用户名: 密码: 验证码:
发芽咖啡豆α-半乳糖苷酶的制备、性质及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-半乳糖苷酶(α-Galactosidase,α-D-Galactoside galactohydrolase,α-Gal; EC 3.2.1.22)也称蜜二糖酶,是一种外切糖苷酶。来源于咖啡豆的α-半乳糖苷酶具有将半乳糖转移到环糊精上的功能,从而酶法合成α-半乳糖基-环糊精。α-半乳糖基-环糊精是一种分支环糊精,具有广阔的应用前景。本文从发芽咖啡豆中分离纯化得到α-半乳糖苷酶,详细研究了该酶的酶学性质,酶法合成了α-半乳糖基-β-环糊精,并确定其结构。
     以培养35d的发芽咖啡豆为原料,冷冻24h(-40℃)后干法粉碎,提取液(水溶液:含有0.9%氯化钠,0.1mmol/L乙二胺四乙酸,pH4.8)粗提α-半乳糖苷酶。其它条件:料液比1:5,时间30min,搅拌速度100r/min。此条件下得到的α-半乳糖苷酶总酶活为132.60nkat,比酶活为6.44nkat/mg。采用响应面分析法优化粗提条件,优化后的条件:料液比1:5,时间35min,搅拌速度150r/min,pH 5.0。此条件下α-半乳糖苷酶总酶活为148.00nkat,比酶活为7.16nkat/mg,总酶活和比酶活都得到提高。α-半乳糖苷酶提取过程中,植物多酚造成严重的干扰,必须去除此物质。采用50%(V/V)丙酮去除粗提液中的植物多酚,去除率为76.4%,效果明显。去除植物多酚后,α-半乳糖苷酶总酶活为129.05nkat,比酶活为8.26nkat/mg。总酶活有所降低,但比酶活显著提高,有利于α-半乳糖苷酶的分离纯化。
     通过硫酸铵沉淀,DEAE-Sepharose Fast Flow阴离子交换色谱和Sephacryl S-200-HR凝胶过滤色谱等分离纯化技术,从发芽咖啡豆粗酶液中分离得到α-半乳糖苷酶。经过变性凝胶电泳分析,该酶出现单一谱带,分子量为38,805Da。经过分离纯化之后,发芽咖啡豆α-半乳糖苷酶的比酶活达到191.50nkat/mg,纯化倍数为23.18倍。
     以对硝基苯酚-α-半乳糖苷为底物,研究分离纯化后的发芽咖啡豆α-半乳糖苷酶的酶学性质。α-半乳糖苷酶的最适温度45℃,热稳定温度范围20-50℃,最适pH6.0,pH稳定范围5.0-7.0。Na+、K+、Mg2+和Cu2+对α-半乳糖苷酶的酶活影响不大,Zn2+促进酶活,Ba2+对酶活稍有抑制,Hg2+强烈抑制α-半乳糖苷酶的活性。在0-0.25mol/L离子强度(氯化钠)范围内,α-半乳糖苷酶的酶活不受影响。采用Lineweaver-Burk双倒数作图法,测定α-半乳糖苷酶的Km为0.556mmol/L,Vmax为1.19μmol/min。一定浓度条件下,化学修饰剂对α-半乳糖苷酶的化学修饰结果显示:色氨酸是α-半乳糖苷酶活性中心的必需氨基酸,-SH、-COOH和组氨酸对α-半乳糖苷酶的活性有影响,精氨酸、赖氨酸和-S-S-不是α-半乳糖苷酶活性中心的必需基团。邹氏作图法显示α-半乳糖苷酶活性中心的必需色氨酸数目为1。
     采用发芽咖啡豆α-半乳糖苷酶酶法合成分支环糊精。以蜜二糖(0.8mol/L)为供体,β-环糊精(0.4mol/L)为受体,反应缓冲液为醋酸缓冲液(50mmol/L, pH6.0),α-半乳糖苷酶用量为50nkat。反应条件:温度30℃,时间36h,振荡速度100 r/min。反应结束后,产品的高效液相色谱分析表明:有β-环糊精的衍生物生成。通过制备型高效液相色谱分离得到纯化样品。经过质谱分析和样品酶解产物的高效液相色谱分析,确定该样品为单取代的α-半乳糖基-β-环糊精。通过傅里叶变换红外光谱和核磁共振分析,得出α-半乳糖基-β-环糊精的结构:一个半乳糖通过α-1,6糖苷键与一个β-环糊精连接。α-半乳糖基-β-环糊精为单取代-6-O-α-D-半乳糖(吡喃)基-β-环糊精。
     通过发芽咖啡豆α-半乳糖苷酶酶法合成α-半乳糖基-β-环糊精动力学研究可以得到合适的参数:pH6.8,酶用量60nkat,β-环糊精0.4mol/L,蜜二糖0.8mol/L。由Plackett- Burman设计筛选出酶用量,时间和pH这三个影响α-半乳糖基-β-环糊精产量的主要因素。进一步通过最陡爬坡法和Box-Behnken设计,得到酶用量,时间和pH的最佳水平分别为73nkat,28h和6.3。其它条件:温度40℃,振荡速度75r/min,β-环糊精0.4mol/L,蜜二糖0.8 mol/L,反应体系为2mL醋酸缓冲液(50mmol/L)。在此条件下,α-半乳糖基-β-环糊精产量为28.4%,比优化前提高了41.3%。
α-Galactosidase(α-D-Galactoside galactohydrolase; EC 3.2.1.22), also called melibiase, is an exoglycosidase.α-Galactosidase from coffee beans could transfer the galactosyl residue directly to the cyclodextrin ring and synthesize theα-D-galactosyl-cyclodextrin. And thisα-D-galactosyl-cyclodextrin with wide application in various fields is one kind of branched cyclodextrins. In the present study, oneα-galactosidase was extracted and purified from germinating coffee beans, and its properties were studied in detail. Theα-D-galactosyl-cyclodextrin was synthesized by thisα-galactosidase and its chemical composition and structure were identified by some analysis methods.
     The germinating coffee beans with the germination for 35d were in refrigeratory(-40°C) for 24h, then they were ground and washed in the extraction(0.9% sodium chloride, 0.1mmol/L ethylene diamine tetraacetic acid, pH4.8). Other conditions were: ratio of material to liquid 1:5, time 30min, pH4.8, stir 100r/min. Under these conditions, total activity was 132.60nkat, and specific activity was 6.44nkat/mg. Then, these condition parameters were optimized by response surface method in the next process. The optimum parameters were: ratio of material to liquid 1:5, time 35min, pH5.0, stir 150r/min. Under these optimum conditions, total activity was 148.00nkat, and specific activity was 7.16nkat/mg. Total and specific activities were observably increased. Plant polyphenols interfered and impact the extraction ofα-D-galactosidase from the germinating coffee beans. Acetone (50%, V/V) was used to remove plant polyphenols in this extraction process and the 76.4 percent of plant polyphenols were removed. Total and specific activities ofα-galactosidase were 129.05nkat and 8.26nkat/mg. Specific activity was improved by removal of plant polyphenols.
     α-Galactosidase was purified by ammonium sulfate precipitation, DEAE Sepharose ion exchange chromatograph, and Sephacryl S-200-HR chromatograph. The final purifiedα-galactosidase obtained a specific activity of 191.50nkat/mg and there was a 23.18-fold increase in specific activity when compared with the crude extract.α-Galactosidase was purified to homogeneity by SDS-PAGE analysis. The single clear band representedα-galactosidase. The analysis allowed an estimated of molecular mass of purifiedα-galactosidase and was determined to be 38.8 kDa.
     With p-nitrophenyl-α-D-galactopyranoside as substrate, the optimum reaction temperature ofα-galactosidase was 45°C, and it was stable within the temperature range 20-50°C. The optimum reaction pH ofα-galactosidase was 6.0, and it was stable within the pH range 5.0-6.5.α-Galactosidase had a Km=0.556mmol/L and Vmax=1.19μmol/min. The metal ions had the different level influence on the purifiedα-galactosidase. Its activity was completely inhibited by Hg2+, and no obviously effect by Ba2+, Na+, K+, Mg2+and Cu2+, while Zn2+ had an activator effect. And it was stable within the ion (sodium chloride) concentration range 0-0.25 mol/L. The chemical modification of NBS resulted in a completely loss ofα-galactosidase activity, suggesting that Trp was an essential amino acid to the enzyme active site. -SH、-COOH and His were involved in it. And Arg, Lys and -S-S- were not involved in it. The number of the essential Trp was estimated as one.
     The purifiedα-galactosidase was applied to synthesize branched cyclodextrins using melibiose as donor andβ-cyclodextrin as acceptor. The reaction conditions were:β-cyclodextrin 0.4mol/L, melibiose 0.8mol/L,α-galactosidase 50nkat, 2mL acetate buffer (50mmol/L) pH 6.5, reaction temperature 30°C, reaction time 36h, oscillatory speed 100r/min. It showed that some relatives ofβ-cyclodextrin were synthesized by thisα-galactosidase. The new products were isolated with using preparative high-performance liquid chromatography (HPLC). The structure of one branchedβ-cyclodextrin was analyzed and elucidated by HPLC, fourier transform infrared spectrometer (FTIR), electro spraying ionization-mass spectrometry (ESIMS), and nuclear magnetic resonance (NMR). The results strongly demonstrate that the synthesized product is a mono-6-O-α-D-galactopyranosyl-β-cyclodextrin.
     The parameters affecting yield ofα-galactosyl-β-cyclodextrin were systematically studied by using experimental designs including Plackett-Burman design, steepest ascent method and Box-Behnken design. The conditions were optimized as follows: enzyme concentration 73nkat, reaction time 28h and pH6.3. The other parameters were: reaction temperature 40°C, oscillatory speed 75r/min,β-cyclodextrin 0.4mol/L, melibiose 0.8mol/L and 2mL acetate buffer (50mmol/L). Under these conditions, the yield ofα-galactosyl-β- cyclodextrin was 28.4%. Theα-galactosyl-β-cyclodextrin yield was increased by 41.3% as compared to that under unoptimized reaction conditions.
引文
1.童林荟.环糊精化学-基础与应用[M].北京:科学出版社,2001
    2.王少杰.麦芽糖基β-环湖精的制备、分离及应用[D]:[硕士学位论文].无锡:江南大学,2005
    3.曹新志.环糊精糖基转移酶和γ-环糊精生物合成的研究[D]:[博士学位论文].无锡:江南大学,2005
    4.袁超.羟丙基-β-环糊精的制备、性质及应用研究[D]:[博士学位论文].无锡:江南大学,2007
    5.李学红.环糊精在抗菌食品包装中的基础应用研究[D]:[博士学位论文].无锡:江南大学,2007
    6. Bender M L,Komiyama M. Cyclodextrin chemistry [M].Berlin:Springer-Verlag,1978
    7. Martin D V E M.Cyclodextrins and their uses: a review[J].Process Biochemistry,2004,39:1033-1046.
    8. Szetjli J.Introduction and general overview of cyclodextrin[J].Chemical Review,1998,98:1743-1753.
    9. Hedges R A.Industrial applications of cyclodextrins[J].Chemical Review,1998,98:2035-2044.
    10. Villiers A.Sur la fermentation de la fécule par le action du ferment buytrique[J].Compt Rend Acad Sci, 1891:536-538.
    11. Schardinger F Z.Unters Nahru genussm,1903;6:865
    12. Schardinger F.Wiener Klinische Wochenschrift,1904;17:207-209
    13. Szejtli J,Osa T.Comprehensive supramolecular chemistry[M].Pergamon:Elsevier,1996
    14. French D,Rundle R E.The molecular weights of the Schardinger alpha and beta dextrins[J].Journal of the American Chemical Society,1942,64:1651-1653.
    15. Freudenberg K,Cramer F.Die Konstitution der Schardinger Dextrin alpha, beta dextrin and gamma[J]. Zeitschrift fur Naturforschung Section B-A Journal of Chemical Sciences,1948,3:464.
    16. Cramer F.Proceedings of 1st intermational symposium on cyclodextrins[C].Budapest,1981
    17. Freudenberg K,Cramer F,Plieninger H[P].German patent,895769,1953
    18. French D.The schardinger dextrins[J].Adv Carbohydr Chem,1957,12:189-260
    19. French D,Levine M L,Pazur J H,et, al.Studies on the schardinger dextrins the preparation and solubility character-istics of alpha beta and gamma dextrins[J].Journal of the American Chemical Society, 1949,71:353-356
    20. Cramer F.Einschlussverbindungen[C].Berlin:Heidelberg Springer-Verlag,1954
    21. D'Souza V T,Lipkowitz K B.Cyclodextrins:Introduction[J].Chem Rev,1998,98:1741-1742.
    22. Horikoshi K,Nakamura N,Matsuzawa N,el, at.Industrial production of cyclodextrins.Proceedings of 1st International Symposium on Cyclodextrins [C].Budapest,1981
    23. Hashimoto H.Studies in the Industrial Production and Application of Cyclodextrins[J]. Denpun Kagaku, 1989,36:35-42
    24. Kobayashi S.Fundamental study and application of cyclodextrins[J].Denpun Kagaku,1993,40:103-116
    25.小林昭一,贝沼圭二,铃木繁男.淀粉科学[J],1975,22:6
    26. Saenger W.Circular hydrogen bonds in alpha-cyclodextrin hexahydrate[J].Nature,1979,279:343
    27. Saenger W.Circular hydrogen bonds in alpha-cyclodextrin inclusion compounds[C].Proceedings of 1st International Symposium on Cyclodextrins. Budapest,1981.
    28. Hedge A R.Cyclodextrin:production, properties and application[M].New York:VCH Publishers, 1992.
    29. Rao P,Suresh C,Rao DN,et, al.Digestion of residualβ-cyclodextrin in treated egg using glucoamylase from a mutant strain of Aspergillus niger[J].Food Chemistry,1999,65: 97-301
    30. Szejtli J.Industrial application of cyclodextrin[J].Inclusion compounds,1984,3:331-390
    31. Man J H,Kyung S Y,Ji Y C,et, al.5-(β-Cyclodextrin-ylamino)-5-Deoxy-α-Rib-oses as Models for Nuclease, Ligase, Phosphatase, and Phosphorylase[C].Angewandte Chemie-International Edition,2000,39: 347-349.
    32. Akiyama Y,Miyao K.Microencapsulation of royal jelly [P].Japanese patent,7-80463,1979
    33. Nippon O.Edible film compositions[P].Japanese patent,P58030022, 1983
    34. Szejtli J,Szente L,Banky-Elod E.Molecular encapsulation of volatile, easily oxydizable flavor substances by cyclodextrins[J].Acta Chimica Science,1979,101:27-46
    35. Wagner CW,Wilson CW, Shaw PE.Reduction of grape fruit bitter components by cyclodextrin polymers[J].Journal of Food Science,1988,53:516-521
    36. Konno A,Misaki M,Toda.Bitterness reduction of naringin and limonin by cyclodextrin[J].Journal of Agricultrual and Biological Chemistry,1982,46:2203-2208
    37. Shaw P E,Wilson C W.Debittering of citrus juices with cyclodextrin polymer[J].Journal of Food Science,1983,48:646-650
    38. Kim H O,Hill R D.Modification of wheat flour dough characteristics with cyclodextrins[J].Cereal Chemistry,1984,61:406-407
    39. Yu E K. ovel decaffeination process[J].Applied Microbiology Biotechnology,1988,28:546-549
    40.章道道,黄乃聚,张茹平.β-环糊精降低果糖的吸潮性[J].食品与发酵工业,1986,(5):36-40
    41.刘璘,姜亦茂,杨晓文.β-环糊精对酪蛋白发泡性能的改善[J].食品工业科技,1995,(4):28-30
    42.张学农,苗爱东,周惠等.维生素D3-beta-环糊精包合物的理化性质及包合作用研究[J].中国药学杂志,2001,36(11):742-745
    43. Roger A,Rajewski,Valentino J,et,al.Pharmaceutical applications of cyclodextrin. 2. in vivo drug delivery[J].Journal of Pharmaceutical Sciences,1996,85:1142
    44. Loftsson T D.Cyclodextrins and their pharmaceutical applications[J].International Journal of Pharmaceutics,2007,329:1-11
    45. H?ncal AA.Recent advances in drug delivery using amphiphilic cyclodextrin nanoparticles[J]. European Journal of Pharmaceutical Sciences,2005,25(S1):S3-S4
    46. Fr?mming K H,Szejtli J.Cyclodextrins in Pharmacy[M].Dordrecht:luwer Academic Publishers, 1994
    47. Freville J C,Dollo G,Corre P L,et,al.Controlled systemic absorption and increased anesthetic effect of bupivacaine following epidural administration of HP-β-CD complex[J].Pharmaceutical Research,1996,13: 1576
    48. Duchêne D,Ponchel G,Bochot A.New uses of cyclodextrins[J].European Journal of Pharmaceutical Sciences,2005,25(S1):S1-S2
    49. Buschmann H J,Schollmeyer E.Applications of cyclodextrins in cosmetic products: a review[J]. Journal of Cosmetic Science,2002,53:575-592
    50. Hatae S,Nakajima K.Skin whitening cosmetics [P].Japanese patent,86-109705,1986
    51. Duchêne D,Wouessidjewe D,Ponchel G.Cyclodextrins and carrier systems[J].Journal of Controlled Release,1999,62:263-268
    52. Rong-Nong F,Hu-Wei L.High Resolution Gas Chromatography and High Resolution PyrolysisGas Chromatography[M].Beijing:Beijing Institute of Technology Press,1992
    53. Schneiderman E,Stalcup A M.Cyclodextrins:a versatile tool in separation science[J].Journal of Chromatography B,2000,745: 83-102
    54.韩发,李廷平.环糊精对番茄增产效应的研究[J].园艺学报,1990,17(2):139-144
    55. Brunet.C,Lamare.S,Lrgoy M.Studies of specific cyclodextrin production starting from pure maltooligosaccharides using Thermoanaerobacter sp.Cyclodextrin glycosyltransferase[J].Biocatalysis and Biotransformation,1998,16:317-327
    56.孔德洋,蒋新.环糊精及其衍生物对硝基化合物毒性的影响[J].中国环境科学,2002,22(5):387-391
    57.项生昌,柯培玲.β-环糊精交联聚合物的合成及其在水处理中的应用[J].合成化学,2001,9(6): 514-517
    58.高士祥,王连生.环糊精在环境科学中的应用[J].环境科学进展,1998,6(4):80-86
    59.李英杰.β-环糊精交联包结吸附树脂富集铜的研究[J].分析试验室,2004,23(3):53-55
    60.周细红,曾清如,郭正元.β-环糊精对4种有机农药溶解度的影响[J].云南环境科学,2003,22(4): 11-12.
    61.万军民,胡智文,陈文兴等.负载β-环糊精纤维素纤维在污水处理中的应用研究[J].环境污染与防治, 2004,26(1):57-59
    62. Savarino P.Reactivity and effects of cyclodextrins in textile dyeing[J].Dyes and Pigments,1999,42:143- 147.
    63. Shao Y.Interaction between beta-cyclodextrin and water-soluble dyes[J].Canadian Textile Journal,1997, 113(5):53-58
    64.金征宇,顾正彪,童群义等.碳水化合物化学:原理与应用[M].化学工业出版社,北京,2008
    65.李文德,周俊侠,张力田等.环糊精的改性研究及进展[J].中国粮油学报,1997,12(1):29-31
    66.程池.歧化环糊精的研究进展[J].食品与发酵工业,1992,(3):77-80
    67. Koizumi K,Tanimoto T,Fujita K,et, al.Preparation, isolation, and characterization of novel heterogeneous branched cyclomalto-oligosaccharides havingβ- -galactosyl residue(s) on the side chain[J]. Carbohydrate Research,1993,238:75-91
    68. Abe J,Takeda Y,Hizukuri S,et, al.Isolation and characterisation of 6-α-D-glucosylcyclomaltoheptaose [J]. Carbohydrate Research,1984,131:175-179
    69. Kobayashi S,Shibuya N,Yong M,et,al.The preparation of 6-O-α-D-glucopyranosyl cyclohexaamylose [J]. Carbohydrate Research,1984,126:215-224
    70. Watanabe N,Yamamoto K,Tsuzuki W,et,al.A novel method to produce branched-cyclodextrins: pullulanase-glucoamylase-mixed method[J].Journal of Fermentation and Bioengineering,1997,83(1):43- 47.
    71. Kitahata S,Yoshimura Y,Okada S.Formation of 6-O-α-maltosylcyclomalto-oligosaccharides fromα-maltosyl fluoride and cyclomalto-oligosaccharides by pullulanase[J].Carbohydrate Research,1987,159: 303-313.
    72. Yoshimura Y,Kitahata S,Okada S.Formation of 6-O-maltosylcyclomalto-oligosacch- arides by transfer action of three debranching enzymes[J].Carbohydrate Research,1987,168: 85-294
    73. Shiraishi T,Kusano S,Sumuraya Y,et,al. Synthesis of maltosyl(α,1-6)cyclodextrins the reverse reaction of thermostable Bacillus acidopullyticus pullulanase[J].Agricultural and Biological Chemistry,1989,153: 2181-2188.
    74.王少杰,金征宇.普鲁兰酶逆向合成Mal-β-CD的工艺研究[J].食品工业科技,2005,26(9):105-107,
    75.崔波,金征宇.普鲁蓝酶逆向合成麦芽糖基β-环状糊精[J].食品科学,2005,26(12):128-131
    76.崔波,金征宇.纸层析法定量检测麦芽糖基β-环状糊精[J].食品与生物技术学报,2005,24(6):88-91
    77.崔波,金征宇.麦芽糖基(α-1→6)β-环糊精的酶法合成和结构鉴定[J].高等学校化学学报,2007,28(2): 283-285.
    78. Sakano Y,Shiraishi T,Kusano S,et,al.Immobilization of pullulanase and successive synthesis of branched cyclodextrins by immobilized pullulanase[C].Proceedings of the fourth international symposium on cyclodextrins,1988
    79. Hisamatsu M,Yamada T.Production of maltosyl-β-cyclodextrin by a bioreactor system with pullulanase immobilized on particially deacetylated chitin[J].Starch /St?rke,1989,41(6):239-242
    80. Yim D K,Park Y H.Production of branched cyclodextrins by reverse reaction of microbial debranching enzyme[J].Starch /St?rke,1997,49:75-78
    81. Abe J,Mizowaki N,Hizukuri S,et,al.Synthesis of branched cyclomalto-oligosaccharides using Pseudomonas isoamylase[J].Carbohydrate Research,1986,154:81-92
    82. Kitahata S,Hara K,Fujita K,et,al.Synthesis of 6-O-α-D-Galactosylα-Cyclodextrin by Coffee Beanα–Galactosidase[J].Bioscience Biotechnology and Biochemistry,1992,56:1518-1519
    83. Hara K,Fujita K,Nakano H,et,al.Acceptor specificities ofα-mannosidases from jack bean and almond, and transmannosylation of branched cyclodextrins[J].Bioscience Biotechnology and Biochemistry,1994,58(1): 60-63.
    84. Ishiguro T,Fuse T,Oka M,et,al.Synthesis of branched cyclomaltooligosaccharide carboxylic acids (cyclodextrin carboxylic acids) by microbial ocidation[J].Carbohydrate Research,2001,331:423-430
    85. Okada Y,Koiaumi K,Kitahata S.Separation and characterization of five positional isomers of trimaltosyl-cyclomaltoheptaose (trimaltosyl-β-cyclodextrin) [J].Carbohydrate Research,1994,254:1-13
    86. Sakano Y,Sano M,Kobayashi T. Preparation and enzymatic hydrolysis of maltosyl-α-cyclodextrin[J]. Agricultural and Biological Chemistry,1985,49:3391-3398
    87. Kobayashi S,Nakashima K,Arahira M.Production and some properties of branched cyclo-malto- oligosaccharides[J].Carbohydrate Research,1989,192:223-231
    88. Ajisaka N,Hara K,Mikuni K,et,al.Effects of branched cyclodextrins on the solubility and stability of terpenes[J].Bioscience,Biotechnology and Biochemistry,2000,64(4):731-734
    89. Tavornvipas S,Hirayama F,Arima H,et,al.6-O-α-(4-O-α-D-glucuronyl)-D-glucosyl-β-cyclodextrin: solubilizing ability and some cellular effects[J].International Journal of Pharmaceutics,2002,249:199-209
    90. Sakairi N,Utsuki T,Kuzuhara H.Facile synthesis of 6-O-(α-D-galacopyranosyl)cyclomaltoheptaose from commercially availabe branched cyclodextrin[J].Bioscience,Biotechnology and Biochemistry,1993,57: 850-851.
    91. Hara K,Fujita K,Kuwahara N,et,al.Galactosylation of Cyclodextrins and Branched Cyclodextrins byα–Galactosidase[J].Bioscience,Biotechnology and Biochemistry,1994,58:652-659
    92. Koizumi K,Tanimoto T,Okada Y,et,al.Isolation and characterization of novel heterogeneous branched cyclomalto-oligosaccharides (cyclodextrins) produced by transgalactosylation withα-Galactosidase from coffee bean[J].Carbohydrate Research,1995,278:129-142
    93. Okada Y,koizumi K,Kitahata S.Isolation by HPLC of the positional isomers of heterogeneous doubly branched cyclomaltohexaose having oneα-D-galactosyl and oneα-D-glucosyl side chain and determination of their structures by enzymatic degradation[J].Carbohydrate Research,1996,287:213-223
    94. Connolly D T,Townsend R R,Kawaguchi K,et,al. Binding and endocytosis of cluster glycosides by rabbit hepatocytes. Evidence for a short-circuit pathway that does not lead to degradation[J].Journal of Biological Chemistry,1982,257(2):939-945
    95. Shinoda T,Maeda A,Kagatani S,et,al.Specific interaction between galactose branched cyclodextrins and hepatocytes in vitro[J].International Journal of Pharmaceutics,1998,167:147-154
    96. Abe H,Kenmoku A,Yamaguch N,et,al.Structural Effects of Oligosaccharide-Branched Cyclodextrins on the Dual Recognition toward Lectin and Drug[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2002,44.
    97. Seo S J,Kim S H,Sasagawa T,et,al.Delivery of all trans-retinoic acid (RA) to hepatocyte cell line from RA/galactosyl a-cyclodextrin inclusion complex[J].European Journal of Pharmaceutics and Biopharma- ceutics,2004,58:68-687
    98. Oda Y,Yanagisawa H,Maruyama M,et,al.Design, synthesis and evaluation of D-galactose-b- cyclodextrin conjugates as drug-carrying molecules[J].Bioorganic and Medicinal Chemistry,2008,16: 8830- 8840.
    99.杨冠东,刘芳,李荷.α-半乳糖苷酶的研究进展概况[J].现代食品科技,2006,22(3):275-276,279
    100. Dey P M,Pridham J B.Biochemistry ofα-galactosidase[J].Advances in Enzymology and Related Areasof Molecular Biology,1972,36:91-130
    101. Irish G G,Balnave D.Non-starch polysaccharides and broiler performance on diets containing soybean meal as the sole protein concentrate[J].Australian Journal of Agricultural Research,1993,44: 1483-1499.
    102. Puchal F.Role of feed enzyme in poultry nutrition examined[J].Feedstuffs,1999,11:12-14
    103. Parsons C M,Zhang Y,Araba M.Nutritional evaluation of soybean meals varying inoligosaccharide content[J].Poultry Science,2000,79:1127-1131
    104. Baker D H.Nutritional constraints to use of soy products by animals[C].Soy in animal nutrition, USA,Federation of Animal Science Societies,2000
    105.曹雅男.微生物来源36家族α-半乳糖苷酶的基因克隆与性质研究[D]:[博士学位论文].北京:中国农业科学院,2008
    106. Cristofaro E,Mottu F,Wuhrmann J J.Study of the effects on flatulence of leguminous seeds oligosaccharides[J].Nestle Research News,1973,102
    107. Cruz R,Batistela J C,Wosiacki G. Microbialα-Galactosidase for soybean processing[J].Journal of Food Science,1981,46:1196-1200
    108. Thaaanunkul D,Tanaka M,Chichester C O,et,al.Degradation of raffionse and stachyose in soybean milk byα-Galactosidase from Mortierella vinacea: Entrapment ofα-Galactosidase withpolyacrylamide gel[J]. Journal of Food Science,1976,41:173-175
    109.吴劲松,冯万祥.α-半乳糖苷酶[J].生命的化学,2000,20(2):84-86
    110. Desnick R J,Ioannou Y A,Eng C M.Lysosomaldisorders. a-Galactosidase A deficiency Fabrydisease [C]. New York:The Metabolic and Molecular Bases of Inherited Disease,McGraw-Hill,1995
    111. Eng C M,Banikazemi M,Gordon R E,et,al.A Phase 1/2 Clinical Trial of Enzyme Replacement in Fabry Disease: Pharmacokinetic, Substrate Clearance, and Safety Studies[J]. American Journal of Human Genetics,2001,68:711-722
    112. Zhu A,Goldstein J.Cloning and functional expression of a cDNA encoding coffee beanα-galactosidase [J]. Gene,1994,140:227-231
    113. Lenny L L,Hurst R, Zhu.A,et,al.MuLtiple unit and second transfusions of red cells enzymatically converted f rom group B to group O : report on t he end of phase 1 trials[J]. Transfusion,1995,35:899-902
    114. Clarke J H,Davidson K,Rixon J E,et,al.A comparison of enzyme-aided bleaching of softwood paper pulp using xylanase, mannanase andα-galactosidase[J].Applied Microbiology and Biotechnology,2000,53: 661-667
    115. Courtois J E,Petek J B.α-Galactosidase from coffee beans[J].Methods in Enzymology,1966,8:565-571
    116. Carchon H,Bruyne C K D.Purification and properties of coffee-beanα-d-Galactosidase[J]. Carbohydrate Research,1975,41:175-189
    117. Haibach F,Hata J,Mitra M,et,al.Purification and characterization of a Coffea canehporaα-D- galactosidase isozyme[J].Biochemical and Biophysical Research Communications,1991,181:1564-1571
    118. Golden K D,John M A,Kean E A.β-galactosidase from Coffea Arabica and its role in fruit ripening[J]. Phytochemistry,1993,34:355-360
    119. Marraccini P,Rogers W J.Biochemical and molecular characterization of from coffee beans[J].Plant Physiology and Biochemistry,2005,43:909-920
    120. Takena T,Qin, G, Brady, R.Circulatingα-Galactosidase A derived from transduced bone marrow cells:relevance for corrective gene transfer for Fabry disease[J].Human Gene Therapy,1999,10:1931-1939
    121. Peters F,Vermeulen A,Kho T.Anderson-Fabry's disease:α-galactosidase deficiency[J].Lancet,2001,357: 138-140
    122.章扬培,杨军,季守平等.血型转换[J].现代科学仪器,2000,(1):8-11
    123.章扬培,杨军,高新等.用基因重组α-半乳糖苷酶进行B→O血型改造[J].科学通报,2003,48:43-47
    124. Lenny L L,Goldstein J.The production of group O cells[J].Biotechnology,1991,19:75-100
    125. Lenny L L,Hurst R,J G.Single unit transfusions of RBC enzymatically converted from group B to group O to A and O normal volunteers[J].Blood,1991,77:1383-1388
    126. Barham D,Dey P M,Griffiths D,et,al.Studies on the distribution ofα-galactosidases in seeds[J]. Phytochemistry,1971,10:1759-1763
    127. Harpaz N,Flowers H M,Sharon N.Purification of coffee beanα-galactosidase by affinity chromatography[J].Biochimica et Biophysica Acta (BBA)- Enzymology,1974,341:213-221
    128.吴劲松.α-半乳糖苷酶的纯化与性质[D]:[硕士学位论文].上海:华东理工大学,2000
    129. Zhu A,Monahan C,Zhang Z,et.,al.High-Level Expression and Purification of Coffee Beanα-Galactosidase Produced in the Yeast Pichia pastoris[J].Archives of Biochemistry and Biophysics,1995, 324:65-70
    130.曹琼.B→O血型改造的动物实验研究-α-半乳糖苷酶酶解猕猴红细胞表面类人B血型抗原[D]:[硕士学位论文].北京:第一军医大学,2003
    131.高新.大豆、咖啡豆、人α-半乳糖苷酶基因结构和功能的比较[D]:[硕士学位论文].北京:军事医学科学院,2000
    132.梁素钰.咖啡α-半乳糖苷酶基因的克隆与表达研究[D]:[博士学位论文].海口:华南热带农业大学, 2003
    133.黄循精.2004年世界咖啡产销情况[J].世界热带农业信息,2005,13-15
    1. Barham D, Dey P M,Griffiths D,et,al.Studies on the distribution ofα-galactosidases in seeds[J]. Phytochemistry,1971,10:1759-1763
    2. Harpaz N, Flowers H M, Sharon N.Purification of coffee beanα-galactosidase by affinity chromatography[J].Biochimica et Biophysica Acta (BBA)–Enzymology,1974,341:213-221
    3. Kandiiah B. Purification ofα-D-galactosidase from coconut[J].Phytochemistry,1986,25:1819-1821
    4. Iton T,Yutaka U,Hiroki N.Purification and characterization ofα-D-galactosidase from watermelon[J]. Journal of Biochemistry (Tokyo),1986,99:243-250
    5.李兴德,路英华.转化血型用α-D-半乳糖苷酶的分离、纯化及理化性质[J].应用与环境生物学报, 1996,2:369-375
    6.杨冠东,刘芳,李荷.α-半乳糖苷酶的研究进展概况[J].现代食品科技,2006,22:275-279
    7.梁素钰.咖啡α-半乳糖苷酶基因的克隆与表达研究[D]:[博士学位论文].海口:华南热带农业大学, 2003
    8.曹雅男.微生物来源36家族α-半乳糖苷酶的基因克隆与性质研究[D]:[博士学位论文].北京:中国农业科学院,2008
    9.吴劲松.α-半乳糖苷酶的纯化与性质[D]:[硕士学位论文].上海:华东理工大学,2000
    10.徐晓峰.黄瓜α-半乳糖苷酶基因克隆及表达分析[D]:[硕士学位论文].扬州:扬州大学,2006
    11.孙雪.江蓠属α-1,4-葡聚糖苷酶和α-半乳糖苷酶的研究[D]:[硕士学位论文].青岛:中国海洋大学, 2000
    12.高新.大豆、咖啡豆、人α-半乳糖苷酶基因结构和功能的比较[D]:[硕士学位论文].北京:军事医学科学院,2000
    13. Carchon H, Bruyne C K D.Purification and properties of coffee-beanα-d-Galactosidase[J]. Carbohydrate Research,1975,41:175-189
    14. Haibach F,Hata J,Mitra M,et,al.Purification and characterization of a Coffea canehporaα-D-galacto-sidase isozyme[J].Biochemical and Biophysical Research Communications,1991,181:1564- 1571
    15. Golden K D,John M A,Kean E A.β-galactosidase from Coffea Arabica and its role in fruit ripening[J]. Phytochemistry,1993,34:355-360
    16. Marraccini P,Rogers W J.Biochemical and molecular characterization of from coffee beans[J].Plant Physiology and Biochemistry,2005,43:909-920
    17. Courtois J E,Petek J B.α-Galactosidase from coffee beans[J].Methods in Enzymology,1966,8:565-571
    18.罗文扬,罗萍,雷新涛等.盆栽新宠-咖啡及其盆栽技术[J].广西农学报,2007,22:55-58
    19. Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72:248-254
    20. Nebesny E,Budryn G.Antioxidative activity of green and roasted coffee beans as influenced by convection and microwave roasting methods and content of certain compounds[J].European Food Research and Technology,2003,217:157-163
    21.何志勇,夏文水.橄榄多酚的提取研究[J].林产化学与工业,2007,27:77-80
    22.李宏,王新力.植物组织RNA提取的难点及策略[J].生物技术通报,1999:36-39
    23.汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000
    24.袁超,金征宇.响应面法优化羟丙基-β-环糊精制备工艺[J].食品科学,2007,28(3):147-151
    25. Davies O L,George E P,Lewis R C.The Design and Analysis of Industrial Experiments (2nd ed)[M]. Longman Group Limited,London,1978
    26. Bosque-Sendra J M,Pescarolo S,Cuadros-Rodriguez L,et,al.Optimizing analytical methods using sequential response surface methodology:Application to the pararosaniline determination of formaldehyde[J].Journal of Analytical Chemistry,2001,36:715-718
    27.高虹,谷文英,丁霄霖.利用微波辅助提取测定姬松茸中麦角甾醇含量[J].浙江大学学报(农业与生命科学版),2007,33:113-118
    28. Loomis W D,Battaile J.Plant phenolic compounds and the isolation of plant enzymes[J].Phytochemist- ry,1966,5:423-438
    29.石碧.植物多酚[M].北京:科学出版社,2000
    30.魏庆元.皮革鞣制化学[M].北京:轻工业出版社,1979
    31.裘爱泳,刘军海,张海晖.植物多酚提取和应用[J].粮食与油脂,2003,10-11
    32.张力萍,孙长霞,李俊清等.植物多酚的研究现状及发展前景[J].林产科学,2005,41:157-162
    33.宋立江,狄莹,石碧.植物多酚研究与利用的意义及发展趋势[J].化学进展,2000,12:161-170
    34.王丰俊,王建中,郝俊等.响应面法优化超声波辅助提取桑叶多糖的工艺研究[J].北京林业大学学报, 2007,29:142-146
    35.艾志录,郭娟,王育红等.微波辅助提取苹果渣中苹果多酚的工艺研究[J].农业工程学报,2006,22: 188-191
    36.汪兴平,周志,莫开菊等.微波对茶多酚浸出及其结构和组成的影响研究[J].农业工程学报,2002, 18:110-114
    37.陈龙胜,钟世安,周春山.树脂吸附法分离高纯茶多酚新工艺研究[J].林产化学与工业,2004,24:65-67
    38.金莹,孙爱东,胡晓丹等.苹果多酚的超声波提取及抗氧化作用研究[J].北京林业大学学报,2007,29:137-141.
    39.何国庆,熊皓平,阮晖等.啤酒花多酚类化合物提取工艺的优化研究[J].农业工程学报,2005,21:163- 166
    40. Loomis W D,Battaile J.Plant phenolic compounds and the isolation of plant enzymes[J]. Phytochemis- try, 1966,5:423-438
    41.沈汪洋,金征宇.植物多酚对α-半乳糖苷酶提取的影响[J].食品工业科技,2008,29:90-92
    42.曾晓波,吴谋成,王海英.丙酮浸提法制取菜籽浓缩蛋白[J].中国粮油学报,2001,16:10-13
    43. Haslam E.Plant polyphenols-vegetable tannins revisited[M].Cambndge:Cambndge university press, 1989
    44.韩丙军,彭黎旭.植物多酚提取技术及开发应用现状[J].热带农业大学学报,2005,11(1):21-26
    45.赵扬帆,郑宝东.植物多酚类物质及其功能学研究进展[J].福建轻纺,2006,11:107-110
    46.刘运荣,胡健华.植物多酚的研究进展[J].武汉工业学院学报,2005,24(4):63-65,106
    47.金莹,孙爱东.植物多酚的结构及生物活性的研究[J].中国食品与营养,2005,9:27-29
    1.吴劲松,冯万祥.α-半乳糖苷酶[J].生命的化学,2000,20(2):84-86
    2.李宏,王新力.植物组织RNA提取的难点及策略[J].生物技术通报,1999:36-39
    3.吴劲松.α-半乳糖苷酶的纯化与性质[D]:[硕士学位论文].上海:华东理工大学,2000
    4.章扬培,杨军,季守平等.血型转换[J].现代科学仪器,2000,(1):8-11
    5.梁素钰.咖啡α-半乳糖苷酶基因的克隆与表达研究[D]:[博士学位论文].海口:华南热带农业大学, 2003
    6. Courtois J E,Petek J B.α-Galactosidase from coffee beans[J].Methods in Enzymology,1966,8:565- 571.
    7. Barham D,Dey P M,Griffiths D,et,al.Studies on the distribution ofα-galactosidases in seeds[J]. Phytochemistry,1971,10:1759-1763
    8. Harpaz N,Flowers H M,Sharon N.Purification of coffee beanα-galactosidase by affinity chromatography[J].Biochimica et Biophysica Acta (BBA)–Enzymology,1974,341:213-221
    9. Carchon H,Bruyne C K D.Purification and properties of coffee-beanα-d-Galactosidase[J]. Carbohydrate Research,1975,41:175-189.
    10. Haibach F,Hata J,Mitra M,et,al.Purification and characterization of a Coffea canehporaα-D-galactosidase isozyme[J].Biochemical and Biophysical Research Communications,1991,181: 564-1571
    11. Golden K D,John M A,Kean E A.β-galactosidase from Coffea Arabica and its role in fruit ripening[J]. Phytochemistry,1993,34:355-360
    12.肖念清,孙册.慈菇(Sagittaria safittifolia)α-半乳糖苷酶的纯化与性质[J].生物化学杂志,1996,12: 547-552
    13.李兴德,陆华英.转化血型用蕃茄α-D-半乳糖苷酶的分离纯化及理化性质[J].应用与环境生物学报, 1996,2:369-375
    14.孙雪.江蓠属α-1,4-葡聚糖苷酶和α-半乳糖苷酶的研究[D]:[硕士学位论文].青岛:中国海洋大学, 2000.
    15.王静.Aspergillus ficuum菊粉酶及其酶解菊芋制备低聚果糖的研究[D]:[博士学位论文].无锡:江南大学,2004
    16.汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000
    17. Laemmli U K.Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1970,227:680–685
    18. Marraccini P,Rogers W J.Biochemical and molecular characterization of from coffee beans[J].Plant Physiology and Biochemistry,2005,43:909-920
    19. Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72:248-254
    20.迟玉杰,阎丽.实用蛋白质制备技术[M].哈尔滨:哈尔滨工程大学出版社,1998
    1. Carchon H,Bruyne C K D.Purification and properties of coffee-beanα-d-Galactosidase[J]. Carbohydrate Research,1975,41:175-189
    2. Harpaz N,Flowers H M,Sharon N.Purification of coffee beanα-galactosidase by affinity chromato- graphy[J].Biochimica et Biophysica Acta (BBA)-Enzymology,1974,341:213-221
    3. Zhu A,Monahan C,Wang Z.Trp-16:is essential for the activity ofα-galactosidase andα-N-acetyl- galactosamini dase [J].Biochimica et Biophysica Acta,1996,1297:99-104
    4. Zhu A,Wang Z,Goldstein J.Identification of tyrosine108 in coffee beanα-galactosidase as an essential residue for the enzyme activity[J].Biochimica and Biophysica Acta,1995,1247:260-264
    5. Maranville E,Zhu A.The Carboxyl Terminus of Coffee Bean a-Galactosidase Is Critical for Enzyme Activity[J].Archives of Biochemistry and Biophysics,2000,373:225-230
    6.肖念清,孙册.慈菇(Sagittaria safittifolia)α-半乳糖苷酶的纯化与性质[J].生物化学杂志,1996,12:547- 552.
    7.李兴德,陆华英.转化血型用蕃茄α-D-半乳糖苷酶的分离纯化及理化性质[J].应用与环境生物学报,1996,2:369-375
    8.吴劲松.α-半乳糖苷酶的纯化与性质[D]:[硕士学位论文].上海:华东理工大学,2000
    9. Marraccini P,Rogers W J.Biochemical and molecular characterization of from coffee beans[J].Plant Physiology and Biochemistry,2005,43:909-920
    10. Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72: 248 -254
    11.王静.Aspergillus ficuum菊粉酶及其酶解菊芋制备低聚果糖的研究[D]:[硕士学位论文].无锡:江南大学,2004
    12.祝彦忠,贾英民,于宏伟等.黑曲霉(Aspergillus niger)U-2菊粉酶保护剂的研究[J].微生物学通报, 2005,32:67-71
    13.周理红,许梓荣.酶的失活机理和稳定化技术[J].浙江畜牧兽医,2004:7-8
    14.王燕,朱海华,刘红伟.海藻糖对虫萤光素酶活性保护作用研究[J].安徽农业科学,2007,35:3663- 3664.
    15.张贺迎,武金霞,张瑞英等.稳定剂对糖化酶溶液的保护作用[J].河北大学学报(自然科学版),2002, 22:374-376
    16.吴燕雯,吴瑛,徐斐等.提高鸡肝脂酶稳定性的保护剂选择[J].食品工业科技,2005,26:84 -85
    17.郝秋娟,李永仙,李琦.淀粉液化芽孢杆菌产β-葡聚糖酶培养基优化以及酶稳定性的研究白[J].中国酿造,2006,157:18-22
    18.郭勇.酶工程(第二版)[M].北京:科学出版社,2004
    19.姜涌明,戴祝英,陈俊刚等.分子酶学导论[M].北京:中国农业大学出版社,2000
    20. Miles E W.Modification of histidyl residues in proteins by diethylpyrocarbonate[J].Methods in Enzymology,1977,47:431-442
    21.钱世钧,郝凤兮,孟广震.大肠杆菌AS1. 375 L-天门冬酰胺酶的选择性化学修饰[J].微生物学学报,1984,24:352-356
    22.夏初临,陈惠黎.人胎盘谷胱甘肽S-转移酶动力学及抑制剂的研究[J].生物化学杂志,1989,294-300
    23. Spande T F,Witkop B E.Methods in Enzymology[M].New York:Academic Press,1967
    24. Dey P M,Pridham J B.Biochemistry ofα-galactosidase[J].Advances in Enzymology and Related Areas of Molecular Biology,1972,36:91-130
    25.周海梦,王洪睿.蛋白质化学修饰[M].北京:清华大学出版社,1998
    26.袁勤生.现代酶学[M].上海:华东理工大学出版社,2001
    27.彭志英.食品酶学导论[M].北京:中国轻工业出版社,2002
    28.潘继承,汪劲松,向显智等.粘质赛氏菌胞外蛋白酶的化学修饰[J].生物化学杂志,1997,13:483-486
    29.陈素丽,陈清西,杨佩真.长毛对虾磷酸酯酶的研究[J].中山大学学报(自然科学版),2000,39:135-140
    30.姜忠义,高蓉,许松伟等.蛋白质的化学修饰研究进展[J].现代化工,2001,21:25-28
    31.郭小路,邱慧,易波等.薄荷蔗糖酶的化学修饰[J].西南大学学报(自然科学版),2007,29:114-118
    32.黄小丽,汪开毓,苏秀梅等.嗜麦芽寡养单胞菌胞外蛋白酶的化学修饰[J].化学学报,2007,65:651-654
    33.刘芯韵,陆珊,郑芸等.麦芽酸性磷酸酶的化学修饰及紫外光谱[J].化学研究与应用,2007,19:29-31
    34.宋欣,亓小宇,曲音波.丝孢酵母脂肪酶的酶学性质和化学修饰[J].微生物学通报,2007,34:723-726
    35.王红梅,刘嘉莉,杨萍等.聚半乳糖醛酸酶中色氨酸残基的化学修饰[J].高等学校化学学报,1995,16: 211-215
    36.阎伯旭,曲音波,高培基.色氨酸残基在内切葡聚糖酶分子中的作用[J].中国生物化学与分子生物学报,1998,14:181-185
    37.刘仙,高国粉,杨丽等.菊粉酶中色氨酸残基的化学修饰及其荧光光谱[J].高等学校化学学报,2007, 28:23-25
    1. Hedges R A.Industrial applications of cyclodextrins[J].Chemical Review,1998,98:2035-2044
    2.童林荟.环糊精化学-基础与应用[M].北京:科学出版社,2001
    3.金征宇,顾正彪,童群义等.碳水化合物化学:原理与应用[M].北京:化学工业出版社,2008
    4. Valle E M M D.Cyclodextrins and their uses: a review[J].Process Biochemistry,2004,39:1033-1046
    5.康诗钊,赵焱,刘育.环己胺修饰β-环糊精与噁嗪固态超分子配合物的合成及其发光性质[J].高等学校化学学报,2002,23:407-409
    6.沈旭杰,向平,陈慧兰.Costa型长链烷基钴化合物的合成、表征及其与β-环糊精的作用[J].高等学校化学学报,2001,22:31-33
    7.赵焱,李莉,刘育.多胺修饰β-环糊精及其铜配合物对几种模型底物的分子识别[J].高等学校化学学报,2002,23:2272-2277
    8.程池.歧化环糊精的研究进展[J].食品与发酵工业,1992,3:77-80
    9.李文德,周俊侠,张力田等.环糊精的改性研究及进展[J].中国粮油学报,1997,12(1):29-31
    10.王南平,余晓冬,陈洪渊.环糊精超分子化学研究的新进展[J].化学研究与进展,2001,13(1):27-31
    11. Kitahata S,Hara K,Fujita K,et,al.Synthesis of 6-O-α-D-Galactosylα-Cyclodextrin by Coffee Beanα-Galactosidase[J].Bioscience Biotechnology and Biochemistry,1992,56:1518-1519
    12. Hara K,Fujita K,Kuwahara N,et,al.Galactosylation of Cyclodextrins and Branched Cyclodextrins byα-Galactosidase[J].Bioscience,Biotechnology and Biochemistry,1994,58:652-659
    13. Koizumi K,Tanimoto T,Okada Y,et,al.Isolation and characterization of novel heterogeneous branched cyclomalto-oligosaccharides (cyclodextrins) produced by transgalactosylation withα-Galactosidase from coffee bean[J].Carbohydrate Research,1995,278:129-142
    14. Connolly D T,Townsend R R,Kawaguchi K,et,al.Binding and endocytosis of cluster glycosides by rabbit hepatocytes.Evidence for a short-circuit pathway that does not lead to degradation[J].Journal of Biological Chemistry,1982,257(2):939-945
    15. Shinoda T,Maeda A,Kagatani S,et,al.Specific interaction between galactose branched cyclodextrins and hepatocytes in vitro[J].International Journal of Pharmaceutics,1998,167:147-154
    16. Abe H,Kenmoku A,Yamaguch N,et,al.Structural Effects of Oligosaccharide-Branched Cyclodextrins on the Dual Recognition toward Lectin and Drug[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2002,44
    17. Seo S J,Kim S H,Sasagawa T,et,al.Delivery of all trans-retinoic acid (RA) to hepatocyte cell line from RA/galactosyl a-cyclodextrin inclusion complex[J].European Journal of Pharmaceutics and Biopharmaceutics,2004,58:681-687
    18. Oda Y,Yanagisawa H,Maruyama M,et,al.Design, synthesis and evaluation of D-galactose-b- cyclodextrin conjugates as drug-carrying molecules[J].Bioorganic and Medicinal Chemistry, 2008,16: 8830-8840
    19. Sakairi N,Utsuki T,Kuzuhara H.Facile synthesis of 6-O-(α-D-galacopyranosyl) cyclomaltoheptaose from commercially availabe branched cyclodextrin[J].Bioscience,Biotechnology and Biochemistry,1993, 57:850-851
    20. Okada Y,koizumi K,Kitahata S.Isolation by HPLC of the positional isomers of heterogeneous doubly branched cyclomaltohexaose having oneα-D-galactosyl and oneα-D-glucosyl side chain and determination of their structures by enzymatic degradation[J].Carbohydrate Research,1996,287:213-223
    21.袁超.羟丙基-β-环糊精的制备、性质及应用研究[D]:[博士学位论文].无锡:江南大学,2007
    22.冯涛.凉粉草胶结构、性质及与淀粉相互作用的研究[D]:[博士学位论文].无锡:江南大学,2007
    23. Habibi Y,Heyraud A,Mahrouz M,et,al.Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits[J].Carbohydrate Research,2004,339:1119-1127
    24. Yan C,Li X,Xiu Z,et,al.A quantum-mechanical study on the complexation ofβ-cyclodextrin with quercetin[J].Journal of Molecular Structure-Theochem,2006,764:95-100
    25. Koizumi K,Tanimoto T,Fujita K,et,al.Preparation, isolation, and characterization of novel heterogene- ous branched cyclomalto-oligosaccharides havingβ-D-galactosyl residue(s) on the side chain[J]. Carbohydrate Research,1993,238:75-91
    26. Tao Y,Zhang L.Characterization of polysaccharide-protein complexes by size-exclusion chromato- grammphy combined with three detectors[J].Carbohydrate Research,2008,343:2251-2257
    27.夏朝红,戴奇,房韦等.几种多糖的红外光谱研究[J].武汉理工大学学报,2007,29:45-47
    28.杨宝,赵谋明,刘洋等.荔枝壳多糖特性研究[J].天然产物研究与开发,2005,17:685-687
    1. Carchon H,Bruyne C K D.Purification and properties of coffee-beanα-d-Galactosidase[J]. Carbohydrate Research,1975,41:175-189
    2.吴劲松,冯万祥.α-半乳糖苷酶[J].生命的化学,2000,20(2):84-86
    3.曹雅男.微生物来源36家族α-半乳糖苷酶的基因克隆与性质研究[D]:[博士学位论文].北京:中国农业科学院,2008
    4. Zhu A,Goldstein J.Cloning and functional expression of a cDNA encoding coffee beanα-galactosidase [J].Gene,1994,140:227-231
    5. Irish G G,Balnave D.Non-starch polysaccharides and broiler performance on diets containing soybean meal as the sole protein concentrate[J].Australian Journal of Agricultural Research,1993,44:1483-1499
    6. Desnick R J,Ioannou Y A,Eng C M.Lysosomaldisorders. a-Galactosidase A deficiency Fabrydisease[C]. New York:The Metabolic and Molecular Bases of Inherited Disease,McGraw-Hill,1995
    7. Cristofaro E,Mottu F,Wuhrmann J J.Study of the effects on flatulence of leguminous seeds oligo- saccharides[J].Nestle Research News,1973,102
    8. Koizumi K,Tanimoto T,Okada Y,et,al.Isolation and characterization of novel heterogeneous branched cyclomalto-oligosaccharides (cyclodextrins) produced by transgalactosylation withα-Galactosidase from coffee bean[J].Carbohydrate Research,1995,278:129-142
    9. Lenny L L,Goldstein J.The production of group O cells[J].Biotechnology,1991,19:75-100
    10. Mathew C D,Balasubramaniam K.Chemical modification ofα-galactosidase from coconut[J]. Phytochemistry,1986:2439-2443
    11. Takena T,Qin, G, Brady, R.Circulatingα-Galactosidase A derived from transduced bone marrow cells: relevance for corrective gene transfer for Fabry disease[J].Human Gene Therapy,1999,10:1931-1939
    12.章扬培,杨军,高新等.用基因重组α-半乳糖苷酶进行B→O血型改造[J].科学通报,2003,48:43-47
    13. Kitahata S,Hara K,Fujita K,et,al.Synthesis of 6-O-α-D-Galactosylα-Cyclodextrin by Coffee Beanα-Galactosidase[J].Bioscience Biotechnology and Biochemistry,1992,56:1518-1519
    14. Hara K,Fujita K,Kuwahara N,et,al.Galactosylation of Cyclodextrins and Branched Cyclodextrins byα-Galactosidase[J].Bioscience,Biotechnology and Biochemistry,1994,58:652-659
    15. Abe H,Kenmoku A,Yamaguch N,et,al.Structural Effects of Oligosaccharide-Branched Cyclodextrins on the Dual Recognition toward Lectin and Drug[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2002,44:39-47
    16. Connolly D T,Townsend R R,Kawaguchi K,et,al.Binding and endocytosis of cluster glycosides by rabbit hepatocytes. Evidence for a short-circuit pathway that does not lead to degradation[J].Journal of Biological Chemistry,1982,257:939-945
    17. Koizumi K,Tanimoto T,Fujita K,et,al.Preparation, isolation, and characterization of novel heterogeneous branched cyclomalto-oligosaccharides havingβ- -galactosyl residue(s) on the side chain[J]. Carbohydrate Research,1993,238:75-91
    18.李涛,岳田利,袁亚宏.Plackett-burman设计法筛选超声波提取苹果多酚工艺的主要影响因子[J].农产品加工,2007:18-21
    19.疏秀林,施庆珊,冯静等.γ-聚谷氨酸发酵培养基的Plackett-Burman法优化[J].生物技术通报,2007:173-177
    20.吴跃,罗昌荣,陈正行.反应型可可香料的氨基酸和还原糖的Plackett-Burman设计筛选[J].食品科学,2007,28:75-80
    21.高虹.巴西蘑菇菌丝体醇提物抗肿瘤功效成分的研究[D]:[博士学位论文].无锡:江南大学,2007
    22.刘建忠,熊亚红,翁丽萍等.生物过程的优化[J].中山大学学报(自然科学版),2002,41:132-137
    23.高虹,谷文英,丁霄霖.利用微波辅助提取测定姬松茸中麦角甾醇含量[J].浙江大学学报(农业与生命科学版),2007,33:113-118
    24. Plackett R L,Burman J P.The design of optimum multifactorial experiments[J].Biometrika,1946,33: 05-325.
    25. Yasser R A,Hesham M S,Yousry M G,et,al.Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs[J].Process Biochemistry, 2005,40:1707-1714
    26. Cockshott A R,Sullivan G R.Improving the fermentation medium for Echinocandin B production. Part I: sequential statistical experimental design[J].Process Biochemistry,2001,36:647-660
    27. Francis F,Abdulhameed S K,Nampoothiri M,et,al.Use of response surface methodology for optimizing process parameters for the production ofα-amylase by Aspergillus oryza[J].Biochemical Engineering Journal,2003,15:107-115
    28. Chen X,Li Y,Du G C,et,al.Application of response surface methodology in medium optimization for spore production of Coniothyrium minitans in solid-state fermentation[J].World Journal of Microbiology and Biotechnology,2005,25:593-599
    29. Xiong Y H,Liu J Z,Song H Y,et,al.Enhanced production of extracellular ribonucleic from Aspergillus niger by optimization of culture conditions using response surface methodology[J].Biochemical Engineering Journal,2004,21:27-32
    30. Pujari V,Chandra T S.Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii[J].Process Biochemistry,2000,36:31-37
    31. Montgomery D C.Design and analysis of experiments (3rd)[M].John Wiley & Sons,New York,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700