轮状病毒NSP1抑制天然免疫机制及其对宿主蛋白调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮状病毒(Rotavirus, RV)是导致5岁以下婴幼儿急性腹泻的最主要病原,每年导致60万人死亡,严重危害人类健康,目前其致病机制尚不清楚。阐明RV的致病机制,尤其是其逃逸宿主免疫防御机理,将为新型抗RV策略及疫苗的研发提供依据。
     RV非结构蛋白1(NSP1)在RV拮抗宿主天然免疫应答中起重要作用,其功能尚不完全清楚。目前的研究表明,NSP1蛋白可以通过介导干扰素调控因子(IRF)家族蛋白的降解,以及通过抑制核转录因子(NF-κB)的活化来阻断干扰素(IFN)信号通路,从而拮抗宿主抗病毒应答。然而,有证据表明不同种属来源RV NSP1同源性较低,而且不同NSP1蛋白与天然免疫的作用方式可能存在差异,如猪RVOSU株NSP1蛋白的IRF结合结构域并不能介导IRF蛋白的降解。这提示不同来源NSP1可能通过多种途径拮抗宿主天然免疫。鉴此,本研究拟进一步探索NSP1与IFN信号通路相互作用的靶点,深入探讨NSP1拮抗宿主天然免疫机理,并通过差异蛋白质组学技术,分析NSP1的表达对宿主细胞蛋白的调控,以期深入了解NSP1的功能。
     一、NSP1拮抗宿主天然免疫机理研究
     首先我们观察到已知通过降解IRF抑制IFN应答的RV毒株的NSP1在缺失IRF结合功能结构域后,仍可以抑制IFN-β启动子活性,提示NSP1存在其它拮抗IFN作用靶点。免疫沉淀分析发现NSP1可以与维甲酸诱导基因I (RIG-I)结合,并降低RIG-I蛋白表达,而且人、猴、猪等不同种属来源的RV NSP1均可以下调RIG-I.在RV感染时,我们发现随着病毒复制增加,RIG-I也出现表达量的变化,感染后4h RIG-I表达增加,而从感染后12h开始RIG-I表达逐渐减少,提示RIG-I在RV感染中确实被抑制。NSP1拥有RING结构域,但是否具有泛素连接酶活性尚未被直接证实。我们证实NSP1为泛素E3连接酶,可以增强细胞泛素化及自身泛素化,并且泛素连接酶功能与N端RING结构域相关。但是NSP1对RIG-I的抑制作用可能不是通过泛素-蛋白酶体途径。生物信息学预测表明,RIG-I中拥有Caspase1的切割位点,RIG-I是否通过激活Caspasel切割RIG-I拮抗其作用尚需要进一步研究。
     作为模式识别受体,RIG-I在机体监测入侵RV并启动天然免疫应答中发挥了极其重要的作用,本研究首次发现了NSP1可以减少RIG-I蛋白表达,以拮抗宿主IFN应答,该研究结果揭示RIG-I为NSP1作用新靶点,进一步丰富了对于RV逃逸宿主天然免疫机制的认识。
     二、NSP1对宿主细胞蛋白质组的影响
     为了进一步阐明NSP1的作用机制,我们利用荧光差异凝胶电泳(DIGE)技术结合质谱鉴定研究了过表达NSP1蛋白对宿主细胞蛋白质组的影响。过表达NSP1后,初步鉴定到12个差异表达蛋白质,其中4个表达上调,8个表达下调。通过Western blot分析,我们对表达下调差异蛋白质Prohibitin、ERP29进行了验证,结果与DIGE结果一致。Gene Ontology分析显示差异表达蛋白涉及细胞骨架、信号转导、分子伴侣、转录调控等功能。随后我们研究了表达上调的波形蛋白(Vimentin)和NSP1相互作用。免疫荧光显示RV感染后,波形蛋白细胞定位发生重新排列,提示波形蛋白可能与病毒复制和装配有关。进而我们利用激光共聚焦方法观察了转染NSP1后波形蛋白细胞定位变化,结果显示,不表达NSP1蛋白的细胞中,波形蛋白成网状纤维分布,而表达NSP1的细胞中,波形蛋白形成聚集体,并与NSP1蛋白共定位,提示NSP1蛋白表达可能是导致RV感染后波形蛋白发生重新排列的原因之一,NSP1通过与细胞骨架相互作用参与病毒复制。这些结果为进一步了解NSP1功能提供研究方向。
     综上所述,本研究首次揭示了RV可拮抗RIG-I而抑制天然免疫,且可调控细胞波形蛋白的表达和定位,这些发现为深入研究RV拮抗天然免疫的机制和RV复制机制打下了基础。
Rotavirus (RV) is the major cause of acute diarrhea in children less than5years of age, leading to approximately600,000deaths annually. Better understanding of the mechanisms of rotavirus pathogenesis, especially the viral strategies to subvert and evade host's antiviral responses, will help us to identify novel strategies for developing antiviral reagents and vaccines.
     The function of RV nonstructural protein1(NSPl) has not been elucidated. It has been shown that the interaction between NSP1and host is essential for subverting innate immune response. NSP1represses the innate immunity by at least2mechanisms. First, NSP1can induce proteasome-dependent degradation of the interferon transcription factors (IRF3, IRF7, and IRF5) to inhibite the IFN response. Second, NSP1can inhibit nuclear factor-KB (NF-κB) activation by inducing proteasome-dependent degradation of β-TrCP. However, it is reported NSP1is the least conserved protein encoded by the rotavirus genome in different strains. Furthermore, current evidences indicated that the NSP1effect to subvert innate immunity is rotavirus strain-specific. For examples, the NSP1from OSU strain can not induce IRF3degradation.Taken together, we question if NSP1from different rotavirus strains may target a range of cellular substrates of antiviral signaling pathways. In this study, we indentified the new targets of NSP1to better understand the strategies for RV to antagonize innate immunity. We also investigated the host cell proteins modulated by NSP1overexpression using a quantitative proteomics technology to add understandings to the functions of NSP1.
     1. Rotavirus NSPl antagonizes innate immunity by interacting with RIG-I
     Previous studies have shown that RV SA11strain NSP1inhibits IFN response by binding and degradating IRFs through its IRF3binding domain. However, we found that the truncated NSP1of SA11strain lacking IRF3binding domain reserve its ability to inhibite RIG-I-induced IFN-β promoter activity, indicating that there may exist other targets by which NSP1inhibit IFN response. Immunoprecipitation assay showed that NSP1binds and degrades RIG-I, a crucial pathogen recognition receptor to sensor pathogen invasion and induce IFN response. Similar results were obtained in RVs strains from other species, human (WA) and porcine (OSU) in addation to simian RV. We also found that during RV infection, RIG-I expression decreased with rotavirus replication. It was predicted that there is a RING domain in NSP1. We proved that the NSP1is a viral E3ubiquitin ligase but the degradation of RIG-I is not through the ubiquitin-proteasome pathway. Bioinformatics analysis showed that there is a caspase1cleavage site in RIG-I. Whether NSP1might cleave RIG-I by active caspase1needs to be further investigated.
     2. Influence on host cell proteome by rotavirus NSP1
     In order to further explore the function of NSP1, by using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS) techniques, we analyze the proteomes changes of host cells by over expressing NSP1.A total of12quantitatively altered proteins were identified. Among them, expression of8proteins decresed, while expression of4proteins increased.GO analysis showed that these proteins involved in components of the cytoskeleton, signal transduction, molecular chaperone and transcription. We verified the down-regulate expression of proteins, prohibitin and ERP29by western blot, which is in agreement with DIGE analysis. Then we studied the interaction between Vimentin, an expression increase protein belongs to cytoskeleton, and NSP1. RV infection leads to rearrangement of vimentin which serves virus replication and assemble. We found that expression of NSP1also lead to the rearrangement of vimentin and can co-localized with RV VP6, which indicates vimentin may associate with RV replication and assemble. NSP1maybe is one of the reasons responsible for vimentin rearrangement during RV infection.
     In summary, our study reveal that rotavirus NSP1can inhibit innate immunity by antagonizing RIG-I, and can modulate the expression and rearrangement of vimentin for the first time. These findings add insights into RV replication and the mechanism by which RV subvert host innate immunity.
引文
[1]Parashar U D, Gibson C J, Bresse J S, et al. Rotavirus and severe childhood diarrhea.[J]. Emerg Infect Dis,2006,12(2):304-306.
    [2]Parashar U D, Hummelman E G, Bresee J S, et al. Global illness and deaths caused by rotavirus disease in children.[J]. Emerg Infect Dis,2003,9(5):565-572.
    [3]Charles M D, Holman R C, Curns A T, et al. Hospitalizations associated with rotavirus gastroenteritis in the United States,1993-2002.[J]. Pediatr Infect Dis J,2006,25(6):489-493.
    [4]Sherry B. Rotavirus and reovirus modulation of the interferon response.[J]. J Interferon Cytokine Res, 2009,29(9):559-567.
    [5]Estes M K & K. A. Z. in Fields Virology (edsKnipe, D. M. et al.) [Z]. Lippincott Williams & Wilkins/Wolters Kluwer, Philadelphia,20061917-1974.
    [6]Angel J, Franco M A, Greenberg H B. Rotavirus vaccines:recent developments and future considerations.[J]. Nat Rev Microbiol,2007,5(7):529-539.
    [7]Ray P G, Kelkar S D, Walimbe A M, et al. Rotavirus immunoglobulin levels among Indian mothers of two socio-economic groups and occurrence of rotavirus infections among their infants up to six months.[J]. J Med Virol,2007,79(3):341-349.
    [8]Blurt S E, Kirkwood C D, Parreno V, et al. Rotavirus antigenaemia and viraemia:a common event?[J]. Lancet,2003,362(9394):1445-1449.
    [9]Ramig R F. Systemic rotavirus infection.[J]. Expert Rev Anti Infect Ther,2007,5(4):591-612.
    [10]Greenberg H B, Estes M K. Rotaviruses:from pathogenesis to vaccination.[J]. Gastroenterology, 2009,136(6):1939-1951.
    [11]Ruiz M C, Cohen J, Michelangeli F. Role of Ca2+in the replication and pathogenesis of rotavirus and other viral infections.[J]. Cell Calcium,2000,28(3):137-149.
    [12]Lundgren O, Peregrin A T, Persson K, et al. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea.[J]. Science,2000,287(5452):491-495.
    [13]Akira S. Pathogen recognition by innate immunity and its signaling.[J]. Proc Jpn Acad Ser B Phys Biol Sci,2009,85(4):143-156.
    [14]Hoffmann E R A. Innate Immunity.1 th ed.[Z]. Totowa:Humana Press,2002.
    [15]Bowie A G, Unterholzner L. Viral evasion and subversion of pattern-recognition receptor signalling.[J]. Nat Rev Immunol,2008,8(12):911-922.
    [16]Bonjardim C A, Ferreira P C, Kroon E G. Interferons:signaling, antiviral and viral evasion.[J]. Immunol Lett,2009,122(1):1-11.
    [17]Kotenko S V, Gallagher G, Baurin V V, et al. IFN-lambdas mediate antiviral protection through a distinct class Ⅱ cytokine receptor complex.[J]. Nat Immunol,2003,4(1):69-77.
    [18]Koyama S, Ishii K J, Coban C, et al. Innate immune response to viral infection. [J]. Cytokine,2008, 43(3):336-341.
    [19]Koyama S, Ishii K J, Coban C, et al. Innate immune response to viral infection.[J]. Cytokine,2008, 43(3):336-341.
    [20]Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. [J]. Cell,2006,124(4): 783-801.
    [21]Alexopoulou L, Holt A C, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3.[J]. Nature,2001,413(6857):732-738.
    [22]Uematsu S, Sato S, Yamamoto M, et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7-and TLR9-mediated interferon-{alpha} induction.[J]. J Exp Med,2005, 201(6):915-923.
    [23]Hemmi H, Takeuchi O, Kawai T, et.al. A Toll-like receptor recognizes bacterial DNA.[J]. Nature, 2000,408(6813):740-745.
    [24]Garcia-Sastre A, Biron C A. Type 1 interferons and the virus-host relationship:a lesson in detente.[J]. Science,2006,312(5775):879-882.
    [25]Takeuchi O, Kawai T, Muhlradt P F, et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6.[J]. Int Immunol,2001,13(7):933-940.
    [26]Mccartney S A, Colonna M. Viral sensors:diversity in pathogen recognition.[J]. Immunol Rev,2009, 227(1):87-94.
    [27]Gack M U, Kirchhofer A, Shin Y C, et al. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction.[J]. Proc Natl Acad Sci U S A,2008,105(43): 16743-16748.
    [28]Lund J, Sato A, Akira S, et al. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells.[J]. J Exp Med,2003,198(3):513-520.
    [29]Takeuchi O, Akira S. RIG-I-like antiviral protein in flies.[J]. Nat Immunol,2008,9(12):1327-1328.
    [30]Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.[J]. Nat Immunol,2004,5(7):730-737.
    [31]Kawai T, Takahashi K, Sato S, et al. IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type I interferon induction.[J]. Nat Immunol,2005,6(10):981-988.
    [32]Yoneyama M, Fujita T. Structural mechanism of RNA recognition by the RIG-I-like receptors.[J]. Immunity,2008,29(2):178-181.
    [33]Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.[J]. Nat Immunol,2004,5(7):730-737.
    [34]Saito T, Hirai R, Loo Y M, et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2.[J]. Proc Natl Acad Sci U S A,2007,104(2):582-587.
    [35]Kawai T, Takahashi K, Sato S, et al. IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type I interferon induction.[J]. Nat Immunol,2005,6(10):981-988.
    [36]Ishikawa H, Barber G N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling.[J]. Nature,2008,455(7213):674-678.
    [37]Oganesyan G, Saha S K, Guo B, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and-independent antiviral response.[J]. Nature,2006,439(7073):208-211.
    [38]Saha S K, Pietras E M, He J Q, et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif.[J]. EMBO J,2006,25(14):3257-3263.
    [39]Fitzgerald K A, Mcwhirter S M, Faia K L, et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway.[J]. Nat Immunol,2003,4(5):491-496.
    [40]Perry A K, Chow E K, Goodnough J B, et al. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection.[J]. J Exp Med,2004,199(12): 1651-1658.
    [41]Balachandran S, Thomas E, Barber G N. A FADD-dependent innate immune mechanism in mammalian cells.[J]. Nature,2004,432(7015):401-405.
    [42]Nakhaei P, Genin P, Civas A, et al. RIG-I-like receptors:sensing and responding to RNA virus infection.[J]. Semin Immunol,2009,21(4):215-222.
    [43]Rothenfusser S, Goutagny N, Diperna G, et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I.[J]. J Immunol,2005,175(8):5260-5268.
    [44]Komuro A, Horvath C M. RNA-and virus-independent inhibition of antiviral signaling by RNA helicase LGP2.[J]. J Virol,2006,80(24):12332-12342.
    [45]Saitoh T, Yamamoto M, Miyagishi M, et al. A20 is a negative regulator of IFN regulatory factor 3 signaling.[J]. J Immunol,2005,174(3):1507-1512.
    [46]Wang Y Y, Li L, Han K J, et al. A20 is a potent inhibitor of TLR3-and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter.[J]. FEBS Lett,2004,576(1-2):86-90.
    [47]Lin R, Yang L, Nakhaei P, et al. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20.[J]. J Biol Chem,2006,281(4):2095-2103.
    [48]Wolff T, Ludwig S. Influenza viruses control the vertebrate type I interferon system:factors, mechanisms, and consequences.[J]. J Interferon Cytokine Res,2009,29(9):549-557.
    [49]Li K, Foy E, Ferreon J C, et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF.[J]. Proc Natl Acad Sci U S A,2005,102(8): 2992-2997.
    [50]Meylan E, Curran J, Hofmann K, et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus.[J]. Nature,2005,437(7062):1167-1172.
    [51]Lin R, Lacoste J, Nakhaei P, et al. Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage.[J]. J Virol,2006,80(12):6072-6083.
    [52]Otsuka M, Kato N, Moriyama M, et al. Interaction between the HCV NS3 protein and the host TBK1 protein leads to inhibition of cellular antiviral responses.[J]. Hepatology,2005,41(5):1004-1012.
    [53]Cardenas W B, Loo Y M, Jr Gale M, et al. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling.[J]. J Virol,2006,80(11):5168-5178.
    [54]Vancott J L, Mcneal M M, Choi A H, et al. The role of interferons in rotavirus infections and protection.[J]. J Interferon Cytokine Res,2003,23(3):163-170.
    [55]Bass D M. Interferon gamma and interleukin 1, but not interferon alfa, inhibit rotavirus entry into human intestinal cell lines.[J]. Gastroenterology,1997,113(1):81-89.
    [56]Schwers A, Vanden B C, Maenhoudt M, et al. Experimental rotavirus diarrhoea in colostrum-deprived newborn calves:assay of treatment by administration of bacterially produced human interferon (Hu-IFN alpha 2).[J]. Ann Rech Vet,1985,16(3):213-218.
    [57]Shivakumar P, Campbell K M, Sabla G E, et al. Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN-gamma in experimental biliary atresia.[J]. J Clin Invest,2004,114(3): 322-329.
    [58]Feng N, Kim B, Fenaux M, et al. Role of interferon in homologous and heterologous rotavirus infection in the intestines and extraintestinal organs of suckling mice.[J]. J Virol,2008,82(15):7578-7590.
    [59]Graff J W, Mitzel D N, Weisend C M, et al. Interferon regulatory factor 3 is a cellular partner of rotavirus NSP1.[J]. J Virol,2002,76(18):9545-9550.
    [60]Hua J, Patton J T. The carboxyl-half of the rotavirus nonstructural protein NS53 (NSP1) is not required for virus replication.[J]. Virology,1994,198(2):567-576.
    [61]Allen A M, Desselberger U. Reassortment of human rotaviruses carrying rearranged genomes with bovine rotavirus.[J]. J Gen Virol,1985,66 (Pt 12):2703-2714.
    [62]Biryahwaho B, Hundley F, Desselberger U. Bovine rotavirus with rearranged genome reassorts with human rotavirus. Brief report. [J]. Arch Virol,1987,96(3-4):257-264.
    [63]Desselberger U. Genome rearrangements of rotaviruses. [J]. Adv Virus Res,1996,46:69-95.
    [64]Hundley F, Biryahwaho B, Gow M, et al. Genome rearrangements of bovine rotavirus after serial passage at high multiplicity of infection.[J]. Virology,1985,143(1):88-103.
    [65]Barro M, Patton J T. Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3.[J]. Proc Natl Acad Sci U S A,2005,102(11):4114-4119.
    [66]Barro M, Patton J T. Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7.[J]. J Virol,2007,81(9):4473-4481.
    [67]GraffJ W, Ewen J, Ettayebi K, et al. Zinc-binding domain of rotavirus NSP1 is required for proteasome-dependent degradation of IRF3 and autoregulatory NSP1 stability.[J]. J Gen Virol,2007,88(Pt 2):613-620.
    [68]Pina-Vazquez C, de Nova-Ocampo M, Guzman-Leon S, et al. Post-translational regulation of rotavirus protein NSP1 expression in mammalian cells.[J]. Arch Virol,2007,152(2):345-368.
    [69]Douagi I, Mcinerney G M, Hidmark A S, et al. Role of interferon regulatory factor 3 in type I interferon responses in rotavirus-infected dendritic cells and fibroblasts.[J]. J Virol,2007,81(6):2758-2768.
    [70]Graff J W, Ettayebi K, Hardy M E. Rotavirus NSP1 inhibits NFkappaB activation by inducing proteasome-dependent degradation of beta-TrCP:a novel mechanism of IFN antagonism.[J]. PLoS Pathog, 2009,5(1):e1000280.
    [71]Holloway G, Truong T T, Coulson B S. Rotavirus antagonizes cellular antiviral responses by inhibiting the nuclear accumulation of STAT1, STAT2, and NF-kappaB.[J]. J Virol,2009,83(10):4942-4951.
    [72]Mendez-Rios J, Uetz P. Global approaches to study protein-protein interactions among viruses and hosts.[J]. Future Microbiol,2010,5(2):289-301.
    [73]Drewes G, Bouwmeester T. Global approaches to protein-protein interactions.[J]. Curr Opin Cell Biol, 2003,15(2):199-205.
    [74]Fields S, Song O. A novel genetic system to detect protein-protein interactions.[J]. Nature,1989, 340(6230):245-246.
    [75]Ito T, Chiba T, Ozawa R, et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome.[J]. Proc Natl Acad Sci U S A,2001,98(8):4569-4574.
    [76]Walhout A J, Temple G F, Brasch M A, et al. GATEWAY recombinational cloning:application to the cloning of large numbers of open reading frames or ORFeomes.[J]. Methods Enzymol,2000,328:575-592.
    [77]Rigaut G, Shevchenko A, Rutz B, et al. A generic protein purification method for protein complex characterization and proteome exploration.[J]. Nat Biotechnol,1999,17(10):1030-1032.
    [78]Dziembowski A, Seraphin B. Recent developments in the analysis of protein complexes.[J]. FEBS Lett,2004,556(1-3):1-6.
    [79]Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips.[J]. Science,2001,293(5537):2101-2105.
    [80]Espejo A, Cote J, Bednarek A, et al. A protein-domain microarray identifies novel protein-protein interactions.[J]. Biochem J,2002,367(Pt 3):697-702.
    [81]Maxwell K L, Frappier L. Viral proteomics.[J]. Microbiol Mol Biol Rev,2007,71(2):398-411.
    [82]Unlu M, Morgan M E, Minden J S. Difference gel electrophoresis:a single gel method for detecting changes in protein extracts.[J]. Electrophoresis,1997,18(11):2071-2077.
    [83]Ong S E, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.[J]. Mol Cell Proteomics,2002,1(5): 376-386.
    [84]Gygi S P, Rist B, Gerber S A, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags.[J]. Nat Biotechnol,1999,17(10):994-999.
    [85]Hirata Y, Broquet A H, Menchen L, et al. Activation of innate immune defense mechanisms by signaling through RIG-I/IPS-1 in intestinal epithelial cells.[J]. J Immunol,2007,179(8):5425-5432.
    [86]Arimoto K, Takahashi H, Hishiki T, et al. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125.[J]. Proc Natl Acad Sci U S A,2007,104(18):7500-7505.
    [87]Gack M U, Shin Y C, Joo C H, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity.[J]. Nature,2007,446(7138):916-920.
    [88]Chasapis C T, Spyroulias G A. RING finger E(3) ubiquitin Iigases:structure and drug discovery.[J]. Curr Pharm Des,2009,15(31):3716-3731.
    [89]Weissman A M. Themes and variations on ubiquitylation.[J]. Nat Rev Mol Cell Biol,2001,2(3):169-178.
    [90]Peng J, Schwartz D, Elias J E, et al. A proteomics approach to understanding protein ubiquitination.[J]. Nat Biotechnol,2003,21(8):921-926.
    [91]Komuro A, Bamming D, Horvath C M. Negative regulation of cytoplasmic RNA-mediated antiviral signaling.[J]. Cytokine,2008,43(3):350-358.
    [92]Habjan M, Andersson I, Klingstrom J, et al. Processing of genome 5'termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction.[J]. PLoS One,2008,3(4):e2032.
    [93]Garcin D, Lezzi M, Dobbs M, et al. The 5'ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis.[J]. J Virol,1995,69(9):5754-5762.
    [94]Xiang Y, Condit R C, Vijaysri S, et al. Blockade of interferon induction and action by the E3L double-stranded RNA binding proteins of vaccinia virus.[J]. J Virol,2002,76(10):5251-5259.
    [95]Barral P M, Sarkar D, Su Z Z, et al. Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: key regulators of innate immunity.[J]. Pharmacol Ther,2009,124(2):219-234.
    [96]Pichlmair A, Schulz O, Tan C P, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates.[J]. Science,2006,314(5801):997-1001.
    [97]Mibayashi M, Martinez-Sobrido L, Loo Y M, et al. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus.[J]. J Virol,2007,81(2):514-524.
    [98]Opitz B, Rejaibi A, Dauber B, et al. IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein.[J]. Cell Microbiol,2007,9(4):930-938.
    [99]Bao X, Liu T, Shan Y, et al. Human metapneumovirus glycoprotein G inhibits innate immune responses.[J]. PLoS Pathog,2008,4(5):e1000077.
    [100]Kirisako T, Kamei K, Murata S, et al. A ubiquitin ligase complex assembles linear polyubiquitin chains.[J]. EMBO J,2006,25(20):4877-4887.
    [101]Kim M J, Yoo J Y. Active caspase-1-mediated secretion of retinoic acid inducible gene-I.[J]. J Immunol,2008,181(10):7324-7331.
    [102]Lottspeich F. Introduction to proteomics.[J]. Methods Mol Biol,2009,564:3-10.
    [103]Rozanas C R, Loyland S M. Capabilities using 2-D DIGE in proteomics research:the new gold standard for 2-D gel electrophoresis.[J]. Methods Mol Biol,2008,441:1-18.
    [104]Stefanovic S, Windsor M, Nagata K I, et al. Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II.[J]. J Virol,2005,79(18):11766-11775.
    [105]Weclewicz K, Kristensson K, Svensson L. Rotavirus causes selective vimentin reorganization in monkey kidney CV-1 cells.[J]. J Gen Virol,1994,75 (Pt 11):3267-3271.
    [106]Back J W, Sanz M A, de Jong L, et al. A structure for the yeast prohibitin complex:Structure prediction and evidence from chemical crosslinking and mass spectrometry.[J]. Protein Sci,2002,11(10): 2471-2478.
    [107]Wileman T. Aggresomes and autophagy generate sites for virus replication.[J]. Science,2006, 312(5775):875-878.
    [108]Birkenbach M, Liebowitz D, Wang F, et al. Epstein-Barr virus latent infection membrane protein increases vimentin expression in human B-cell lines.[J]. J Virol,1989,63(9):4079-4084.
    [109]Bhattacharya B, Noad R J, Roy P. Interaction between Bluetongue virus outer capsid protein VP2 and vimentin is necessary for virus egress.[J]. Virol J,2007,4:7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700