脊髓水平mGluR3和mGluR5调控星形胶质细胞活化在小鼠骨癌痛形成中的作用及中医药干预的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨脊髓水平代谢性谷氨酸受体亚型3和5(mGluR3和5)调节星形胶质细胞活化在骨癌痛形成中的作用以及丹参酮ⅡA和身痛逐瘀汤对骨癌痛的治疗作用及其可能的机制。
     方法:C3H/HeNCrlVr雄性小鼠股骨骨髓腔注射NCTC 2472纤维肉瘤细胞制作骨癌痛模型,以等体积的最小必须培养基(a-MEM)代替NCTC 2472纤维肉瘤细胞骨髓腔内注射制作假手术模型,用自发性抬足次数/2min、机械刺激缩足反射阈值(PWMT)和热痛觉缩足潜伏期(PWTL)评估痛行为学表现,用胶质细胞纤维酸性蛋白(GFAP)和肿瘤坏死因子-a (TNF-a)的表达水平来反映星形胶质细胞的活化水平。鞘内置管给予mGluR3激动剂(2R,4R)-4-Aminop-yrrolidine-2,4-dicarboxylate (APDC), mGluR3拮抗剂(2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xan th-9-yl) propanoic acid (LY341495). mGluR5激动剂(RS)-2-Chloro-5-hydroxypheny-lglycine(CHPG)、mGluR5拮抗剂3-((2-Methyl-1,3-thiazol-4-yl) e-thynyl) pyridine hydrochloride(MTEP)和丹参酮ⅡA,灌胃给予身痛逐瘀汤水煎浓缩制剂进行干预。在不同时间点观察痛行为学变化,取脊髓腰膨大部位(L3-L5),分别应用Real-time quantitative RT-PCR和western blot检测mGluR3、mGluR5、GFAP、TNF-a mRNA与蛋白的表达变化。
     结果:(1)小鼠左股骨骨髓腔注射NCTC 2472纤维肉瘤细胞可以诱发进行性的痛行为学变化,表现为自发性抬足次数增加,机械刺激缩足反射阈值降低、热痛觉缩足潜伏期缩短(P<0.05);(2)小鼠股骨骨髓腔注射NCTC 2472纤维肉瘤细胞可以诱发脊髓水平星形胶质细胞活化,表现为GFAP、TNF-a mRNA和蛋白表达进行性增加(P<0.05);(3)骨癌痛发生发展过程中小鼠脊髓水平mGluR3、mGluR5 mRNA和蛋白表达进行性增加(P<0.05);(4)APDC和MTEP鞘内注射可以改善骨癌痛小鼠的痛行为学表现,同时可以抑制脊髓水平GFAP和TNF-a的表达(P<0.05);而LY341495和CHPG则可以促进假手术组小鼠脊髓水平GFAP和TNF-a的表达(P<0.05);(5)丹参酮ⅡA鞘内注射可以剂量依赖性地改善骨癌痛小鼠的痛行为学表现,同时可以抑制脊髓水平GFAP和TNF-a的表达(P<0.05);(6)灌胃给予身痛逐瘀汤水煎浓缩制剂可以剂量依赖性地改善骨癌痛小鼠的痛行为学表现,同时可以抑制脊髓水平GFAP和TNF-a的表达P<0.05)。
     结论:脊髓水平代谢性谷氨酸受体亚型3和5可以通过调节星形胶质细胞活化在骨癌痛中发挥重要作用;丹参酮ⅡA和身痛逐瘀汤可以改善骨癌痛小鼠的痛行为学表现,抑制脊髓水平星形胶质细胞活化可能是其机制之一。
Objective:To investigate the role of spinal metabotropic glutamate receptor subtypes 3 and 5 regulating astrocytes activation during the development of bone cancer pain and the analgesic effects of Shentong Zhuyu Decoction(SZD) and Tanshinone IIA and their possible mechanisms.
     Methods:The femur marrow cavity of C3H/HeNCrlVr male mice were injected with NCTC 2472 fibrosarcoma cells to make bone cancer pain model and NCTC 2472 fibrosarcoma cells were replaced by the equal volum of a-MEM in the sham model.The number of spontaneous foot lifting/2 min, paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were used to assess pain behaviours performance.The level of spinal glial fibrillary acidic protein(GFAP) and tumor necrosis factor-a(TNF-a) mRNA and protein expression to reflect astrocytes activation level.To treat bone cancer pain with mGluR3 agonist (2R,4R)-4-Aminop-yrrolidine-2,4-dicarboxylate (APDC),mGluR3 receptor antagonist (2S)-2-Amino-2-[(1S,2S)-2-carbo-xycycloprop-1-yl]-3-(xan th-9-yl) propanoic acid (LY341495), mGluR5 agonist (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG),mGluR5 receptor antagonist 3-((2-Methyl-1,3-thiazol-4-yl) e-thynyl) pyridine hydrochloride (MTEP) and Tanshinone IIA by intrathecal catheter. Shentong Zhuyu Decoction was given by intragastric administration. To observe pain behaviors changes at different time points and the L3-L5 spinal cord segments of sacrificed mice were dissected to detect glial fibrillary acidic protein and tumor necrosis factor-a mRNA and protein expression by Real-time quantitative RT-PCR and western blot respectively.
     Results:(1) NCTC 2472 fibrosarcoma cells inoculation of the left femur of the male C3H/HeNCrlVr mice produced progressive spontaneous flinches, mechanical hyperalgesia and thermal hyperalgesia(P<0.05);(2)NCTC 2472 fibrosarcoma cells inoculation of the left femur of the male C3H/HeNCrlVr mice induces spinal astrocytes activation, characterized by up-regulation of GFAP and TNF-a mRNA and protein expression(P<0.05);(3) The level of spinal mGluR3, mGluR5 mRNA and protein expression progressively increased during the development of bone cancer pain(P<0.05); (4) Intrathecal administration of APDC and MTEP could improve bone cancer pain behaviors performance and inhibit the expression of spinal GFAP and TNF-a, but LY341495 and CHPG could promote the expression of spinal GFAP and TNF-a in the sham groups(P<0.05);(5) Intrathecal injection of tanshinone IIA could improve the bone cancer pain behaviors performance and inhibit the expression of spinal GFAP and TNF-a dose-dependently(P<0.05); (6) Given SZD orally could dose-dependently improve the bone cancer pain behaviors performance, and could suppress the expression of spinal GFAP and TNF-a (P<0.05).
     Conclusion:The spinal metabotropic glutamate receptor subtypes 3 and 5 play important roles in the development of bone cancer pain by regulating the activation of spinal astrocytes.Tanshinone IIA and SZD could improve bone cancer pain behaviors performance, and the inhibition of activation of spinal astrocytes may be one of their mechanisms.
引文
[1]Chapman S. Chronic pain syndromes in cancer survivors. Nurs Stand,2011;25(21):35-41.
    [2]Portenoy RK, Lesage P. Management of cancer pain. Lancet,1999;353(9165):1695-700.
    [3]Meuser T, Pietruck C, Radbruch L,et al. Symptoms during cancer pain treatment following WHO-guidelines:a longitudinal follow-up study of symptom prevalence, severity and etiology. Pain,2001; 93(3):247-57.
    [4]Coleman RE. Skeletal complications of malignancy. Cancer,1997;80(8 Suppl):1588-94.
    [5]Thurlimann B, de Stoutz ND. Causes and treatment of bone pain of malignant origin. Drugs,1996; 51 (3):383-98.
    [6]Medhurst SJ, Walker K, Bowes M,et al. A rat model of bone cancer pain. Pain,2002;96(1-2):129-40.
    [7]Yanagisawa Y, Furue H, Kawamata T, et al.Bone cancer induces a unique central sensitization through synaptic changes in a wide area of the spinal cord. Mol Pain,2010;6:38.
    [8]Yan LH, Hou JF, Liu MG, et al. Imbalance between excitatory and inhibitory amino acids at spinal level is associated with maintenance of persistent pain-related behaviors. Pharmacol Res,2009;59 (5):290-9.
    [9]Doumazane E, Scholler P, Zwier JM, et al.A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J,2011;25(1):66-77.
    [10]Goudet C,Magnaghi V, Landry M,et al. Metabotropic receptors for glutamate and GAB A in pain. Brain Res Rev,2009;60(1):43-56.
    [11]Carlton SM, Hargett GL. Colocalization of metabotropic glutamate receptors in rat dorsal root ganglion cells. J Comp Neurol,2007;501(5):780-9.
    [12]Kumar N, Laferriere A, Yu JS,et al. Metabotropic glutamate receptors (mGluRs) regulate noxious stimulus-induced glutamate release in the spinal cord dorsal horn of rats with neuropathic and inflammatory pain,2010;114(1):281-90.
    [13]Cho CH, Shin HK. Spinal Metabotropic Glutamate Receptors (mGluRs) are Involved in the Melittin-induced Nociception in Rats. Korean J Physiol Pharmacol,2008;12(5):237-43.
    [14]Carlton SM,Hargett GL.Colocalization of metabotropic glutamate receptors in rat dorsal root gan-glion cells.J Comp Neurol,2007;501(5):780-9.
    [15]Song JH, Park ES, Han SM, et alSignal transduction mechanisms underlying group I mGluR-mediated increase in frequency and amplitude of spontaneous EPSCs in the spinal trigeminal subnucleus oralis of the rat. Mol Pain,2009;5:50.
    [16]Derjean D, Bertrand S, Le Masson G, et al. Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states. Nat Neurosci,2003;6(3):274-81.
    [17]Jung SJ, Kim SJ, Park YK, et al. Group I mGluR regulates the polarity of spike-timing dependent plasticity in substantia gelatinosa neurons. Biochem Biophys Res Commun,2006;347(2):509-16.
    [18]Sevostianova N, Danysz W. Analgesic effects of mGlul and mGluR5 receptor antagonists in the rat formalin test. Neuropharmacology.2006;51(3):623-30.
    [19]Li JQ, Chen SR, Chen H, et al.Regulation of increased glutamatergic input to spinal dorsal horn neurons by mGluR5 in diabetic neuropathic pain. J Neurochem,2010;112(1):162-72.
    [20]Dolan S, Nolan AM. Blockade of metabotropic glutamate receptor 5 activation inhibits mechanical hypersensitivity following abdominal surgery. Eur J Pain.,2007;11(6):644-51.
    [21]Junhui Du, Shengtai Zhou, Susan MC. Group II metabotropic glutamate receptor activetion attenu-ates peripheral sensitization in inflammatory states.Neuroscience,2008;154(2):754-66.
    [22]Jones CK, Eberle EL, Peters SC,et al. Analgesic effects of the selective group Ⅱ (mGlu2/3) metabot-ropic glutamate receptor agonists LY379268 and LY389795 in persistent and inflammatory pain models after acute and repeated dosing. Neuropharmacology,2005; 1:206-18.
    [23]Yoon MH, Choi J, Bae HB,et al. Antinociceptive effects and synergistic interaction with mor- phine of intrathecal metabotropic glutamate receptor 2/3 antagonist in the formalin test of rats. Neurosci Lett,2006;394(3):222-6.
    [24]Schools GP, Kimelberg HK.mGluR3 and mGluR5 are the predominant metabotropic glutamate receptor mRNAs expressed in hippocampal astrocytes acutely isolated from young rats.J Neurosci Res,2009;58:533-543.
    [25]Cai Z, Schools GP, Kimelberg HK.Metabotropic glutamatereceptors in acutely isolated hippocampal astrocytes:developmental changes of mGluR5 mRNA and functional expression.Glia,2000;29 (1):70-80.
    [26]Mudo G,Trovaro-Salinaro A, Caniglia G,et al.Cellular localization of mGluR3 and mGluR5 mRNAs in normal and injured rat brain. Brain Res,2007; 1149:1-13.
    [27]Kanumilli S, Roberts PJ. Mechanisms of glutamate receptor induced proliferation of astrocytes. Neuror-eport.2006;17(18):1877-81.
    [28]Ciccarelli R,Sureda FX,Casabona G et al. Opposite influence of the metabotropic glutamate receptor subtypes mGluR3 and -5 on astrocyte proliferation in culture. Glia,1997;21:390-398.
    [29]Watkins, L. R., Wieseler-Frank, J., Milligan, E. D.,et al. in Handbook of Clinical Neurology (ed-s Cervero, F.& Jensen, T. S.) 309-323 (Elsevier,2006).
    [30]Hald A, Nedergaard S, Hansen RR,et al. Differential activation of spinal cord glial cells in murine models of neuro-pathic and cancer pain. Eur J Pain,2009;13(2):138-45.
    [31]Schwei MJ, Honore P, Rogers SD,et al. Neurochemical and Cellular Reorganization of the Spinal Cord in a Murine Model of Bone Cancer PainJ. J Neurosci,1999;19(24):10886-97.
    [32]Hidaka K,Ono K,Harano N,et al.Central glial activation mediates cancer-induced pain in a rat facial cancer model.Neuroscience,2011; 180:334-43.
    [33]Lu Y, Zhu L, Gao YJ. Pain-related aversion induces astrocytic reaction and proinflammatory cytokine expression in the anterior cingulate cortex in rats. Brain Res Bull,2011;84(2):178-82.
    [34]Marchand F,Perretti M,McMahon SB.Roles of the immune system in chronic pain.Nat Rev Neurosci,2005; 6:521-32.
    [35]Wacnik PW,Eikmeier LJ,Simone DA,et al. Nociceptive characteristics of tumor necrosis factor-alpha in naive and tumor-bearing mice. Neuroscience,2005;132(2):479-91.
    [36]Constantin CE,Mair N,Sailer CA,et al.Endogenous tumor necrosis factor alpha (TNFalpha) requires TNFreceptor type 2 to generate heat hyperalgesia in a mouse cancermodel. J Neurosci,2008; 28: 5072-5081.
    [37]Gu X, Zheng Y, Ren B,et al.Intraperitoneal injection of thalidomide attenuates bone cancer pain and decreases spinal tumor necrosis factor-a expression in a mouse model. Mol Pain,2010;6:64.
    [38]JT, Xin WJ, Zang Y, Wu CY, et al.The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat.Pain,2006;123:306-321.
    [39]中药大辞典[M].上海科学技术出版社,1986年5月第一版.
    [40]党月兰,李淑玉,张玉琳等.丹参注射液的镇痛作用.兰州医学院学报,1990年第1期.
    [41]刁成华,秦少敏.静滴丹参对肝癌镇疼的疗效观察.中医药动态,1994年第4期.
    [42]张丽华.静滴丹参对带状疱疹镇痛疗效新观察.中华临床医学实践杂志,2007年4月第2期.
    [43]何汝帮,杨安平.复方丹参颗粒抗炎、镇痛作用的实验研究.中国实用医药,2009年1月第2期.
    [44]林佳,徐丽珍,李琰,等.不同产地丹参中丹参酮ⅡA的含量比较.中国中药学杂志,2002;27(2):153-154.
    [45]叶勇.丹参有效成分分离的研究进展.药品评价,2005;2(2):146.
    [46]潘雪莲,周青山,杜大萍.丹参酮ⅡA对糖尿病大鼠神经病理性疼痛的影响.中华麻醉学杂志,2006年第8期.
    [47]Guan-Wei Fan, Xiu-Mei Gao, Hong Wang et al. hea anti-inflammatory activities of Tanshinone IIA, an active compo-nent of TCM,are mediated by estrogen receptor activation and inhibition of iNOS. Journal of Steroid Biochemistry & Molecular Biology,2009;113:275-280
    [48]Youn DH, Wang H, Jeong SJ.Exogenous tumor necrosis factor-alpha rapidly alters synaptic and sensory transmission in the adult rat spinal cord dorsal horn. J Neurosci Res,2008;86:2867-2875.
    [49]陈晓东.加味身痛逐瘀汤结合唑来膦酸治疗恶性肿瘤骨转移近期疗效和安全性观察.中医药学报,2009;37(5):55-57.
    [50]徐娅.加味身痛逐瘀汤联合博宁治疗恶性肿瘤骨转移痛疗效分析.中国中医急症,2007;16(4):406-407.
    [51]张红,何欣,黄立中等.身痛逐瘀汤加味联合放射疗法治疗骨转移性癌痛疗效观察.中国中医药信息杂志,2006;13(9):67-68.
    [52]丁安伟.现代中药临床手册[M].江苏科学技术出版社.2000年第一版.
    [53]Hald A. Spinal astrogliosis in pain models:cause and effects.Cell Mol Neurobiol.2009;29(5):609-19.
    [54]Gu X, Zhang J, Ma Z, et al.The role of N-methyl-D-aspartate receptor subunit NR2B in spinal cord in cancer pain. Eur J Pain,2010; 14:496-502.
    [55]Luger NM, Mach DM, Sevcik BA, et al.Bone cancer pain:from model to mechanism to therapy. J Pain and Symptom Manag,2005;29:32-46.
    [56]Constandil L, Pelissier T, Soto-Moyano R, et al.Interleukin-lbeta increases spinal cord wind-up activity in normal but not in monoarthritic rats. Neurosci Lett,2003;342:139-42.
    [57]Raghavendra V, Tanga FY, DeLeo JA. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. EurJ Neurosci,2004;20:467-73.
    [58]Milligan ED,Twining C,Chacur M, et al.Spinal glia and proinflammatory cytokines mediate mirrorimage neuropathic pain in rats. J Neurosci,2003;23:1026-40.
    [59]Vallejo R, Tilley DM, Vogel L,et al.The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Pract,2010;10(3):167-84.
    [60]Takeda K, Sawamura S, Sekiyama H, et al. Effect of methylprednisolone on neuropathic pain and spinal glial activation in rats. Anesthesiology,2004; 100:1249-57.
    [61]Geis C, Graulich M, Wissmann A,et al. Evoked pain behavior and spinal glia activation is dependent on tumor necrosis factor receptor 1 and 2 in a mouse model of bone cancer pain. Neuroscience,2010; 169(1):463-74.
    [62]Wieseler-Frank J,Maier SF,Watkins LR.Glial activation and pathological pain.Neurochem Int,2004; 45:389-95.
    [63]Sun XC, Chen WN, Li SQ,et al.Fluorocitrate, an inhibitor of glial metabolism, inhibits the up- regu-lation of NOS expression, activity and NO production in the spinal cord induced by formalin test in rats. Neurochem Res,2009;34(2):351-9.
    [64]Gao YJ, Ji RR.Light touch induces ERK activation in superficial dorsal horn neurons after inflamm-ation:involvement of spinal astrocytes and JNK signaling in touch-evoked central sensitization and mechanical allodynia. J Neurochem.2010;115(2):505-14.
    [65]Chen JJ, Lue JH, Lin LH,et al. Effects of pre-emptive drug treatment on astrocyte activation in the cuneate nucleus following rat median nerve injury. Pain,2010;148(1):158-66.
    [66]Sharron Dolan, James G. Kelly, Ana M. Monteiro, et al. Up-regulation of metabotropic glutamate receptor subtypes 3 and 5 in spinal cord in a clinical model of persistent inflammation and hyperal-gesia.Pain,2003;106:501-512.
    [67]Lin YR, Chen HH, Lin YCA,et al.ntinociceptive actions of honokiol and magnolol on glutamatergic and inflammatory pain. J Biomed Sci,2009; 16:94.
    [68]Fundytus ME,Fisher K,Dray A,et al.In vivo antinociceptive activity of anti-rat mGluR1 and mGluR5 antibodies in rats.NeuroReport,1998;9:731-735.
    [69]M.H.Yoon,J.Choi,H.B. Bae, et al.Antinociceptive effects and synergistic interaction with morphine of intrathecal metabotropic glutamate receptor 2/3 antagonist in the formalin test of rats.Neurosci. Lett,2006;394:222-226.
    [70]Junhui Du,Shengtai Zhou,Susan MC.Group II metabotropic glutamate receptor activation attenuates peripheral sensitization in inflammatory states. Neuroscience,2008;154:754-766.
    [71]C.K. Jones, E.L. Eberle, S.C. Peters, et al. Analgesic effects of the selective group Ⅱ (mGlu2/3) metabotropic glutamate receptor agonists LY379268 and LY389795 in persistent and inflammatory pain models after acute and repeated dosing.Neuropharmacology,2005;49:206-218.
    [72]王怡.止痛活血化瘀药对血液流变性影响研究.中国血液流变学杂志,1997;7(3):1-8.
    [1]Watkins, L. R., Wieseler-Frank, J., Milligan, E. D.,et al. in Handbook of Clinical Neurology (eds Cervero, F.& Jensen, T. S.) 309-323 (Elsevier,2006).
    [2]Mayer ML, Westbrook GL.The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol,1987;28:197-276.
    [3]Danbolt NC.Glutamate uptake. Prog Neurobiol,2001;65:1-105.
    [4]Suadicani SO, Brosnan CF, Scemes E. P2X7 receptors mediate ATP release and amplification of astr-ocytic intercellular Ca2+ signaling. J Neurosci,2006;26(5):1378-1385.
    [5]Sharma G,Vijayaraghavan S.Nicotinic cholinergic signaling in hippocampal astrocytes involves calc-ium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A,2001;98(7):4148-53.
    [6]Voutsinos PB,Bonvento G,Tanaka K,et al. Glial glutamate transporters mediate a functional metabo-lic crosstalk between neurons and astrocytes in themouse developing cortex. Neuron,2003;37(2): 275-286.
    [7]Albrecht P J,Dahl J P,Stoltzfus OK,et al. Giliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblastgrowth factor-2,to increase motor neuron surviv-eal. Exp Neurol,2002;173(1):46-62.
    [8]Emsley JG, Arlotta P, Macklis JD. Star-cross'd neurons:astroglial effects on neural repair in the adult mammalian CNS.Trends Neurosci,2004;27(5):238-240.
    [9]Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci, 2009;10(1):23-36.
    [10]Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 2006; 86:1009-1031.
    [11]Jourdain P, Bergersen LH, Bhaukaurally K, et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci,2007;10:331-339.
    [12]Halassa MM, Fellin T, Takano H, et al. Synaptic islands defined by the territory of a single astrocyte. J Neurosci,2007;27:6473-6477.
    [13]Scholz J, Woolf CJ. The neuropathic pain triad:neurons, immune cells and glia. Nat Neurosci,2007; 10:1361-1368.
    [14]Matthew JS.,Prisca H.,Scott DR,et al.Neurochemical and Cellular Reorganization of the Spinal Cord in a Murine Model of Bone Cancer Pain.Neurosci,1999;24:10886-10897.
    [15]Zhang RX, Liu B, Wang L, Ren K, et al. Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia.Pain,2005;118:125-136.
    [16]Qin M, Wang JJ, Cao R, et al. The lumbar spinal cord glial cells actively modulate subcutan- eous formalin induced hyperalgesia in the rat.Neurosci Res,2006;55(4):442-450.
    [17]Romero-Sandoval A, Chai N, Nutile-McMenemy N,et al.A comparison of spinal Ibal and GFAP expression in rodentmodels of acute and chronic pain Brain Res,2008;1219:116-126.
    [18]Feng X, Zhang F, Dong R,etal. Intrathecal administration of clonidine attenuates spinal neuroimm-une activation in a rat model of neuropathic pain with existing hyperalgesia. Eur J Pharmacol,2009; 614(1-3):38-43.
    [19]DeLeo JA, Sorkin LS, Watkins LR, editors. Immune and glial regulation of pain,Seattle:IASP Press, 2007.
    [20]Gomes FC,Paulin D,Moura NV,et al. Glial fibrillary acidic protein(GFAP):modulation by growth factors and its implication in astrocyte differentiation.J Braz J Med Biol Res,1999;32:619-631.
    [21]Guo W, Wang H, Watanabe M, et al. Glial-cytokine-neuronal interactions underlying the mec-hanisms of persistent pain. J Neurosci,2007;27:6006-6018.
    [22]Holguin A, O'Connor KA, Biedenkapp J, et al. HIV-1 gp120 stimulates proinflammatory cytokine-mediated pain facilitation via activation of nitric oxide synthase-I (nNOS).Pain,2004;110:517-530.
    [23]Fields RD, Burnstock G. Purinergic signalling in neuron-glia interactions.Nat Rev Neurosci,2006; 7:423-436.
    [24]Ni Y, Malarkey EB, Parpura V. Vesicular release of glutamate mediates bidirectional signaling betw-een astrocytes and neurons. J Neurochem,2007;103:1273-1284.
    [25]Ren K, Dubner R. Neuron-glia crosstalk gets serious:role in pain hypersensitivity.Curr Opin Anaes-thesiol,2008;21(5):570-579.
    [26]Lee CJ, Mannaioni G, Yuan H,etal. Astrocytic control of synaptic NMDA receptors. J Physiol.2007 Jun15;581(Pt3):1057-1081.
    [27]Wirkner K, Sperlagh B, Illes P. P2X3 receptor involvement in pain states. Mol Neurobiol,2007; 36 (2):165-183.
    [28]Martineau M, Baux G, Mothet JP. D-serine signalling in the brain:friend and foe. Trends Neurosci. 2006;29(8):481-491.
    [29]Beglova N,Maliartchouk S,Ekiel I,et al.Design and solution structure of functional peptide mimetics of nerve growth factor.Med Chem,2000;43(19):3530-3540.
    [30]Aronica E,Gorter JA,Rozemuller AJ,et al.Activation of metabotropic glutamate receptor 3 enhances interleukin (IL)-beta-stimulated release of IL-6 in cultured human astrocytes. Neuroscience,2005; 130(4):927-933.
    [31]Madiai F,Hussain SR,Goettl VM,et al.Upregulation of FGF-2 in reactive spinal cord astrocytes following unilateral lumbar spinal nerve ligation. Exp-Brain-Res,2003;148(3):366-376.
    [32]Wat kins LR,Maier SF.Beyond neurons:evidence that immune and glial cells contribute to patholo-gical pain states.Physiol Rev,2002;82 (4):981-1011.
    [33]Sung CS,Wen ZH,Chang WK,et al.Intrathecal interleuk in-lbeta administration induces thermal hyperalgesia by activating inducible nitric oxide synthase expression in the rat spinal cord.Brain Res,2004;1015:1145.
    [34]Schobitz B,DeKloet ER,Holsboer F.Gene expression and function of interleukin-1, interleukin-6 and tumor necrosis factor in the brain.Prog Neurobiol,1994;44:397-432.
    [35]Watkins LR, Maier SF. Glia:a novel drug discovery target for clinical pain. Nat Rev Drug Discov, 2003;2(12):973-985.
    [36]Romero-Sandoval EA, Horvath RJ, DeLeo JA. A.Neuroimmune interactions and pain:focus on glialmodulating targets. Curr Opin Investig Drugs,2008;9(7):726-734.
    [37]Tawfik VL, Nutile-McMenemy N, Lacroix-Fralish ML,et al. Efficacy of propentofylline, a glial modulating agent, on existing mechanical allodynia following peripheral nerve injury. Brain Behav Immun,2007;21(2):238-246.
    [38]Rothstein JD, Dykes-Hoberg M, Pardo CA, etal.Knockout of glutamate transporters reveals a major role for astro-glial transport in excitotoxicity and clearance of glutamate. Neuron,1996; 16:675-686.
    [39]Danbolt NC.Glutamate uptake. Prog Neurobiol,2001;65:1-105.
    [40]Xin WJ, Weng HR, Dougherty PM.Plasticity in expression of the glutamate transporters GLT-1 and GLAST in spinal dorsal horn glial cells following partial sciatic nerveligation. Mol Pain,2009;26:15.
    [41]Sonnewald U, Westergaard N, Schousboe A.Glutamate transport and metabolism in astrocytes. GLIA,1997;21:56-63.
    [42]Crippa D, Schenk U, Francolini M, etal. Synaptobrevin2-expressing vesicles in rat astrocytes: insights into mole-cular characterization, dynamics and exocytosis. J Physiol,2006;570:567-582.
    [43]Guo W, Wang H, Watanabe M, et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci,2007;27:6006-6018.
    [44]Brandstatter JH,Dick O,Boeckers TM.The postsynaptic scaffold proteins ProSAP1/Shank2 and Homerl are associateed with glutamate receptor complexes at rat retinal synapses.J Comp Neurol,2004;475(4):551-563.
    [45]Enkvist MO,McCarthy KD. Astroglial gap junction communication is increased by treatment with either glutamate or high K+concentration.J Neurochem,1994;62:489-495.
    [46].Tawfik VL, Lacroix-Fralish ML, Bercury KK, et al. Induction of astrocyte differentiation by propentofylline incre- ases glutamate transporter expressionin vitro:heterogeneity of the quiescent phenotype. Glia,2006;54:193-203.
    [47]Tawfik VL, Nutile-McMenemy N, LaCroix-Fralish ML, etal. Efficacy of propentofylline, a glial modulating agent, on existing mechanical allodynia following peripheral nerve injury. Brain Behav Immun,2007;21:238-246.
    [48]Oliet SH, Mothet JP. Regulation of N-methyl-D-aspartate receptors by astrocytic D-serine. Neuroscience,2009;158(1):275-283.
    [49]Dingledine R, Borges K, Bowie D, etal. The glutamate receptor ion channels. Pharmacol Rev,1999; 51:7-61.
    [50]Sasaki YF, Rothe T, Premkumar LS, et al.Characterization andcomparison of the NR3 A subunit of the NMDA receptor inrecombinant systems and primary cortical neurons.J Neurophysiol,2002;87: 2052-2063.
    [51]Mayer ML. Glutamate receptors at atomic resolution. Nature,2006;440:456-462.
    [52]Meddows E, Le Bourdelles B, Grimwood S, etal. Identification of molecular determinants that are important in the assembly of N-methyl-D-aspartate receptors. J Biol Chem,2001;276:18795-18803.
    [53]Furukawa H, Singh SK, Mancusso R, etal. Subunit arrangement and function in NMDA receptors. Nature,2005; 438:185-192.
    [54]Yao Y, Mayer ML.Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A. J Neurosci,2006;26:4559-4566.
    [55]Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature,1987;325(6104):529-531
    [56]Schell MJ, Brady RO Jr, Molliver ME, etal. D-serine as aneuromodulator:regional and deve-lopmental localizations in rat brainglia resemble NMDA receptors. J Neurosci,1997; 17(5):1604-1615.
    [57]Mothet, J.P.,Pollegioni, L.,Ouanounou, G.,et al. Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc. Natl. Acad. Sci. USA,2005; 102:5606-5611.
    [58]Shleper M, Kartvelishvily E, Wolosker H. D-serine is the dominantendogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J Neurosci,2005;25(41):941 3-9417.
    [59]Panatier A, Theodosis DT, Mothet JP, etal. Glia-derived d-serine controls NMDA receptoractivity and synaptic memory. Cell,2006;125:775-784.
    [60]Schell MJ. The N-methyl D-aspartate receptor glycine site and D-serine metabolism:an evolution-nary perspective. Philos Trans R Soc Lond B Biol Sci,2004;359(1446):943-964.
    [61]Kolhekar R.,Meller ST, Gebhart GF.N-methyl-D-aspartate receptor-mediated changes in thermal nociception:allosteric modulationat glycine and polyamine recognition sites. Neuroscience,1994; 63:925-936.
    [62]Zhang YH,Shu YS,Zhao ZQ. Substance P potentiates thermal hyperalgesia induced by intra- thecal administration of D-serine in rats. Acta Pharmacol. Sin.,2001;22:817-820.
    [63]Pin JP, Duvosin R. The metabotropic glutamate receptor:structure and functions. Neuropharmac-ology,1995;34:1-26.
    [64]Bockaert J, Pin JP. Molecular tinkering of G protein-coupled receptors:an evolutionary success. EMBOJ,1999;18:1723-1729.
    [65]Pin JP, Kniazeff J, Goudet C, et al. The activation mechanism of class-C G-protein coupled recept- ors. Biol. Cell,2004;96:335-342.
    [66]Goudet C, Gaven F, Kniazeff J, et al. Heptahelical domain of metabotropic glutamate receptor 5 behaves like rhodopsin-like receptors. Proc. Natl. Acad. Sci. U. S. A,2004;101:378-383.
    [67]Kniazeff J, Bessis AS, Maurel D, et al. Closed state of both binding domains of homodimeric mGlu receptors is required for full activity.Nat. Struct. Mol.Biol,2004;11:706-713.
    [68]Hlavackova V, Goudet C, Kniazeff J, etal. Evidence for a single heptahelical domain being turned on upon activation of a dimeric GPCR. EMBO J,2005;24:499-509.
    [69]Goudet C, Magnaghi V, Landry M, et al. Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev,2009;60(1):43-56.
    [70]Carlton SM, Hargett GL. Colocalization of metabotropic glutamate receptors in rat dorsal root ganglion cells. J. Comp. Neurol,2007;501:780-789.
    [71]Azkue JJ, Murga M, Fernandez-Capetillo, O, et al. Immunoreactivity for the group III metabotropic glutamate receptor subtype mGluR4a in the superficial laminae of the rat spinal dorsal horn. J. Comp. Neurol,2001;430:448-457.
    [72]Jia H., Rustioni A., Valtschanoff JG. Metabotropic glutamate receptors in superficial laminae of the rat dorsal horn. J. Comp. Neurol,1999;410:627-642.
    [73]Berthele A, Boxall SJ, Urban A, etal. Distribution and developmental changes in metabotropic glutamate receptor messenger RNA expression in the rat lumbar spinal cord. Brain Res. Dev. Brain Res,1999;112:39-53.
    [74]Valerio A, Paterlini M, Boifava M, et al. Metabotropic glutamate receptor mRNA expression in rat spinal cord. NeuroReport,1997;8:2695-2699.
    [75]Derjean D, Bertrand S, Le Masson G, et al. Dynamic balance of metabotropic inputs causes do- rsal horn neurons to switch functional states. Nat. Neurosci,2003;6:274-281.
    [76]Jung SJ, Kim SJ, Park YK, etal. Group I mGluR regulates the polarity of spike-timing depen- dent plasticity in substantia gelatinosa neurons. Biochem. Biophys.Res. Commun,2006;347:509-516.
    [77]Neugebauer V, Carlton SM.Peripheral metabotropic glutamate receptors as drug targets for pain relief. Expert Opin.Ther. Targets,2002;6:349-361.
    [78]Dogrul A, Ossipov MH, Lai J, etal. Peripheral and spinal antihyperalgesic activity of SIB-1757, a metabotropic glutamate receptor (mGLUR(5)) antagonist, in experimental neuropathic pain in rats. Neurosci. Lett,2000; 292:115-118.
    [79]Zhu CZ, Hsieh G, Ei-Kouhen O,et al. Role of central and peripheral mGluR5 receptors in post-operative pain in rats. Pain,2005;114(1-2):195-202.
    [80]Dolan S, Nolan AM. Behavioral evidence supporting a differential role for spinal group I and II metabotropic glutamate receptors in inflammatory hyperalgesia in sheep.Neuropharmacology 2002;43:319-326.
    [81]Yang D, Gereau RW. Peripheral group II metabotropicglutamate receptors mediate endogenous anti-allodynia ininflammation. Pain,2003;106:411-417.
    [82]Li W, Neugebauer V. Differential changes of group II andgroup III mGluR function in central amygdala neurons in amodel of arthritic pain. J. Neurophysiol,2006;96:1803-1815.
    [83]Nagel J, Belozertseva I, Greco S,et al. Effects of NAAG peptidase inhibitor 2-PMPA in model chronic pain- relation to brain concentration.Neuropharmacology,2006;51:1163-1171.
    [84]Goudet C, Chapuy E, Alloui A, et al.Group III metabotropic glutamate receptors inhibit hyper-algesia in animal models of inflammation and neuropathic pain. Pain,2008;137:112-124.
    [85]Schools GP, Kimelberg HK.mGluR3 and mGluR5 are the predominant metabotropic glutamate receptor mRNAs expressed in hippocampal astrocytes acutely isolated from young rats.J Neurosci Res,2009;58:533-543
    [86]Cai Z, Schools GP, Kimelberg HK.Metabotropic glutamatereceptors in acutely isolated hippo-campal astrocytes:developmental changes of mGluR5 mRNA and functional expression. Glia,2000;29(1):70-80.
    [87]Mudo G, Trovaro-Salinaro A, Caniglia G,et al. Cellular localization of mGluR3 and mGluR5 mRNAs in normal and injured rat brain. Brain Res 2007;1149:1-13.
    [88]Balazs R, Miller S, Romano C et al. Metabotropic glutamate receptor mGluR5 in astrocytes: pharmacological properties and agonist regulation. J Neurochem,1997;69:151-163.
    [89]Miller S, Romano C, Cotman CW. Growth factor upregulation of a phosphoinositide-coupled metabotropic glutamate receptor in cortical astrocytes. J Neurosci,1995;15(9):6103-6109.
    [90]Aronica E, Gorter JA, Ijlst-Keisers H et al. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells:opposite regulation of glutamate transporter proteins. Eur J Neurosci,2003;17:2106-2118.
    [91]Ferraguti F, Corti C, Valerio E et al. Activated astrocytes in areas of kainate-induced neuronal injury upregulate the expression of the metabotropic glutamate receptors 2/3 and 5.Exp Brain Res,2001; 137:1-11.
    [92]Was J, Satou T, Ivins KJ et al.Expression of metabotropic glutamate receptor 5 is increased in as-trocytes after kainateinduced epileptic seizures. Glia,2000;30(4):352-361.
    [93]Aronica E, van Vliet EA, Mayboroda OA et al. Upregulation of metabotropic glutamat receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci,2000;12(7):2333-2344.
    [94]Nakahara K, Okada M, Nakanishi S. The metabotropic glutamate receptor mGluR5 induces calcium oscillations incultured astrocytes via protein kinase C phosphorylation.J Neurochem,1997;69(4): 1467-1475.
    [95]Bezzi P, Carmignoto G, Pasti L et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature,1998;391:281-285.
    [96]Haydon PG, Carmignoto G. Astrocyte control of synaptictransmission and neurovascular coupling. Physiol Rev 2006;86:1009-1031
    [97]Nicoletti F, Magri G, Ingrao F et al. Excitatory amino acids stimulate inositol phospholipid hydrolysis and reduce proliferation in cultured astrocytes. J Neurochem 1990;54:771-777.
    [98]Ciccarelli R, Sureda FX, Casabona G et al. Opposite influence of the metabotropic glutamate receptor subtypes mGluR3 and -5 on astrocyte proliferation in culture. Glia,1997;21:390-398.
    [99]Aronica E,Gorter J A,Rozemuller A J,et al.Activation of metabotropic glutamate receptor 3 enhan-ces interleukin(IL)-1beta-stimulated release of IL-6 in cultured human astrocytes. Neuroscience, 2005;130(4):927-933.
    [1]朱爱勤,王晋秋,翟长云.癌性疼痛证治10型.辽宁中医药大学学报,2008,10:114-115.
    [2]周岱翰.临床中医肿瘤学[M].北京:人民卫生出版社,2003:70.
    [3]刘明霞.芍药甘草汤加味治疗中晚期癌症疼痛42例.国医论坛,2005,20(5):5-6.
    [4]王福田.实用中医内科杂志,1994,8(2):38.
    [5]彭海燕,章永红,王瑞平,等.消痛方治疗癌性疼痛的临床观察.四川中医,2003,21(12):46.
    [6]李建新.中国中医急症,1997,6(3):122.
    [7]李景梅,王晓婷.癌痛散治疗癌性疼痛90例临床观察.中医药信息,2004,21(2):41.
    [8]陈孝明.抑癌散治疗晚期胃癌的近期疗效观察.新中医,1997,29(1):34.
    [9]范寅根,陈春锦,游芳,等.痛得安治疗癌性疼痛的临床观察.实用肿瘤杂志,2003,18(6):483-484.
    [10]吴勉华,陈海波,周红光,等.癌痛平胶囊治疗癌性疼痛的临床研究.中国中西医杂志,2005,25(3):218-220.
    [11]李发杰.胃癌止痛散治疗胃癌疼痛100例.山东中医药,1994,13(10):443.
    [12]卢峰,任青华,王丽,等.中药癌痛克的实验研究与临床观察.中国肿瘤,2004,13(5):325-327.
    [13]黄立中.阳和汤加味治疗骨转移癌疼痛63例.湖南中医杂志,1997,17(1):20-21.
    [14]罗海英,徐凯,陈达灿.仙龙定痛饮治疗骨转移癌痛32例.河北中医,2004,26(3):174-175.
    [15]林东,李芳,陈立生,等.加味拈痛胶囊治疗癌性疼痛30例疗效观察.新中医,2001,33(7):18-19.
    [16]陈孟溪,黄立中,何英红,等.复方蟾酥散外敷治疗癌痛60例临床观察.湖南中医学院学报,2004,23(3):37-39.
    [17]谢远明.陕西中医1990,(10):448.
    [18]徐慰泉.消坚止痛散外敷治疗癌性疼痛68例临床观察.湖南中医药导报,2004,10(1):27-28.
    [19]王福兴.玉龙胶囊治疗癌性疼痛.江苏中医,1997,18(6):24.
    [20]田华琴,黄志庆,梁贵文,等.癌理通外敷治疗癌性疼痛60例.陕西中医,2004,25(3):232-235.
    [21]张明.中医外治杂志1996,5(5):26.
    [22]陈保平.乌头镇痛膏治疗癌痛60例疗效观察[J].现代中西医结合杂志,2003,12(8):815-816.
    [23]杨通礼.中医外治杂志1992,1(4):8.
    [24]嵇玉峰,黄金活,梁洪江,等.麝香止痛膏外敷治疗肝癌疼痛26例临床观察.江西中医学院学报,2005,17(2):31-32.
    [25]莫笛.新中医,1996,28(2):46.
    [26]周洁.止痛散治疗癌性疼痛的临床观察.天津医科大学学报,2004,10(2):312.
    [27]杨晨光.癌症止痛贴治疗癌性疼痛30例.陕西中医,2007,28(5):521-522.
    [28]方继立.中国中西医结合杂志1993,13(12):752.
    [29]胡爱萍.抗癌止痛带治疗癌症疼痛的疗效分析.中国中医药信息杂志,2005,12(9):71-72.
    [30]蒋玉洁.小剂量榄香烯乳合中药外敷治疗癌痛.安徽中医.
    [31]杨吉力,寇胜玲,旋志刚.元麝止痛液的制备及治疗癌性疼痛的疗效观察.中成药,2005,27(2):243-245.
    [32]徐淑英,等.针刺研究.1991,(3):224.
    [33]丹宇.针刺对癌症疼痛镇痛作用的临床研究[J].中国针灸,1998,18(1):17.
    [34]蔡圣朝,肖伟,曹奕,等.隔药灸治疗癌性疼痛31例疗效观察.安徽中医学院学报,1999,18(5):56-57.
    [35]冯小林.温针灸疗法对6例晚期癌症痛的临床观察.中国中医基础医学杂志,1998,4(S1):185-186.
    [36]洪晓瑜.耳针对中晚期肝癌疼痛的治疗体会.中国临床康复,2002,6(14):2136-2137.
    [37]李纪兰.耳穴药物注射或外搽中药法治疗晚期癌症疼痛的观察与研究.卫生职业教育,2007,25(2):137-138.
    [38]陈大燕.穴位注射小剂量氯胺酮治疗癌性疼痛.中国临床康复,2004,8(17):3230-3231.
    [39]曾国群.维生素K3穴位注射治疗癌性疼痛37例.临床肿瘤学杂志,1999,4(2):34.
    [40]阎继勤,赵德利,马翠兰,等.强痛定治疗晚期癌性腹痛的足三里穴注射法与肌肉注射法的疗效比较.中西医结合实用临床急救,1997,4(1):43.
    [41]宋小鸽,唐照亮,张荣军,等.针刺配合美沙酮改善吗啡戒断症状的实验观察.安徽中医学院学报,2004,23(6):17-19.
    [42]喻志冲,徐兰风,詹臻,等.艾灸对宫颈癌放疗患者免疫球蛋白的影响.上海针灸杂志,2002,21(6):15-16.
    [1]中药大辞典.上海科学技术出版社.1986年5月第一版.
    [2]林佳,徐丽珍,李琰,等.不同产地丹参中丹参酮ⅡA的含量比较[J],中国中药学杂志,2002;27(2):153-154.
    [3]叶勇.丹参有效成分分离的研究进展.药品评价,2005;2(2):146.
    [4]于海波,徐长庆,单宏丽,等.丹参酮ⅡA对大鼠心室肌细胞膜钾电流的影响[J].哈尔滨医科大学学报,2002;36(2):112-114.
    [5]徐长庆,王孝铭,范进松,等.丹参酮ⅡA对豚鼠心室肌细胞跨膜电位及L-型钙电流的影响[J].中国病理生理杂志,1997;13(1):43.
    [6]龚丽亚,郑智,熊伟,等.丹参酮ⅡA抑制血管紧张素Ⅱ诱导的大鼠心肌细胞肥大[J].华西药学杂志,2004;19(1):24-27.
    [7]Chien KR,Knowlton KU,Zhu H,etal.Regulation of cardiac gene expression during myocardial growth and hypertro phy:molecular stdues of an adaptive physiologic response. SAFEB,1991;5(15):3037.
    [8]Ballard C, Schaffer S. stimulation of theNa+/Ca2+ Exchanger by Pheny lephrine, angiotensin Ⅱ and endothelinl. J Mol Cell Cardiol,1996;28(1):11.
    [9]Jalili T,Takeishi Y,walsh RA.Signal transduction during cardiac hypertrophy:the role of Caq,PLCβI and PKC. cardiovasc Res,1999;(44):5.
    [10]Wu YJ,Hong CY,Liu SJ,etal.Increase of vitamin E content in LDL and reduction of a therosclerosis in choleste rol-fedrabbits by a water-soluble antioxidant-rich fraction of Salvia miltiorrhiza. Arterioscler Thromb Vasc Biol,1998;18(3):481.
    [11]LiuYL,LiuGT.Inhibitionofhumanlow-densitylipoproteinbysalvianolicacid-A.Atca Phar Sin,2002; 37(2):81-85.
    [12]许涛,喻莉,郑智,等.丹参对实验性动脉粥样硬化形成的预防.临床心血管杂志,2005;21(1):54.
    [13]Au-YeungKK,ZhuDY,OK,etal.Inhibition of stress-activated protein kinase in the ischemic reperfus-ed heart:role of magnesium tanshinonate B in preventing apoptosis.Biochem Phar,2001;62(4): 483-493.
    [14]程彰华,楼亚平,戴华娟,等.丹参素对微循环障碍和血浆乳酸含量影响的实验研究.上海医科大学学报,1987;14(1):25.
    [15]王世军,李定格,史仁华,等.丹参注射液对正常状态及实验性微循环障碍小鼠脑微循环的影响.中国微循环,2000;4(4):213.
    [16]吁文贵,徐理纳1乙酰丹酚酸A对血小板花生四稀酸代谢的影响.药报,1998;33(1):62.
    [17]姜开余,顾振纶,阮长耿.丹参素对CD116、P-selectin、ICAM-1、VCAM-1、E-selectin表达的影响.中国药理通报,2000;16(6):682-685.
    [18]党月兰,李淑玉,张玉琳等.兰州医学院学报,1990;16(1)1-3.
    [19]刁成华,秦少敏.静滴丹参对肝癌镇疼的疗效观察.中医药动态,1994年第4期.
    [20]张丽华.静滴丹参对带状疱疹镇痛疗效新观察.中华临床医学实践杂志,2007年4月第2期.
    [21]何汝帮,杨安平.复方丹参颗粒抗炎、镇痛作用的实验研究.中国实用医药,2009年1月第2期.
    [22]潘雪莲,周青山,杜大萍.丹参酮ⅡA对糖尿病大鼠神经病理性疼痛的影响.中华麻醉学杂志,2006年第8期.
    [23]朱嘉蓉,罗厚蔚.丹参酮ⅡA的抑菌活性研究.中国药科大学学报,2004;35(4):368.
    [24]梁勇,羊裔明,袁淑兰.丹参酮药理作用研究进展.中草药,2000;31(4):304.
    [25]梁勇,羊裔明,袁淑兰等.丹参酮Ⅱ诱导原代培养人急性旱幼粒细胞白血病细胞分化.华西医科大学学报,2000;31(2):207.
    [26]唐忠志,唐瑛,付立波.丹参酮Ⅱ对人肝癌BEL-7402细胞生长的影响及其机制.第一军医大学学报,2003,23(6):596.
    [27]胡海燕,张洹,黄峰,等.丹参酮ⅡA对NCI-H460肺癌细胞的增殖抑制和诱导凋亡作用.中药材,2005;28(4):301-303.
    [28]邓惠,罗焕敏,高勤等.丹参酮ⅡA对U251胶质瘤细胞的增殖抑制和原癌基因表达的影响.中国病理生理杂志,2004;20(6):982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700