetic patients. Diabetes, 1986,35(8): 911-915.
    [28] Pietschmann P, Schernthaner G, Woloszczuk W. Serum osteocalcin levels in diabetes mellitus: analysis of the type of diabetes and micro vascular complications. Diabetologia. 1988,31(12): 892-895.
    [29] Scragg R, Holdaway I, Singh V, et al. Serum 25-hydroxyvitamin D3 levels decreased in impaired glucose tolerance and diabetes mellitus. Diabetes Res Clin Pract. 1995,27(3): 181-188.
    [30] Aksoy H, Akcay F, Kurtul N, et al. Serum 1,25 dihydroxy vitamin D (1,25(OH)_2D3), 25 hydroxy vitamin D (25(OH)D) and parathormone levels in diabetic retinopathy. Clin Biochem. 2000,33(1): 47-51.
    [31] Isaia G, Giorgino R, Adami S. High prevalence of hypovitaminosis D in female type 2 diabetic population. Diabetes Care. 2001,24(8): 1496.
    [32] Cigolini M, Iagulli MP, Miconi V, et al. Serum 25-hydroxyvitamin D3 concentrations and prevalence of cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2006,29(3): 722-724.
    [33] Luong K, Nguyen LT, Nguyen DN. The role of vitamin D in protecting type 1 diabetes mellitus. Diabetes Metab Res Rev. 2005,21(4): 338-346.
    [34] Zhou Z, N Liao, X Li, M Lei. Vitamin D supplementation in adults with latent autoimmune diabetes (LADA) (abstract). Diabetologia. 2005,48: 87.
    [35] Rudnicki PM, Molsted-Pedersen L. Effect of 1,25-dihydroxycholecalciferol on glucose metabolism in gestational diabetes mellitus. Diabetologia. 1997,40(1): 40-44.
    [36] Mak RH. Intravenous 1,25-dihydroxycholecalciferol corrects glucose intolerance in hemodialysis patients. Kidney Int. 1992,41(4): 1049-1054.
    [37] Kautzky-Wilier A, Pacini G, Barnas U, et al. Intravenous calcitriol normalizes insulin sensitivity in uremic patients. Kidney Int. 1995,47(1): 200-206.
    [38] Suzuki A, Kotake M, Ono Y, et al. Hypovitaminosis D in type 2 diabetes mellitus: Association with microvascular complications and type of treatment. Endocr J. 2006,53(4): 503-510.
    [1] Keen H, Ekoe JM. The geography of diabetes mellitus. Br Med Bull. 1984, 40(4): 359-365.
    [2] Diabetes Epidemiology Research International Group. Geographic patterns of childhood insulin-dependent diabetes mellitus. Diabetes. 1988,37(8): 1113-1119.
    [3] Tuomilehto J, Rewers M, Reunanen A, et al. Increasing trend in type 1 (insulin-dependent) diabetes mellitus in childhood in Finland. Analysis of age, calendar time and birth cohort effects during 1965 to 1984. Diabetologia. 1991,34(4): 282-287.
    [4] Padaiga Z, Tuomilehto J, Karvonen M, et al. Seasonal variation in the incidence of type 1 diabetesmellitus during 1983 to 1992 in the countries around the Baltic Sea. Diabet Med. 1999,16(9): 736-743.
    [5] Ishii H, Suzuki H, Baba T, et al. Seasonal variation of glycemic control in type 2 diabetic patients. Diabetes Care. 2001,24(8): 1503.
    [6] McKenna MJ. Differences in vitamin D status between countries in young adult and the elderly. Am J Med. 1992,93(1): 69-77.
    [7] Webb AR, Kline L, Holick MR Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab. 1988,67(2): 373-378.
    [8] Stryd RP, Gilbertson TJ, Brunden MN. A seasonal variation study of 25-hydroxyvitamin D3 serum levels in normal human. J Clin Endocrinol Metab. 1979,48: 771-775.
    [9] Oliveri MB, Ladizesky M, Mautalen CA, et al. Seasonal variations of 25 hydroxyvitamin D and parathyroid hormone in Ushuaia (Argentina), the southernmost city of the world. Bone Miner. 1993,20(1): 99-108.
    [10] Barger-Lux MJ, Heaney RP. Effects of above average summer sun exposure on serum 25-hydroxyvitamin D and calcium absorption. J Clin Endocrinol Metab. 2002,87(11): 4952-4956.
    [11] Norris JM, Barriga K, Klingensmith G, et al. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA. 2003,290(13): 1713-1720.
    [12] Ziegler A, Schmid S, HuberD, et al. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA. 2003,290(13): 1721-1728.
    [13] Dabadghao P, Bhatia E, Bhatia V, et al. Islet-cell antibodies in malnutrition-related diabetes mellitus from north India. Diabetes Res Clin Pract. 1996; 34(2): 73-78.
    [14] Wiyono P, Morimoto Y, Taniguchi H. The presence of islet-cell antibodies in malnutrition-related diabetes mellitus. Diabetes Res Clin Pract. 1989,6(1): 75-78.
    [15] Baumgartl HL, Standl E, Schmidt-Gayk H, et al. Changes of vitamin D3 serum concentrations at the onset of immunemediated type 1 (insulin-dependent) diabetes mellitus. Diabetes Res. 1991,16(3): 145-148.
    [16] The EURODIAB Substudy 2 Study Group. Vitamin supplement in early childhood and risk for type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1999,42: 51-54.
    [17] Stene LC, Ulriksen J, Magnus P, Joner G. Use of code liver oil during pregnancy associated with lower risk of type I diabetes in the offspring. Diabetologia. 2000,43: 1093-1098.
    [18] Hypponen E, Laara E, Reunanen A, et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet. 2001,358(9292): 1500-1503.
    [19] Lee S, Clark SA, Gill RK, Christakos S. 1,25-dihydroxivitamin D3 and pancreatic β-cell function: vitamin D receptors, gene expression and insulin secretion. Endocrinology. 1994,134(4): 1602-1610.
    [20] Ortlepp JR, Metrikat J, Albrecht M, et al. The vitamin D receptor gene variant and physical activity predicts fasting glucose levels in healthy young men. Diabet Med. 2003,20(6): 451-454.
    [21] McDermott ME, Ramachandran A, Ogunkolade BW, et al. Allelic variation in the vitamin D receptor influences susceptibility to IDDM in Indian Asians. Diabetologia. 1997,40(8): 971-975.
    [22] Hauache OM, Lazaretti-Castro M, Andreoni S, et al. Vitamin D receptor gene polymorphism: correlation with bone mineral density in a Brazilian population with insulin-dependent diabetes mellitus. Osteoporos Int. 1998,8(3): 204-210.
    [23] Chang TJ, Lei HH, Yeh JI, et al. Vitamin D receptor gene polymorphisms influence susceptibility to type 1 diabetes mellitus in the Taiwanese population. Clin Endocrinol. 2000, 52(5): 575-580.
    [24] Pani MA, Knapp M, Dormer H, et al. Vitamin D receptor allele combinations influence genetic susceptibility to type 1 diabetes in Germans. Diabetes. 2000,49(3): 504-507.
    [25] Ban Y, Taniyama M, Yanagawa T, et al. Vitamin D receptor initiation codon polymorphism influences genetic susceptibility to type 1 diabetes mellitus in the Japanese population. BMC Med Genet. 2001,2: 7-12.
    [26] Ogunkolade BW, Boucher BJ, Prahl JM, et al. Vitamin D receptor (VDR) mRNA and VDR protein levels in relation to vitamin D status, insulin secretory capacity, and VDR genotype in Bangladeshi Asians. Diabetes. 2002,51(7): 2294-2312.
    [27] Guja C, Marshall S, Welsh K, et al. The study of CTLA-4 and vitamin D receptor polymorphisms in the Romanian type 1 diabetes population. J Cell MolMed. 2002,6(1): 75-81.
    [28] Skrabic V, Zemunik T, Situm M, Terzic J. Vitamin D receptor polymorphisms and susceptibility to type 1 diabetes in the Dalmatian population. Diabetes Res Clin Pract. 2003,59(1): 31-35.
    [29] Taverna MJ, Sola A, Guyot-Argenton C, et al. Taq I polymorphism of the vitamin D receptor and risk of severe diabetic retinopathy. Diabetologia. 2002,45(3): 436-442.
    [30] Pratley RE, Thompson DB, Prochazka M, et al. An autosomal genomic scan for loci linked to prediabetic phenotype in Pima Indians. J Clin Invest. 1998,101(8): 1757-1764.
    [31] Iyengar S, Hamman RF, Marshall JA, et al. On the role of vitamin D binding globulin in glucose homeostasis: results from the San Luis Valley Diabetes Study. Genet Epidemiol. 1989,6(6): 691-698.
    [32] Hodge SE, Anderson CE, Neiswanger K, et al. Association studies between Type 1 (insulin-dependent) diabetes and 27 genetic markers: lack of association between type 1 diabetes and Kidd blood group. Diabetologia. 1983,25(4): 343-347.
    [33] Ongagna JC, Kaltenbacher MC, Sapin R, et al. The HLA-DQB alleles and amino acid variants of the vitamin D-binding protein in diabetic patients in Alsace. Clin Biochem. 2001,34(1): 59-63.
    [34] Hewison M, Zehnder D, Bland R, Stewart PM. 1 α-Hydroxylase and the action of vitamin D. J Mol Endocrinol. 2000,25: 141-148.
    [35] Miller WL, Portale AA. Vitamin D 1 a-Hydroxylase. Trends Endocrinol Metab. 2000,11(8): 315-319.
    [36] Overbergh L, Decallonne B, Valckx D, et al. Identification and immune regulation of 25-hydroxyvitamin D-l a-hydroxylase in murine macrophages. Clin Exp Immunol. 2000,120(1): 139-146.
    [37] Pani MA, Regulla K, Segni M, et al.Vitamin D 1alpha-hydroxylase (CYP1alpha) polymorphism in Graves' disease, Hashimoto's thyroiditis and type 1 diabetes mellitus. Eur J Endocrinol.2002,146(6): 777-781.
    [38] Lopez ER, Regulla K, Pani MA, et al. CYP27B1 polymorphisms variants are associated with type 1 diabetes mellitus in Germans. J Steroid Biochem Mol Biol. 2004,89-90: 155-157.
    [39] Norman AW, Frankel BJ, Heldt AM, GrodskyGM. Vitamin D deficiency inhibits pancreatic secretions of insulin. Science. 1980,209(4458): 823-825.
    [40] Boucher BJ, Mannan N, Noonan K, et al. Glucose intolerance and impairment of insulin secretion in relation to vitamin D deficiency in East London Asians. Diabetologia. 1995,38(10): 1239-1245.
    [41] Kumar S, Davies M, Zakaria Y, et al. Improvement in glucose tolerance and β-cell function in a patient with vitamin D deficiency during treatment with vitamin D. Postgrad Med J. 1994,70(824): 440-443.
    [42] Cade C, Norman AW. Rapid normalization/stimulation by 1,25-dihydroxivitamin D3 on insulin secretion and glucose tolerance in the vitamin D-deficient rat. Endocrinology. 1987,120(4): 1490-1497.
    [43] Lampeter F, Signore A, Gale E, et al. Lessons from the NOD mouse for the pathogenesis and immunotherapy of human type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1989,32(10): 703-708.
    [44] Mathieu C, Laureys J, Sobis H, et al. 1,25-dihydroxyvitamin D3 prevents insulitis in NOD mice. Diabetes. 1992,41(11): 1491-1495.
    [45] MathieuC, Waer M, Laureys J, et al. Prevention of autoimmune diabetes in NOD mice by 1,25-dihydroxyvitamin D3. Diabetologia. 1994,37(6): 552-558.
    [46] Mathieu C, Waer M, Casteels K, et al. Prevention of type I diabetes in NOD mice by nonhypercalcemic doses of a new structural analog of 1,25-dihydroxyvitamin D3, KH1060. Endocrinology. 1995,136(3): 866-872.
    [47] Zella JB, DeLuca HF. Vitamin D and autoimmune diabetes. J Cell Biochem. 2003,88(2): 216-222.
    [48] Giulietti A, Gysemans C, Stoffels K, et al. Vitamin D deficiency in early life accelerates Type 1 diabetes in non-obese diabetic mice. Diabetologia. 2004, 47(3): 451-462.
    [49] Casteels KM, Mathieu C, Waer M, et al. Prevention of type I diabetes in nonobese diabetic mice by late intervention with nonhypercalcemic analogs of 1,25-dihydroxyvitamin D3 in combination with a short induction course of cyclosporinA. Endocrinology. 1998,139(1): 95-102.
    [50] Rudnicki PM, Molsted-Pedersen L. Effect of 1,25-dihydroxycholecalciferol on glucose metabolism in gestational diabetes mellitus. Diabetologia. 1997,40(1): 40-44.
    [51] Mak RH. Intravenous 1,25 dihydroxycholecalciferol corrects glucose intolerance in hemodialysis patients. Kidney Int. 1992,41(4): 1049-1054.
    [52] Kautzky-Wilier A, Pacini G, Barnas U, et al. Intravenous calcitriol normalizes insulin sensitivity in uremic patients. Kidney Int. 1995,47(1): 200-206.
    [53] Cigolini M, Iagulli MP, Miconi V, et al. Serum 25-hydroxyvitamin D3 concentrations and prevalence of cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2006,29(3): 722-724.
    [54] Suzuki A, Kotake M, Ono Y, et al. Hypovitaminosis D in type 2 diabetes mellitus: Association with microvascular complications and type of treatment. Endocr J. 2006,53(4): 503-510.
    [55] Hu FB, Manson JE, Stampfer MJ, et al. Diet, life style and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001,345(11): 790-797.
    [56] Campbell IT, Jarrett RJ, Keen H. Diurnal and seasonal variation in oral glucose tolerance: studies in the Antarctic. Diabetologia. 1975,11(2): 139-145.
    [57] Behall KM, Scholfield DJ, Hallfrisch JG, et al. Seasonal variation in plasma glucose and hormone levels in adult men and women. Am J Clin Nutr. 1984,40(6): 1352-1356.
    [58] Baynes KC, Boucher BJ, Feskens EJ, Kromhout D. Vitamin D, glucose tolerance and insulinaemia in elderly men. Diabetologia. 1997,40(3): 344-347.
    [59] Chiu KC, Chu A, Go VL, Saad MF. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr. 2004,79(5): 820-825.
    [60] Scragg R, Sowers M, Bell C. Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. Diabetes Care. 2004,27(12): 2813-2818.
    [61] Ford ES, Ajani UA, McGuire LC, Liu S. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabetes Care. 2005,28(5): 1228-1230.
    [62] Need AG, O'Loughlin PD, Horowitz M, Nordin BE. Relationship between fasting serum glucose, age, body mass index and serum 25 hydroxyvitamin D in postmenopausal women. Clin Endocrinol (Oxf). 2005,62(6): 738-741.
    [63] Hypponen E, Power C. Vitamin D status and glucose homeostasis in the 1958 British birth cohort: the role of obesity. Diabetes Care. 2006,29(10): 2244-2246.
    [64] Orwoll E, Riddle M, Prince M. Effects of vitamin D on insulin and glucagon secretion in non-insulindependent diabetes mellitus. Am J Clin Nutr. 1994,59(5): 1083-1087.
    [65] Wareham NJ, Byrne CD, Carr C, et al. Glucose intolerance is associated with altered calcium homeostasis: a possible link between increased serum calcium concentration and cardiovascular disease mortality. Metabolism. 1997,46(10): 1171-1177.
    [66] Smijder M, van Dam R, Visser M, et al. To: Mathieu C, Gysemans C, Giulietti A, Bouillon R (2005) Vitamin D and diabetes. Diabetologia. 2006,49(1): 217-218.
    [67] Bell NH, Greene A, Epstein S, et al. Evidence for alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985,76(2): 470-473.
    [68] Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000,72(3): 690-693.
    [69] Parikh SJ, Edelman M, Uwaifo GI, et al. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab. 2004,89(3): 1196-1199.
    [70] Scragg R, Holdaway I, Singh V, et al. Serum 25-hydroxyvitamin D3 levels decreased in impaired glucose tolerance and diabetes mellitus. Diabetes Res Clin Pract. 1995,27(3): 181-188.
    [71] Christiansen C, Christensen MS, McNair P, et al. Vitamin D metabolites in diabetic patients: decreased serum concentration of 24,25-dihydroxyvitamin D. Scand J Clin Lab Invest. 1982,42(6): 487-491.
    [72] Stepan J, Wilczek H, Justova V, et al. Plasma 25-hydroxycholecalciferol in oral sulfonylurea treated diabetes mellitus. Horm Metab Res. 1982,14(2): 98-100.
    [73] Nyomba BL, Bouillon R, Bidingija M, et al. Vitamin D metabolites and their binding protein in adult diabetic patients. Diabetes. 1986,35(8): 911-915.
    [74] Pietschmann P, Schernthaner G, Woloszczuk W. Serum osteocalcin levels in diabetes mellitus: analysis of the type of diabetes and microvascular complications. Diabetologia. 1988,31(12): 892-895.
    [75] Aksoy H, Akcay F, Kurtul N, et al. Serum 1,25 dihydroxy vitamin D (1,25(OH)2D3), 25 hydroxy vitamin D (25(OH)D) and parathormone levels in diabetic retinopathy. Clin Biochem. 2000,33(1): 47-51.
    [76] Isaia G, Giorgino R, Adami S. High prevalence of hypovitaminosis D in female type 2 diabetic population. Diabetes Care. 2001,24(8): 1496.
    [77] Ishida H, Seino Y, Matsukura S, et al. Diabetic osteopenia and circulating levels of vitamin D metabolites in type 2 (noninsulin-dependent) diabetes. Metabolism. 1985,34(9): 797-801.
    [78] Heath H 3rd, Lambert PW, Service FJ, Arnaud SB. Calcium homeostasis in diabetes mellitus. J Clin Endocrinol Metab. 1979,49(3): 462-466.
    [79] Speer G, Cseh K, Winkler G, et al. Vitamin D and estrogen receptor gene polymorphisms in type 2 diabetes mellitus and in android type obesity. Eur J Endocrinol. 2001,144(4): 385-389.
    [80] Oh JY, Barrett-Connor E. Association between vitamin D receptor polymorphism and type 2 diabetes or metabolic syndrome in community-dwelling older adults: the Rancho Bernardo Study. Metabolism. 2002,51(3): 356-359.
    [81] Malecki MT, Frey J, Moczulski D, et al. Vitamin D receptor gene polymorphisms and association with type 2 diabetes mellitus in a Polish population. Exp Clin Endocrinol Diabetes. 2003,111(8): 505-509.
    [82] Cyganek K, Mirkiewicz-Sieradzka B, Malecki MT et al. Clinical risk factors and the role of VDR gene polymorphisms in diabetic retinopathy in Polish type 2 diabetes patients. Acta Diabetol. 2006,43(4): 114-119.
    [83] Ye WZ. Dubois-Laforgue D, Bellanne-Chantelot C, et al. Variations in the vitamin D-binding protein (Gc locus) and risk of type 2 diabetes mellitus in French Caucasians. Metabolism. 2001,50(3): 366-369.
    [84] Malecki MT, Klupa T, Wanic K, et al. Vitamin D binding protein gene and genetic susceptibility to type 2 diabetes mellitus in a Polish population. Diabetes Res Clin Pract. 2002,57(2): 99-104.
    [85] Hirai M, Suzuki S, Hinokio Y, et al. Group specific component protein genotype is associated with NIDDM in Japan. Diabetologia. 1998,41(6): 742-743.
    [86] Malecki MT, Klupa T, Wolkow P, et al. Association study of the vitamin D: 1alpha-hydroxylase (CYP1alpha) gene and type 2 diabetes mellitus in a Polish population.Diabetes Metab. 2003,29(2 Pt 1): 119-124.
    [87] Fliser D, Stefanski A, Franek E, et al. No effect of calcitriol on insulin-mediated glucose uptake in healthy subjects. Eur J Clin Invest. 1997,27(7): 629-633.
    [88] Inomata S, Kadowaki S, Yamatani T, et al. Effect of 1 alpha (OH)-vitamin D3 on insulin secretion in diabetes mellitus. Bone Miner. 1986,1(3): 187-192.
    [89] Ljunghall S, Lind L, Lithell H, et al. Treatment with onealpha-hydroxycholecalciferol in middle-aged men with impaired glucose tolerance-a prospective randomized double-blind study. Acta Med Scand. 1987,222(4): 361-367.
    [90] Pittas AG, Harris SS, Stark PC, Dawson-Hughes B. The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care. 2007,30(4): 980-986.
    [91] Nilas L, Christiansen C. Treatment with vitamin D or its analogues does not change body weight or blood glucose level in postmenopausal women. Int J Obes. 1984,8:407-411.
    [92] Tanaka Y, Seino Y, Ishida M, et al. Effect of vitamin D3 on the pancreatic secretion of insulin and somatostatin. Acta Endocrinol. 1984,105(4): 528-533.
    [93] Kadowaki S, Norman AW. Dietary vitamin D is essential for normal insulin secretion from the perfused rat pancreas. J Clin Invest. 1984,73(3): 759-766.
    [94] Bourlon PM, Billaudel B, Faure-Dussert A. Influence of vitamin D3 deficiency and 1,25 dihydroxyvitamin D3 on de novo insulin biosynthesis in the islets of the rat endocrine pancreas. J Endocrinol. 1999,160(1): 87-95.
    [95] Zeitz U, Weber K, Soegiarto DW, et al. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. Faseb J. 2003,17(3): 509-511.
    [96] Wollheim CB, Blondel B, Trueheart PA, et al. Calcium-induced insulin release in monolayer culture of the endocrine pancreas. J Biol Chem. 1975,250(4): 1354-1360.
    [97] Sergeev IN, Rhoten WB. 1,25-dihydroxyvitamin D3 evokes oscillations of intracellular calcium in a pancreatic β-cell line. Endocrinology. 1995,136(7): 2852-2861.
    [98] Bourlon PM, Faure-Dussert AG, Billaudel BJ. Modulatory role of 1,25-dihydroxyvitamin D3 on pancreatic islet insulin release via the cyclic AMP pathway in the rat. Br J Pharmacol. 1997,121(4): 751-758.
    [99] Milner RD, Hales CN. The role of calcium and magnesium in insulin secretion from rabbit pancreas studied in vitro. Diabetologia. 1967,3(1): 47-49.
    [100] Christakos S, Gabrielides C, Rhoten WB. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. Endocr Rev. 1989,10(1): 3-26.
    [101] Reddy D, Pollock AS, Clark SA, et al. Transfection and overexpression of the calcium binding protein calbindin-D28K results in a stimulatory effect on insulin synthesis in a rat β cell line (RIN 1046-38). Proc Natl Acad Sci U S A. 1997,94(5): 1961-1966.
    [102] Kadowaki S, Norman AW. Pancreatic vitamin D-dependent calcium binding protein: biochemical properties and response to vitamin D. Arch Biochem Biophys. 1984,233(1): 228-236.
    [103] Bourlon PM, Faure-Dussert AG, Billaudel BJ. The de novo synthesis of numerous proteins is decreased during vitamin D3 deficiency and is gradually restored by 1,25-dihydroxyvitamin D3 repletion in the islets of Langerhans of rats. J Endocrinol. 1999,162(1): 101-109.
    [104] Maestro B, Molero S, Bajo S, et al. Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D3. Cell Biochem Funct. 2002,20: 227-232.
    [105] Leal MA, Aller P, Mas A, Calle C. The effect of 1,25- dihydroxyvitamin D3 on insulin binding, insulin receptor mRNA levels, and isotope RNA pattern in U-937 human promonocytic cells. Exp Cell Res. 1995,217(2): 189-194.
    [106] Schmidt MI, Duncan BB, Sharrett AR, et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities Study): a cohort study. Lancet. 1999,353(9165): 1649-1652.
    [107] Festa A, D'Agostino R Jr, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the Insulin Resistance Atherosclerosis Study. Diabetes. 2002,51(4): 1131-1137.
    [108] Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001,286(3): 327-334.
    [109] Barzilay JI, Abraham L, Heckbert SR, et al. The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes. 2001,50(10): 2384-2389.
    [110] Han TS, Sattar N, Williams K, et al. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care. 2002,25(11): 2016-2021.
    [111] Lindsay RS, Funahashi T, Hanson RL, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet. 2002,360(9326): 57-58.
    [112] Vozarova B, Weyer C, Lindsay RS, et al. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002,51(2): 455-461.
    [113] Freeman DJ, Norrie J, Caslake MJ, et al. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes. 2002,51(5): 1596-1600.
    [114] Ford ES. Leukocyte count, erythrocyte sedimentation rate, and diabetes incidence in a national sample of US adults. Am J Epidemiol. 2002,155(1): 57-64.
    [115] Nakanishi N, Yoshida H, Matsuo Y, et al. White blood-cell count and the risk of impaired fasting glucose or type Ⅱ diabetes in middle-aged Japanese men. Diabetologia. 2002,45(1): 42-48.
    [116] Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003,52(7): 1799-1805.
    [117] Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004,27(3): 813-823.
    [118] Deepa R, Velmurugan K, Arvind K, et al. Serum levels of interleukin 6, C-reactive protein, vascular cell adhesion molecule 1, and monocyte chemotactic protein 1 in relation to insulin resistance and glucose intolerance-the Chennai Urban Rural Epidemiology Study (CURES). Metabolism. 2006,55(9): 1232-1238.
    [119] Basu S, Larsson A, Vessby J, et al. Type 1 diabetes is associated with increased cyclooxygenase- and cytokine-mediated inflammation. Diabetes Care. 2005,28(6): 1371-1375.
    [120] Devaraj S, Glaser N, Griffen S, et al. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes. 2006,55(3): 774-779.
    [121] Fournier C, Gepner P, Sadouk M, et al. In vivo beneficial effects of cyclooporine A and 1,25 dihydroxyvitamin D3 on the induction of experimental autoimmune thyroiditis. Clin Immunol Immunopathol. 1990,54(1): 53-63.
    [122] Lemire JM, Archer DC. 1,25-Dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalo-myelitis. J Clin Invest. 1991,87(3): 1103-1107.
    [123] Panichi V, Migliori M, Taccola D, et al. Effects of 1,25(OH)_2D3 in experimental mesangial proliferative nephritis in rats. Kidney Int. 2001,60(1): 87-95.
    [124] Penna G, Adorini L. 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol. 2000,164(5): 2405-2411.
    [125] Takeuchi A, Reddy G, Kobayashi T, et al. Nuclear factor of activated T cells (NFAT) as a molecular target for 1α,25-Dihydroxyvitamin D3-mediated effects. J Immunol. 1998,160(1): 209-218.
    [126] Gregori S, Casorati M, Amuchastegui S, et al. Regulatory T cells induced by 1 alpha,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol. 2001,167(4): 1945-1953.
    [127] Overbergh L, Decallonne B, Waer M, et al. 1 alpha, 25-Dihydroxyvitamin D3 induces an autoantigen-specific T-helper 1/ T-helper 2 immune shift in NOD mice immunized with GAD65 ( p524-p543). Diabetes. 2000,49(8): 1301-1307.
    [128] Rausch-Fan X, Leutmezer F, Willheim M, et al. Regulation of cytokine production in human peripheral blood mononuclear cells and allergen-specific the cell clones by 1 alpha,25- dihydroxyvitamin D3. Int Arch Allergy Immunol. 2002,128(1): 33-41.
    [129] Gysemans C,Van Etten E, Overbergh L, et al . Treatment of autoimmune diabetes recurrence in non-obese diabetic mice by mouse interferon-β in combination with an analogue of 1α,25-dihydroxyvitamin-D3. Clin Exp Immunol. 2002,128(2): 213-220.
    [130] Adorini L. Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting autoimmune diabetes. Ann N Y Acad Sci. 2003,987:258-261.
    [131] Adorini L, Penna G, Giarratana N, et al. Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting allograft rejection and autoimmune diseases. J Cell Biochem. 2003,88(2): 227-233.
    [132] Gregori S, Giarratana N, Smiroldo S, et al. A 1-alpha,25-dihydroxyvitamin D(3) analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes. 2002,51(5): 1367-1374.
    [133] Zhu K, Glaser R, Mrowietz U. Vitamin D(3) and analogues modulate the expression of CSF-1 and its receptor in human dendritic cells. Biochem Biophys Res Commun. 2002,297(5): 1211-1217.
    [134] Canning MO, Grotenhuis K, de Wit H, et al. l-alpha,25-Dihydroxyvitamin D3 (1,25(OH)(2)D(3)) hampers the maturation of fully active immature dendritic cells from monocytes. Eur J Endocrinol. 2001,145(3): 351-357.
    [135] Wen L, Peng J, Li Z. et al. The Effect of Innate Immunity on Autoimmune Diabetes and the Expression of Toll-Like Receptors on Pancreatic Islets. J Immunol. 2004,172(5): 3173-3180.
    [136] Song MJ, Kim KH, Yoon JM, et al. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun. 2006, 346(3): 739-745.
    [137] Rasschaert J, Ladriere L, Urbain M, et al. Toll-like receptor 3 and STAT-1 contribute to double-stranded RNA+ interferon-gamma-induced apoptosis in primary pancreatic beta-cells. J Biol Chem. 2005,280(40): 33984-33991.
    [138] Zipris D, Lien E, Xie JX, et al. TLR activation synergizes with Kilham rat virus infection to induce diabetes in BBDR rats. J Immunol. 2005,174(1): 131-142.
    [139] Alyanakian MA, Grela F, Aumeunier A, et al. Transforming growth factor-beta and natural killer T-cells are involved in the protective effect of a bacterial extract on type 1 diabetes. Diabetes. 2006,55(1): 179-185.
    [140] Giulietti A, van Etten E, Overbergh L, et al. Monocytes from type 2 diabetic patients have a pro-inflammatory profile 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract. 2007,77(1): 47-57.
    [141] Scherberich JE, Kellermeyer M, Ried C, et al. 1-alpha-calcidol modulates major human monocyte antigens and toll-like receptors TLR 2 and TLR4 in vitro. Eur J Med Res. 2005, 10(4): 179-182.
    [142] Sadeghi K, Wessner B, Laggner U, et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated mol ecular patterns. Eur J Immunol. 2006,36(2): 361-370.
    [143] Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006,311(5768): 1770-1773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700