TRIM38调节天然免疫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然免疫是宿主抵抗病毒感染的第一道防线,也是激活适应性免疫的基础,在宿主清除病毒的免疫反应中具有关键作用,因此成为当前免疫学研究的热点。天然免疫应答是通过模式识别受体识别病原体相关分子模式来启动的。其中维甲酸诱导基因Ⅰ样受体(Retinoic acid-inducible gene-I like receptors, RLRs)是细胞内识别病毒RNA,诱导天然免疫反应的重要模式识别受体之一。RLRs主要存在于胞浆中,主要包括两个分子:维甲酸诱导基因Ⅰ(Retinoic acid-inducible gene-I,RIG-Ⅰ)和黑色素瘤分化相关基因5(Melanoma differentiation-associated gene-5),它们与病毒RNA结合之后,构象发生改变,从而募集下游效应分子IFN-8启动子激活因子1(IFN-βpromoter stimulator 1, IPS-1),引起TBK1/IKKi的激活,进一步引起干扰素调控因子(Interferon transcription factor, IRF) 3/7的磷酸化,最终诱导Ⅰ型干扰素(Type I interferon, I-IFN)、促炎症细胞因子等一系列抗病毒因子的产生。有关RLRs触发的天然免疫应答反应和信号传导过程的调节机制尚不十分清楚,成为近几年研究热点。
     TRIM (Tripartite motif protein)家族是一类存在于胞浆中的,含有保守结构域的蛋白质,目前已经发现70多个成员,它们参与细胞增殖、分化、致癌和程序性死亡等很多细胞活动。近年的研究表明,部分TRIM蛋白具有调节免疫信号通路和抗病毒功能,但是目前仅有几个TRIM蛋白的功能得到阐述。为了进一步阐明TRIM蛋白在先天免疫信号调节中的功能,深入了解机体抗病毒的免疫机制,我们开展了对TRIM蛋白的研究。前期实验表明TRIM38可以抑制仙台病毒(Sendai virus, SeV)刺激的Ⅰ型干扰素的产生,我们推测TRIM38可能具有调节天然免疫的功能。目前有关TRIM38的基本功能及其调节天然免疫的机制还未见报道。本研究拟对TRIM38调控天然免疫的机制进行探讨。
     首先,我们分析了TRIM38的基本功能。细胞定位实验表明TRIM38主要在细胞质中表达。TRIM38具有TRIM蛋白家族典型的结构域特征,含有E3泛素连接酶典型的特征RING结构域。通过将TRIM38与泛素化质粒共转染,免疫共沉淀结果表明TRIM38可以增加细胞内的泛素化水平,并可自身泛素化,与TRIM22具有相似的特性。蛋白翻译后的泛素化修饰有两种,一种是通过48位赖氨酸(K)连接的多泛素链修饰,诱导蛋白降解;另外一种是通过63位赖氨酸(K)63连接的多泛素链修饰,可以激活蛋白降解以外的其它功能。我们进一步的研究表明TRIM38可以催化自身的K48连接的泛素化,提示TRIM38有可能通过该途径降解。
     随后,我们对TRIM38调节天然免疫反应的机制进行了探讨。首先,通过体外荧光素酶报告基因实验表明TRIM38可以抑制RIG-Ⅰ诱导的IFNβ、ISG56和ISRE启动子的激活,但是对于MDA5、IPS-1、TBK1和IKKi诱导的IFNβ启动子的激活没有抑制作用。结果提示TRIM38可能通过作用于RIG-Ⅰ抑制Ⅰ-IFN信号通路。免疫共沉淀结果表明RIG-Ⅰ与TRIM38存在于同一复合物中,且TRIM38可以与RIG-Ⅰ的N端和C端相互作用。进一步研究表明TRIM38与RIG-Ⅰ的相互作用抑制了其与下游效应分子IPS-1以及TBK1的结合,进而抑制IFNβ的产生。通过构建TRIM38各个结构域的突变体,经荧光素酶和免疫共沉淀实验证明TRIM38的RING结构域对于其泛素化和对RIG-Ⅰ信号通路的负反馈调节起着重要的作用。
     综上所述,TRIM38是一个具有典型TRIM蛋白家族保守结构域的蛋白,主要存在于细胞质,可自身泛素化,并可增加细胞内的泛素化水平。TRIM38可以通过与IPS1和TBK1竞争性结合RIG-Ⅰ,对RIG-Ⅰ介导的Ⅰ型干扰素通路进行负向调节。本研究发现了一个新的负向调节先天免疫信号通路的蛋白——TRIM38,并对其基本功能及负向调节RIG-Ⅰ介导的Ⅰ-IFN信号转导通路的机制进行了初步研究,该研究有助于进一步阐明机体的先天免疫调节机制,并为免疫调节药物靶点的设计提供依据。
The innate immune response is the first line of defense against viruses and is the foundation of adaptive immune systems. Initially, host sensor molecules detect specific pathogen-associated molecular patterns (PAMPs) and activate the innate immune system through pathogen recognition receptors (PRRs). Among those PRRs, Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) can detect viral RNA in cytoplasm and induce interferons and proinflammatory cytokines, thus playing a pivotal role in host defense. Specificly, RLRs selectively detect the non-self-RNA, and induce ATP-dependent conformational change to form a dimmer or oligomer, which allows its interaction with the downstream adapter protein IPS-1 (IFN-βpromoter stimulator 1). IPS-1 resides on the outer membrane of mitochondria, and recruitment of RIG-I to IPS-1 leads to the activation the two IKK-related kinases, TANK(TRAF family member-associated NF-κB activator) binding kinase 1(TBK1) and inducible inhibitor-KB kinase (IKKi), both of which phosphorylate interferon refulatory factor 3/7, in turn, induce the expression of type I interferon. In regards to the importance of innate immune signaling regulation, extensive study is required to identify novel immune regulating molecules.
     The tripartite motif (TRIM) protein family was originally described as the RBCC family because members belonging to this family contain a RING finger, one or two B-boxes, followed by a coiled-coil domain. There are now more than 70 TRIM proteins known in humans. Members of the TRIM protein family are involved in various cellular processes, including cell proliferation, differentiation, oncogenesis and apoptosis. Importantly, some TRIM proteins involve in innate immune signaling regulation and/or display antiviral properties. However, only few TRIM proteins were fully elucidated.
     TRIM38 located in the chromosome 6p21.3. In comparison of the TRIM38 sequence with other TRIM proteins, we found that TRIM38 contains several evolutionary conserved molecular domains, including a RING finger, two B-boxes, and one pry/spry domain. Previous studies have demonstrated that the activity of most E3 ligases is specified by a RIGN domain. Accordingly, our observations reveal that forced expression of TRIM38 protein results in a remarkable increase in the level of ubiquitin-protein conjugates. Further studies demostrated that TRIM38 was conjugated with K48-linked poly-ubiquitin chains, which suggests that TRIM38 targets itself for proteasomal degradation through the K48-linked poly-ubiquitylation, and which indicates that TRIM38 may function as an E3 ubiquitin ligase.
     To explore the role of TRIM38 in the regulation of innate immune signaling, the interferon-βpromoter activity assays were conducted. Results showed that overexpression of TRIM38 inhibits Sendai virus(SeV) triggered type I interferon induction. To investigate the mechanism by which TRIM38 inhibits the innate immune signaling,293T cells were transfected with plasmids encoding TRIM38 together with RIG-1, MDA5, IPS1, TBK1, IKKi, and interferon-βreporter plasmids. Results showed that TRIM38 inhibits RIG-I-mediated IFN-P promoter activity in a dose dependent manner, wheares MDA5, IPS1, TBK1 or IKKi mediated activation of IFN-P promoter remain unattenuated. Immunoprecipitation studies suggest that TRIM38 associates with RIG-I, and TRIM38 could disrupt the interaction between RIG-I and IPSl/TBKl.
     These findings showed that TRIM38 may function as an E3 ubiquitin ligase and is a negative regulator of RIG-I-mediated innate antiviral response. The investigations on the function and mechanism of TRIM38 will facilitate the development of new strategies to control immune injury, and also will contribute to the better understanding of immune recognition and immune regulation.
引文
[1]Medzhitov R, Jr Janeway C. Innate immunity.[J]. N Engl J Med,2000,343(5): 338-344.
    [2]Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system.[J]. Science,2010,327(5963):291-295.
    [3]Mushegian A, Medzhitov R. Evolutionary perspective on innate immune recognition.[J]. J Cell Biol,2001,155(5):705-710.
    [4]Medzhitov R. Recognition of microorganisms and activation of the immune response.[J]. Nature,2007,449(7164):819-826.
    [5]Wilkins C, Jr Gale M. Recognition of viruses by cytoplasmic sensors.[J]. Curr Opin Immunol,2010,22(1):41-47.
    [6]Honda K, Takaoka A, Taniguchi T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors.[J]. Immunity,2006, 25(3):349-360.
    [7]Du W, Maniatis T. An ATF/CREB binding site is required for virus induction of the human interferon beta gene [corrected] [J]. Proc Natl Acad Sci U S A,1992, 89(6):2150-2154.
    [8]Lin R, Heylbroeck C, Pitha P M, et al. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation.[J]. Mol Cell Biol,1998,18(5):2986-2996.
    [9]Aaronson D S, Horvath C M. A road map for those who don't know JAK-STAT.[J]. Science.2002,296(5573):1653-1655.
    [10]Platanias L C. Mechanisms of type-I-and type-Ⅱ-interferon-mediated signalling.[J]. Nat Rev Immunol.2005.5(5):375-386.
    [11]Bos J L, de Rooij J. Reedquist K A. Rapl signalling:adhering to new models.[J]. Nat Rev Mol Cell Biol,2001,2(5):369-377.
    [12]G rum bach I M, Mayer I A, Uddin S, et al. Engagement of the CrkL adaptor in interferon alpha signalling in BCR-ABL-expressing cells.[J]. Br J Haematol,2001, 112(2):327-336.
    [13]Min J Y, Krug R M. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells:Inhibiting the 2'-5'oligo (A) synthetase/RNase L pathway.[J]. Proc Natl Acad Sci U S A,2006,103(18):7100-7105.
    [14]Grimm D, Staeheli P, Hufbauer M, et al. Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene.[J]. Proc Natl Acad Sci U S A,2007,104(16):6806-6811.
    [15]Staub O. Ubiquitylation and isgylation:overlapping enzymatic cascades do the job.[J]. Sci STKE,2004,2004(245):e43.
    [16]Stetson D B, Medzhitov R. Type I interferons in host defense.[J]. Immunity, 2006,25(3):373-381.
    [17]Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.[J]. Nat Immunol,2004,5(7):730-737.
    [18]Saito T, Hirai R, Loo Y M, et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2.[J]. Proc Natl Acad Sci U S A,2007, 104(2):582-587.
    [19]Cui S, Eisenacher K, Kirchhofer A, et al. The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I.[J]. Mol Cell,2008,29(2):169-179.
    [20]Kato H, Sato S, Yoneyama M, et al. Cell type-specific involvement of RIG-I in antiviral response.[J]. Immunity,2005,23(1):19-28.
    [21]Zhang N N, Shen S H, Jiang L J, et al. RIG-I plays a critical role in negatively regulating granulocytic proliferation.[J]. Proc Natl Acad Sci U S A,2008,105(30): 10553-10558.
    [22]Kang D C, Gopalkrishnan R V, Wu Q, et al. mda-5:An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties.[J]. Proc Natl Acad Sci U S A,2002,99(2): 637-642.
    [23]Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.[J]. Nature,2006,441(7089):101-105.
    [24]Gitlin L, Barchet W, Gilfillan S, et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus.[J]. Proc Natl Acad Sci U S A,2006,103(22):8459-8464.
    [25]Satoh T, Kato H, Kumagai Y, et al. LGP2 is a positive regulator of RIG-I-and MDA5-mediated antiviral responses.[J]. Proc Natl Acad Sci U S A,2010,107(4): 1512-1517.
    [26]Rothenfusser S, Goutagny N, Diperna G, et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I.[J]. J Immunol,2005,175(8):5260-5268.
    [27]Loo Y M, Fornek J, Crochet N, et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity.[J]. J Virol,2008,82(1):335-345.
    [28]Mccartney S A, Thackray L B, Gitlin L, et al. MDA-5 recognition of a murine norovirus.[J]. PLoS Pathog,2008,4(7):e1000108.
    [29]Fredericksen B L, Jr Gale M. West Nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and-independent pathways without antagonizing host defense signaling.[J]. J Virol,2006,80(6):2913-2923.
    [30]Roth-Cross J K. Bender S J, Weiss S R. Murine coronavirus mouse hepatitis virus is recognized by MDA5 and induces type I interferon in brain macrophages/microglia.[J]. J Virol,2008,82(20):9829-9838.
    [31]Hornung V, Ellegast J, Kim S, et al.5'-Triphosphate RNA is the ligand for RIG-I.[J]. Science,2006,314(5801):994-997.
    [32]Pichlmair A, Schulz O, Tan C P, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates.[J]. Science,2006,314(5801):997-1001.
    [33]Habjan M, Andersson I, Klingstrom J, et al. Processing of genome 5'termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction.[J]. PLoS One,2008,3(4):e2032.
    [34]Takahasi K, Yoneyama M. Nishihori T, et al. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses.[J]. Mol Cell,2008, 29(4):428-440.
    [35]Kato H, Takeuchi O, Mikamo-Satoh E, et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5.[J]. J Exp Med,2008,205(7):1601-1610.
    [36]Saito T, Owen D M, Jiang F, et al. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA.[J]. Nature,2008, 454(7203):523-527.
    [37]Kawai T, Takahashi K, Sato S, et al. IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type I interferon induction.[J]. Nat Immunol,2005,6(10):981-988.
    [38]Seth R B, Sun L, Ea C K, et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3.[J]. Cell, 2005,122(5):669-682.
    [39]Xu L G, Wang Y Y, Han K J, et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling.[J]. Mol Cell,2005,19(6):727-740.
    [40]Meylan E, Curran J, Hofmann K, et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus.[J]. Nature,2005,437(7062): 1167-1172.
    [41]Sun Q, Sun L, Liu H H, et al. The specific and essential role of MAVS in antiviral innate immune responses.[J]. Immunity,2006,24(5):633-642.
    [42]Kumar H, Kawai T, Kato H, et al. Essential role of IPS-1 in innate immune responses against RNA viruses.[J]. J Exp Med,2006,203(7):1795-1803.
    [43]Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination:the control of NF-[kappa]B activity.[J]. Annu Rev Immunol,2000,18:621-663.
    [44]Fitzgerald K A, Mcwhirter S M, Faia K L, et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway.[J]. Nat Immunol,2003,4(5): 491-496.
    [45]Sharma S, Tenoever B R, Grandvaux N, et al. Triggering the interferon antiviral response through an IKK-related pathway.[J]. Science,2003,300(5622):1148-1151.
    [46]Hemmi H, Takeuchi O, Sato S, et al. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection.[J]. J Exp Med,2004,199(12):1641-1650.
    [47]Mcwhirter S M, Fitzgerald K A, Rosains J, et al. IFN-regulatory factor 3-dependent gene expression is defective in Tbkl-deficient mouse embryonic fibroblasts.[J]. Proc Natl Acad Sci U S A,2004,101(1):233-238.
    [48]Perry A K, Chow E K, Goodnough J B, et al. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection.[J]. J Exp Med,2004,199(12):1651-1658.
    [49]Guo B, Cheng G. Modulation of the interferon antiviral response by the TBKl/IKKi adaptor protein TANK.[J]. J Biol Chem,2007,282(16):11817-11826.
    [50]Sasai M, Shingai M, Funami K., et al. NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type I IFN induction.[J]. J Immunol, 2006,177(12):8676-8683.
    [51]Zhao T, Yang L, Sun Q, et al. The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways.[J]. Nat Immunol, 2007,8(6):592-600.
    [52]Balachandran S, Thomas E, Barber G N. A FADD-dependent innate immune mechanism in mammalian cells.[J]. Nature,2004,432(7015):401-405.
    [53]Takahashi K, Kawai T, Kumar H, et al. Roles of caspase-8 and caspase-10 in innate immune responses to double-stranded RNA.[J]. J Immunol,2006,176(8): 4520-4524.
    [54]Michallet M C, Meylan E. Ermolaeva M A, et al. TRADD protein is an essential component of the RIG-like helicase antiviral pathway.[J]. Immunity,2008, 28(5):651-661.
    [55]Ishikawa H, Barber G N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling.[J]. Nature,2008,455(7213):674-678.
    [56]Zhong B, Yang Y, Li S, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation.[J]. Immunity,2008,29(4):538-550.
    [57]Sun W, Li Y, Chen L, et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization.[J]. Proc Natl Acad Sci U S A, 2009,106(21):8653-8658.
    [58]Yoneyama M, Kikuchi M, Matsumoto K, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity.[J]. J Immunol,2005,175(5):2851-2858.
    [59]Komuro A, Horvath C M. RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2.[J]. J Virol,2006,80(24):12332-12342.
    [60]Urano T, Saito T, Tsukui T, et al. Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth.[J]. Nature,2002,417(6891):871-875.
    [61]Gack M U, Shin Y C, Joo C H, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity.[J]. Nature,2007,446(7138): 916-920.
    [62]Kim M J, Hwang S Y, Imaizumi T, et al. Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation.[J]. J Virol,2008,82(3):1474-1483.
    [63]Arimoto K, Takahashi H, Hishiki T, et al. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125.[J]. Proc Natl Acad Sci U S A,2007, 104(18):7500-7505.
    [64]Friedman C S, O'Donnell M A, Legarda-Addison D, et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response.[J]. EMBO Rep,2008,9(9):930-936.
    [65]Cui J, Zhu L, Xia X, et al. NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways.[J]. Cell,2010,141(3):483-496.
    [66]Yasukawa K, Oshiumi H, Takeda M, et al. Mitofusin 2 inhibits mitochondrial antiviral signaling.[J]. Sci Signal,2009,2(84):a47.
    [67]Moore C B, Bergstralh D T, Duncan J A, et al. NLRX1 is a regulator of mitochondrial antiviral immunity.[J]. Nature,2008,451(7178):573-577.
    [68]Tattoli I, Carneiro L A, Jehanno M, et al. NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production.[J]. EMBO Rep,2008,9(3):293-300.
    [69]Xu L, Xiao N, Liu F, et al. Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria.[J]. Proc Natl Acad Sci U S A,2009,106(5): 1530-1535.
    [70]You F, Sun H, Zhou X, et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase A1P4.[J]. Nat Immunol,2009,10(12): 1300-1308.
    [71]Zhong B, Zhang Y, Tan B, et al. The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation.[J]. J Immunol, 2010,184(11):6249-6255.
    [72]Kayagaki N, Phung Q, Chan S, et al. DUBA:a deubiquitinase that regulates type I interferon production.[J]. Science,2007,318(5856):1628-1632.
    [73]Saitoh T, Yamamoto M, Miyagishi M, et al. A20 is a negative regulator of IFN regulatory factor 3 signaling.[J]. J Immunol,2005,174(3):1507-1512.
    [74]Wang Y Y, Li L, Han K J, et al. A20 is a potent inhibitor of TLR3-and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter.[J]. FEBS Lett,2004,576(1-2):86-90.
    [75]Lin R, Yang L, Nakhaei P, et al. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20.[J]. J Biol Chem,2006,281(4):2095-2103.
    [76]Huang J, Liu T, Xu L G, et al. SIKE is an IKK epsilon/TBK1-associated suppressor of TLR3-and virus-triggered IRF-3 activation pathways.[J]. EMBO J, 2005,24(23):4018-4028.
    [77]Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of'single protein RING finger'E3 ubiquitin ligases.[J]. Bioessays,2005,27(11):1147-1157.
    [78]Lorick K L, Jensen J P, Fang S, et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination.[J]. Proc Natl Acad Sci USA,1999,96(20):11364-11369.
    [79]Sabile A, Meyer A M, Wirbelauer C, et al. Regulation of p27 degradation and S-phase progression by Ro52 RING finger protein.[J]. Mol Cell Biol,2006.26(16): 5994-6004.
    [80]Ishikawa H, Tachikawa H, Miura Y, et al. TRIM11 binds to and destabilizes a key component of the activator-mediated cofactor complex (ARC 105) through the ubiquitin-proteasome system.[J]. FEBS Lett,2006,580(20):4784-4792.
    [81]Zou W, Zhang D E. The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase.[J]. J Biol Chem,2006,281(7): 3989-3994.
    [82]Minucci S, Maccarana M, Cioce M, et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation.[J]. Mol Cell,2000, 5(5):811-820.
    [83]Mische C C, Javanbakht H, Song B, et al. Retroviral restriction factor TRIM5alpha is a trimer.[J]. J Virol,2005,79(22):14446-14450.
    [84]Short K M, Cox T C. Subclassification of the RBCC/TR1M superfamily reveals a novel motif necessary for microtubule binding.[J]. J Biol Chem,2006,281(13): 8970-8980.
    [85]Woo J S, Suh H Y, Park S Y, et al. Structural basis for protein recognition by B30.2/SPRY domains.[J]. Mol Cell,2006,24(6):967-976.
    [86]Pancer Z, Cooper M D. The evolution of adaptive immunity.[J]. Annu Rev Immunol,2006,24:497-518.
    [87]Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. The International FMF Consortium.[J]. Cell,1997,90(4):797-807.
    [88]Stojanov S, Kastner D L. Familial autoinflammatory diseases:genetics, pathogenesis and treatment.[J]. Curr Opin Rheumatol,2005,17(5):586-599.
    [89]Friedman J R, Fredericks W J, Jensen D E, et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain.[J]. Genes Dev,1996,10(16): 2067-2078.
    [90]Klugbauer S, Rabes H M. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas.[J]. Oncogene,1999,18(30):4388-4393.
    [91]Jensen K, Shiels C, Freemont P S. PML protein isoforms and the RBCC/TRIM motif.[J]. Oncogene,2001,20(49):7223-7233.
    [92]Scaglioni P P, Yung T M, Cai L F, et al. A CK2-dependent mechanism for degradation of the PML tumor suppressor.[J]. Cell,2006,126(2):269-283.
    [93]Zhong S, Muller S, Ronchetti S, et al. Role of SUMO-1-modified PML in nuclear body formation.[J]. Blood,2000,95(9):2748-2752.
    [94]Best S, Le T P. Towers G, et al. Positional cloning of the mouse retrovirus restriction gene Fv1.[J]. Nature,1996,382(6594):826-829.
    [95]Goff S P. Genetic control of retrovirus susceptibility in mammalian cells.[J]. Annu Rev Genet,2004,38:61-85.
    [96]Towers G J. The control of viral infection by tripartite motif proteins and cyclophilin A.[J]. Retrovirology,2007,4:40.
    [97]Uchil P D, Quinlan B D, Chan W T, et al. TRIM E3 ligases interfere with early and late stages of the retroviral life cycle.[J]. PLoS Pathog,2008,4(2):e16.
    [98]Tissot C, Mechti N. Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression.[J]. J Biol Chem,1995,270(25):14891-14898.
    [99]Wu X, Anderson J L, Campbell E M, et al. Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection.[J]. Proc Natl Acad Sci U S A,2006,103(19):7465-7470.
    [100]Yap M W, Nisole S, Stoye J P. A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction.[J]. Curr Biol,2005,15(1): 73-78.
    [101]Barr S D, Smiley J R, Bushman F D. The interferon response inhibits HIV particle production by induction of TRIM22.[J]. PLoS Pathog,2008,4(2):e1000007.
    [102]Campbell E M, Perez O, Anderson J L. et al. Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5alpha.[J]. J Cell Biol,2008,180(3):549-561.
    [103]Niikura T, Hashimoto Y, Tajima H, et al. A tripartite motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer's disease-relevant insults.[J]. Eur J Neurosci,2003,17(6):1150-1158.
    [104]Katzourakis A, Tristem M, Pybus O G, et al. Discovery and analysis of the first endogenous lentivirus.[J]. Proc Natl Acad Sci U S A,2007,104(15):6261-6265.
    [105]Martinez F O, Gordon S, Locati M, et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization:new molecules and patterns of gene expression.[J]. J Immunol,2006,177(10):7303-7311.
    [106]Rajsbaum R, Stoye J P, O'Garra A. Type Ⅰ interferon-dependent and-independent expression of tripartite motif proteins in immune cells.[J]. Eur J Immunol,2008,38(3):619-630.
    [107]Sakuma R, Noser J A, Ohmine S, et al. Rhesus monkey TRIM5alpha restricts HIV-1 production through rapid degradation of viral Gag polyproteins.[J]. Nat Med, 2007,13(5):631-635.
    [108]Toniato E, Chen X P, Losman J, et al. TRIM8/GERP RING finger protein interacts with SOCS-1.[J]. J Biol Chem,2002,277(40):37315-37322.
    [109]Shi M, Deng W, Bi E, et al. TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation.[J]. Nat Immunol,2008,9(4):369-377.
    [110]Zha J, Han K J, Xu L G, et al. The Ret finger protein inhibits signaling mediated by the noncanonical and canonical IkappaB kinase family members.[J]. J Immunol,2006,176(2):1072-1080.
    [111]Ben-Chetrit E, Chan E K, Sullivan K F, et al. A 52-kD protein is a novel component of the SS-A/Ro antigenic particle.[J]. J Exp Med,1988,167(5): 1560-1571.
    [112]Alter-Koltunoff M, Goren S, Nousbeck J, et al. Innate immunity to intraphagosomal pathogens is mediated by interferon regulatory factor 8 (IRF-8) that stimulates the expression of macrophage-specific Nramp1 through antagonizing repression by c-Myc.[J]. J Biol Chem,2008,283(5):2724-2733.
    [113]Tamura T, Tailor P, Yamaoka K, et al.IFN regulatory factor-4 and-8 govern dendritic cell subset development and their functional diversity.[J]. J Immunol,2005, 174(5):2573-2581.
    [114]Ishii T, Ohnuma K, Murakami A, et al. SS-A/Ro52, an autoantigen involved in CD28-mediated IL-2 production.[J]. J Immunol,2003,170(7):3653-3661.
    [115]Billaut-Mulot O, Cocude C, Kolesnitchenko V, et al. SS-56, a novel cellular target of autoantibody responses in Sjogren syndrome and systemic lupus erythematosus.[J]. J Clin Invest,2001,108(6):861-869.
    [116]Eldin P, Papon L, Oteiza A, et al. TRIM22 E3 ubiquitin ligase activity is required to mediate antiviral activity against encephalomyocarditis virus.[J]. J Gen Virol,2009,90(Pt 3):536-545.
    [117]Eldin P, Papon L, Oteiza A, et al. TRIM22 E3 ubiquitin ligase activity is required to mediate antiviral activity against encephalomyocarditis virus.[J]. J Gen Virol,2009,90(Pt 3):536-545.
    [118]Matsuda A, Suzuki Y, Honda G, et al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK. signaling pathways.[J]. Oncogene,2003,22(21):3307-3318.
    [119]Oshiumi H, Matsumoto M, Hatakeyama S, et al. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-Ⅰ to promote interferon-beta induction during the early phase of viral infection.[J]. J Biol Chem,2009,284(2):807-817.
    [120]Oshiumi H, Matsumoto M, Hatakeyama S, et al. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-Ⅰ to promote interferon-beta induction during the early phase of viral infection.[J]. J Biol Chem,2009,284(2):807-817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700