超宽带系统中接收技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带(UWB)作为一种新颖的短距离无线通信技术,它采用极窄脉冲(纳秒量级)传送信息,相应地,其占有很宽的带宽(吉赫兹量级)。UWB具有高速率、低功耗、低成本、精确定位等优点,可作为无线传感器网络(WSN)和无线个域网(WPAN)等网络的物理层技术,有着广阔的应用前景。然而,在室内环境中,UWB无线信道具有密集多径的特点,由此引起的码间干扰(ISI)会严重地影响系统性能。此外,随着系统用户数的增加,多用户干扰(MUI)也成为影响UWB系统性能的重要因素。因此,设计适合于实际应用的高性能、低复杂度的接收机是UWB的重要研究方向之一。
     传统的Rake接收机,具有结构较简单,能有效合并多径分量的优点。但UWB室内信道的多径数多达几十乃至上百条,随着Rake接收机支路(finger)数的增加,其实现复杂度将难以接受,且Rake接收机在多用户情况下性能受限。为了有效抑制MUI,多用户检测技术(MUD)技术被应用于UWB系统中,考虑到无线信道的时变特性及实现复杂度等因素,一些盲自适应MUD方案更被关注。本文主要针对超宽带系统在多径、多用户环境下的接收检测技术进行了研究,主要的研究内容和创新性成果如下:
     1.提出了一种适用于TH-UWB系统的盲Rake接收机方案。该接收机首先利用跳时(TH)码的良好相关性设计滤波器,消除部分MUI和ISI;再对滤波器的输出数据采用紧缩近似投影子空间跟踪(PASTd)方法进行信道估计并实现最大比合并,进一步提高输出信干噪比(SINR)。该接收机克服了传统Rake接收机不能消除MUI的缺陷,仿真结果证实,该接收机的误码性能优于传统的相关接收机和Rake接收机,且其所需先验知识较少、计算复杂度较低。
     2.将线性预测方法应用于DS-UWB系统中实现盲多用户检测。该算法首先通过对接收数据进行线性变换和线性预测来抑制MUI,再对线性预测误差采用子空间跟踪算法进行信道估计,消除ISI。仿真结果表明,在超宽带信道模型下,与传统的接收机相比较,其具有较低的误码率和较好的抗远近效应能力。
     3.设计了一种盲自适应多用户检测方案,用来解决高速TH-UWB系统中的MUI和ISI问题,该方案首先采用约束递归最小二乘恒模算法(RLS-CMA)消除MUI和ISI;接着在信道估计的基础上采用最大比合并进一步提高系统性能。仿真结果表明,提出的接收机在UWB四种类型信道下能快速收敛,且误码性能较好。
     4.提出了一种降秩盲自适应接收方案,该方案首先将最小输出能量(MOE)算法和多级维纳滤波(MSWF)方法相结合,实现盲自适应解相关,抑制MUI并提取期望信号各多径分量,再进一步采用PASTd算法估计信道并进行最大比合并,提高输出信干噪比。该方案在解决DS-UWB系统中MUI和ISI问题的同时,采用MSWF降秩方法减小了计算复杂度,仿真结果验证了其有效性。
As a short range communications formula, Ultra-wide band (UWB) uses pulse todeliver information. The pulse is usually short in duration (nano-second), so it issubstantially a system with of extremely large bandwidth (Giga Hertz). Besides, UWBis profiled in high data rate, high positioning accuracy, low cost and low powerconsumption, all the feature enable UWB a promising technology for wireless sensornetwork (WSN) and wireless personal area network (WPAN).
     In indoor environment, however, the UWB wireless channel is natured with densemulti-path, the inter symbol interference (ISI) raised from which degrades systemperformance significantly. Besides, with the increase of users, the multi-userinterference (MUI) becomes a vital factor in influence on the system performance. It is,therefore, a critical issue on how to figure out a UWB receiver that is high performanceand low complexity.
     A conventional Rake receiver is simple in structure and is advanced in multi-pathcombination. But, since the number of the multi-path may be up to tens or evenhundreds in a typical UWB channel, the Rake receiver will become too complicated tobe implemented with the increase of the multi-path. Moreover, it is unable to suppressMUI. For mitigating MUI, the multi-user detection (MUD) techniques have been usingin UWB system, in which the blind adaptive algorithms are paid special attention inconcerning the computational complexity and the channel’s time-varying feature. Thisdissertation deals with the problem of signal detection for UWB systems under theenvironment of multi-user and multi-path, its main contributions are as follows.
     1. Both multi-user interference (MUI) and inter symbol interference (ISI) are themajor factors of influencing the bit error ratio (BER) performance in ultra-wideband(UWB) system. A novel blind Rake scheme is proposed in this paper, which firstlyexploits the properties of the desired user time-hopping sequence to figure out a filterfor eliminating partial MUI and ISI, and then uses projection approximation subspacetracking with deflation (PASTd) algorithm to estimate channel, do maximal ratiocombining (MRC) to further improve signal to interference plus noise ratio (SINR).Simulation results show that the proposed blind Rake receiver achieves a significantperformance gain in comparison with the conventional receiver and Rake receiver, andcan converge at the steady state rapidly. Furthermore, it requires less priori knowledgeand has lower complexity.
     2. A blind multi-user detection algorithm based on linear prediction is proposed forthe direct sequence ultra-wideband (DS-UWB) system to provide resistance to MUI andISI. The algorithm first applies linear transformation and linear prediction on thereceived data in order to suppress MUI, and then estimate the channel by subspacetracking algorithm. According to the simulation results with the IEEE802.15.3a UWBchannel model, the proposed algorithm exhibits reasonably good performance andnear-far resistance in multiuser environment compared with the conventional receiver.
     3. A novel receiver is proposed in this paper that uses the blind adaptive MUDtechnique to deal with the presence of MUI and ISI in terms of high speed time-hoppingultra-wideband (TH-UWB) system. The receiver firstly adopts constrained recursiveleast squares constant modulus algorithm (RLS-CMA) to conduct adaptivedecorrelation for eliminating MUI and ISI, and then improve the performance of systemby channel estimation and MRC. The simulation results show that the proposed receivercan go to convergence rapidly under all four IEEE’s UWB channel models, the BERperformance is better than that of the traditional receiver and Rake receiver.
     4. A blind adaptive reduced-rank detection is developed for ultra-wideband (UWB)systems in dense multipath channels, which is composed of two stages: in the first stage,a reduced-rank algorithm based on the multi-stage Wiener filter (MSWF) is consideredto reduce the MUI and extract multi-path components; channel estimation using thePASTd algorithm and multi-path combining are then performed to further enhance theSINR of the desired user in the second stage. Several representative simulationexamples confirm that the proposed scheme has excellent performance in suppressingthe ISI and MUI with a low complexity.
引文
[1] Zhuo Z, Mendoza D S, Wang P, et al. A low-power and flexible energy detection IR-UWBreceiver for RFID and wireless sensor networks. IEEE Trans. on Circuits and Systems.2011,7,58(7):1470-1482.
    [2]Liu K H, Shen X M, Zhang R N, et al. Performance analysis of distributed reservationprotocol for UWB-based WPAN. IEEE Trans. on Vehicular Technology.2009,2,58(2):902-913.
    [3] Zhang J, Orlik P V, Sahinoglu Z, et al. UWB systems for wireless sensor networks.Proceeding of the IEEE.2009,2,97(2):313–331.
    [4] Leonardo B C, Ross G F. Time domain electromagnetics and its applications. Proceedingof the IEEE.1978,3,66(3):299-318.
    [5] Scholtz R A. Multiple access with time-hopping impulse modulation. in Proc. OfMILCOM Conf., Boston, MA, USA.1993,10,2:447-450.
    [6]费元春.超宽带雷达理论与技术.第1版.北京:国防工业出版社,2010.5-11.
    [7]中华人民共和国科学技术部.国家高技术研究发展计划(863计划)信息技术领域.http://www.most.gov.cn/tztg/200810/P020081029306544378673.doc.
    [8] Immoreeve I I, Fedotov D V. Ultra wideband radar systems: advantages and disadvantages.In Proc. IEEE Ultra Wideband Systems and Techonolgies Conf., Baltimore, MD.2002,8:201-205.
    [9] Fowler C, Entzminger J, Corum J. Assessment of ultra wideband (UWB) technology.IEEE Magazine on Aerospace and Electronic Systems.1990,11,5(11):45-49.
    [10] Scholtz R, Weaver R, Homier E, et al. UWB radion deployment challenges. The11thIEEE International Symposium on Personal, Indoor and Mobile Radio Communications.London, UK,2000,1:620-625.
    [11] Yang L, Giannakis G. Ultra-wideband communications: an idea whose time has come.IEEE signal Processing Magazine.2004,11,21(6):26-54.
    [12]中国工业和信息化部无线电管理.超宽带(UWB)技术频率使用规定.http://www.srrc.org.cn/NewsShow1471.aspx.2008,12.
    [13] Somayazulu V S, Foerster J R, Roy S, Design challenges for very high data rate UWBsystems. in Proc. of IEEE Conf. Signals, Systems and Computers.2002,1:717-721.
    [14] Hirt W. Ultra-wideband radio technology: overview and future research. Computer andCommunications.2003,26(1):46–52.
    [15] Win M Z, Scholtz R A. Ultra-wide bandwidth signal propagation for indoor wirelesscommunications. IEEE International Conference on Communication, Montreal.1997,6,1:56-60.
    [16] Sheng H, Orlik P, Haimovich A M, et al. On the spectral and power requirements forultra-wideband transmission. IEEE International Conference on Communications.2003,5,1:738-742.
    [17] Lee J Y, Scholtz R Z. Ranging in a dense multi-path environment using an UWB radiolink. IEEE Journal on Selected Areas in Communications.2002,12,20(9):1677-1683.
    [18] Yang Y, Fathy A E. See-through-wall imaging using ultra wideband short pulse radarsystem. In Proc. IEEE Antennas and Propagation Society International Symposium.2005,7,3B:334-337.
    [19] Ahmad F, Amin M G, Mandapati G. Autofocusing of through-the-wall radar imageryunder unknown wall characteristics. IEEE Trans. on Image Processing.2007,7,16(7):1785-1795.
    [20] Ahmad F, Zhang Y M, Amin M G. Three-dimensional wideband beamforming forimaging through a single wall. IEEE Geoscience and Remote Sensing Letters.2008,4,5(2):176-179.
    [21] Wood S, Aiello R. Essentials of UWB.1st Edition. UK: Cambridge University Press,2008.3-6.
    [22] Win M Z, Dardari D, Molisch A F. et al. History and applications of UWB. Proceedingsof the IEEE.2009,97(2):198-204.
    [23] S. Gezici, T. Zhi, G. B. Giannakis. et al. Localization via ultra wideband radios: a look atpositioning aspects for future sensor networks. IEEE Signal Processing Magazine.2005,7,22(4):70-84.
    [24]多频带OFDM盟. MBOA: Multi-Band OFDM Alliance. available online at,http://www.mboa.org/.
    [25] Paquelet S, Aubert L M, Uguen B. An impulse radio asynchronous transceiver for highdata rates. IEEE International Conference Joint UWBST&IWUWBS.2004,5:1-5.
    [26] Weisenhorn M, Hirt W. Robust noncoherent receiver exploiting UWB channel properties.IEEE International Conference Joint UWBST&IWUWBS.2004,5:156-160.
    [27] Oh M K, Jung B, Harjani R, et al. A new noncoherent UWB impulse radio receiver. IEEECommunications Letters.2005,2,9(2):151-153.
    [28] Rabbachin A, Oppermann I. Synchronization analysis for UWB systems with a lowcomplexity energy collection receiver. IEEE International Conference Joint UWBST&IWUWBS.2004,5:288-292.
    [29] Humblet P A, Azizoglu M. On the bit error rate of lightwave systems with opticalamplifiers. Journal of Lightwave Technology.1991,11,9(11):1576-1582.
    [30] Win M Z, Scholtz R A. Ultra wideband time-hopping spread spectrum impulse radio forwireless multiple access communications. IEEE Trans. on communications.2000,4,48(4):679-691.
    [31] Barrett T W. History of Ultra Wideband (UWB) Radar and Communications: Pioneersand innovators. Proceedings of Progress in Electromagnetics Symposium (PIERS)2000,Cambridge, Mass, USA.2000,7.
    [32] Choi J D, Stark W E. Performance of ultra-wideband communications with sub-optimalreceivers in multipath channels. IEEE Journal of Selected Areas in Communications.2002,12,20(9):1754-1766.
    [33] Pausini M, Janssen G. Analysis and comparison of autocorrelation receivers for IR-UWBsignals based on differential detection. Proceedings of the IEEE International Conferenceon Acoustics, Speech, and Signal.2004,5,4:513-516.
    [34] Ramirez-Mireles F. Performance of ultra wideband SSMA using time hopping and M-aryPPM. IEEE Journal on Selected Areas in Communications.2001,6,19(6).1186-1196.
    [35] Ramirez-Mireles F. On performance of ultra wideband signals in Gaussian noise anddense multipath. IEEE Trans. on Vehicular Technology.2001,1,50(1):244-249.
    [36] Foerster J R. The effects of multipath interference on the performance of UWB systemsin an indoor wireless channel. IEEE Vehicular Technology Conference (VTS53rd).2001,5,2:1176-1180.
    [37] Taha A, Chugg K. Multipath diversity reception of wireless multiple access time hoppingdigital impulse radio. IEEE Conference on UWB Systems and Technologies (UWBST.2002).2002,3:283-287.
    [38] Rahman M A, Sasaki S, Jie Z, et al. Performance evaluation of Rake reception of ultrawideband signals over multipath channels from energy capture perspective. IEEEInternational Conference Joint UWBST&IWUWBS.2004,5:231-235.
    [39] Cassioli D, Win M Z, Vatalaro F, et al. Performance of low-complexity RAKE receptionin a realistic UWB channel. IEEE International Conference on Communications.2002,2,2:763-767.
    [40] Win M Z, Scholtz R Z. On the energy capture of ultra-wide bandwidth signals in densemultipath environments. IEEE Communications Letters.1998,9,2(9):245-247.
    [41] Damico A A, Mengali U, Taponecco L. Impact of MAI and channel estimation errors onthe performance of rake receivers in UWB communications. IEEE Trans. on WirelessCommunications.2005,4(5):2435-2440.
    [42] Ning K, Milstein L B. Average SNR of a generalized diversity selection combiningscheme. IEEE Communications Letters.1999,3,3(3):57-59.
    [43] Ishiyama Y, Ohtsuki T. Performance comparison of UWB-IR using Rake receivers inUWB channel models. IEEE International Conference Joint UWBST&IWUWBS.2004,5:226-230.
    [44] Gezici S, Chiang M, Poor H V, et al. Optimal and suboptimal finger selection algorithmsfor MMSE Rake receivers in impulse radio ultra wideband systems. IEEE Conference onWireless Communications and Networking (WCNC2005).2005,3,2:13-17.
    [45] Lottici V, Andrea A. Channel estimation for ultra wideband communications. IEEEJournal on Selected Areas in Communications.2002,12,20(9):1638-1645.
    [46] Win M Z, Scholtz R A. Characterization of ultra wide bandwidth wireless indoorchannels: a communication theoretic view. IEEE Journal on Selected Areas inCommunications.2002,12,20(9):1613-1627.
    [47] Bensley S E, Aazhang B. Subspace based channel estimation for code division multipleaccess communication systems. IEEE Transactions on Communications.1996,8,44(8):1009-1019.
    [48] Torlak M, Xu G H. Blind multiuser channel estimation in asynchronous CDMA systems.IEEE Transactions on Signal Processing.1997,1,45(1):137-147.
    [49] Jung S Y, Park D J. Multi-user detection scheme based on hidden training sequence forDS-UWB systems. IEICE Transactions Communications.2006,1, E89-B:239-242.
    [50] Jung S Y, Park D J. Novel linear MMSE receiver using hidden training sequence inDS/CDMA. Electron. Letter.2003,3,39(9):742–744.
    [51] Orozco-Lugo A G, Mauricio Lara M, McLernom D C. channel estimation using implicittraining. IEEE Trans. on Signal Processing.2004,1,52(1):240-254.
    [52] Biradar G S, Merchant S N, Desai U B. Chip equalized adaptive Rake receiver forDS-CDMA UWB systems. IETE Journal of Research.2010,4,56(2):94-101.
    [53] Strohmer T, Emami M, Hansen J, et al. Application of time-reversal with MMSEequalizer to UWB communications. Globa Telecommunications Conference(GLOBECOM’04).2004,11,5:3123-3127.
    [54] Nguyen H, Kovacs I, Eggers P. A time reversal transmission approach for multiuserUWB communications. IEEE Trans. on Antennas and Propagation.2006,11,54(11):3216–3224.
    [55] Qiu R, Zhou C, Guo N, et al. Time reversal with MISO for ultra widebandcommunications: experimental results. IEEE Antennas and Wireless Propagation Letters.2006,12,5(1):269–273.
    [56] Usuda K, Zhang H, Nakagawa M. Pre-Rake performance for pulse based UWB system ina standardized UWB short-range channel. Proceedings of the IEEE WCNC, Atlanta, GA,2004,3,2:920-925.
    [57] Mohsenian-Rad A H, Mietzner J, Schober R, et al. Pre-equalization for pre-rakeDS-UWB systems with spectral mask constraints. IEEE Trans. on Communications.2011,3,59(3):780-791.
    [58] Torabi E, Mietzner J, Schober R. Pre-Equalization for MISO DS-UWB systems withPre-Rake combining. IEEE Trans. on Wireless Communications.2009,3,8(3):1295-1307.
    [59] Yoon Y C, Kohno R. Optimum multi-user detection in Ultra-Wideband (UWB)multiple-access communication systems. Proceedings of the IEEE InternationalCnferrence on Communication (ICC2002).2002,4:812–816.
    [60] Gezici S, Kobayashi H, Poor H V, et al. Optimal and suboptimal linear receivers fortime-hopping impulse radio systems. IEEE International Conference Joint UWBST&IWUWBS.2004,5:11-15.
    [61] Gezici S, Molisch A F, Kobayashi H, et al. Low complexity MMSE combining for linearimpulse radio UWB receivers. Proceedings of the IEEE International Conference onCommunications (ICC2006).2006,6,10:4706-4711.
    [62] Zhang D,Wang K,Zhang X. Blind adaptive affine projection algorithm-based multi-userdetector over a multi-path fading channel. Signal Processing.2010,6,90(6):2102-2106.
    [63] Biradar G S, Merchant S N, Desai U B. Performance of constrained blind adaptiveDS-CDMA UWB multiuser detector in multipath channel with narrow band interference.Globa Telecommunications Conference (GLOBECOM’08).2008,12,1:1-5.
    [64] Li Q, Rusch L A. Multiuser detection for DS-CDMA UWB in the home environment.IEEE Journal on Selected Areas in Communications.2002,12,20(9):1701-1711.
    [65] Wu S H, Mitra U, Kuo C. Multistage MMSE receivers for ultra-wide bandwidth impulseradio communications. IEEE International Conference Joint UWBST&IWUWBS,Kyoto, Japan.2004,5:16-20.
    [66] Cheng C H, Wen J H, Chen Y F, et al. A robust interference cancellation technique forDS-UWB systems using fuzzy step size LMS algorithm. European Transactions onTelecommunications.2008,19(2):207-217.
    [67] Ahmed Q Z, Yang L L. Reduced-rank adaptive multiuser detection in hybrid directsequence time-hopping ultrawide bandwidth systems. IEEE Trans. on WirelessCommunications.2010,1,9(1):156-167.
    [68] Hu C C, Lin H Y, Liu T H, et al. Time-hopping UWB multiuser detection using adaptivemultistage matrix wiener filltering schemes. Proceedings of the IEEE ICC2007,Glasgow, Scotland.2007,6:2540-2544.
    [69] Schenk A, Fischer R F H. Decision-feedback differential detection in impulse-radioultra-wideband systems.2011,6,59(6):1604-1611.
    [70] Cheng C H, Lin W J, Chen K J. Subspace-based blind multi-user detection for TH-UWBsystems in multi-path channels. WSEAS Trans. on Communications.2008,8,7(8):796-806.
    [71] Xu Z Y, Liu P, Wang X D. Blind multiuser detection: from MOE to subspace methods.IEEE Trans. on Signal Processing.2006,2,52(2):510-524.
    [72] Yang B. Projection approximation subspace tracking. IEEE Trans. on Signal Processing.1995,1,43(1):95-107.
    [73] Wang X, Poor H V. Blind multiuser detection: A subspace approach,” IEEE Trans. onInformation Theory.1998,3,44(2):677-690.
    [74] Song Y, Roy S. Blind adaptive reduced-rank detection for DS-CDMA signals inmultipath channels. IEEE Journal on Selected Areas in Communications.1999,11,17(11):1960-1970.
    [75] Goldstein J S, Reed I S. Reduced rank adaptive filtering. IEEE Trans. on SignalProcessing,1997,2,45(2):492-496.
    [76] Qian H, Batalama S N. Data record-based criteria for the selection of an auxiliary vectorestimator of the MMSE/MVDR filter. IEEE Trans. on Communications.2003,10,51(10):1700-1708.
    [77] Honig M L, Goldstein J S. Adaptive reduced-rank interference suppression based on themultistage Wiener filter. IEEE Trans. on Communications.2002,6,50(6):986-944.
    [78] Wang L, de Lamare R C. Adaptive constrained constantmodulus algorithm based onauxiliary vector filtering for beamforming. IEEE Trans. on Signal Processing.2010,10,58(10):5410-5415.
    [79] De-Lamare R C, Sampaio-Neto R. Adaptive interference suppression for DS-CDMAsystems based on interpolated FIR filters with adaptive interpolators in multipathchannels. IEEE Trans. on Vehicular Technology.2007,9,56(6):2457-2474.
    [80] De-Lamare R C, Sampaio-Neto R, Haardt M. Blind adaptive constrained constantmodulus raduced-rank interference suppression algorithms based on interpolation andswitched decimation. IEEE Trans. on Signal Processing.2011,2,59(2):2943–2959.
    [81] Goldstein J S, Reed I S, Scharf L L. A multistage representation of the wiener filter basedon orthogonal projections. IEEE Trans. on Signal Processing.1998,44(7):2943–2959.
    [82] Xu B, Yang C, Mao S. Further insights on the equivalence of AVF and MSWF.Proceedings of the IEEE International Conference on Acoustics, Speech and Signal(ICASSP’04).2004,3,2:857-860.
    [83] Hu B, Beaulieu N C. Pulse shapes for ultra wideband communication systems. IEEETrans. on Wireless Communications.2005,7,4(4):1789-1797.
    [84] Beaulieu N C, Hu B. On determining a best pulse shape for multiple access ultrawideband communication systems. IEEE Trans. on Wireless Communications.2008,9,7(9):3589-3596.
    [85]张中兆,沙学军,张钦宇等.超宽带通信系统.第1版.北京:电子工业出版社,2010.52-56.
    [86] Zhang J,Abhayapala T D, Kennedy R A. Role of pulses in ultra wideband systems. IEEEInternational Conference on Ultra Wideband (ICU), Zurich, Switzerland.2005,9:565-570.
    [87] Miller L E. Models for UWB pulses and their effects on narrowband direct conversionreceivers. IEEE Conference on Ultra Wideband Systems and Technologies (UWBST),Reston, VA.2003,11:101-105.
    [88] Beaulieu N C, Hu B. Anovel pulse design algorithm for ultra wideband communications.IEEE Global Telecommunications Conference (GLOBECOMM), Dallas, Texas.2004,11,5:3220-3224.
    [89] Godara B, Blamon G, Fabre A. UWB: a new efficient pulse shape and its correspondingsimple transceiver.2nd International Symposium on Wireless Communication Systems(ISWCS), Siena, Italy.2005,9:365-369.
    [90] Parr B, Cho B, Wallace K. A novel ultra wideband pulse design algorithm. IEEECommunications letters.2003(7):219-221.
    [91] Di Benedetto M G, Giancola G. Understanding Ultra Wide Band Radio Fundamentals.New Jersey: Prentice-Hall,2004.137-142.
    [92] Reddy G P,Mary G I. UWB indoor channel profile identification with orthogonalHermite pulses.3rd IEEE International Conference on Computer Science andInformation Technology (ICCSIT),2010,7:145-149.
    [93] Ghavami M, Michael L B, Kohno R. Ultra Wideband Signals and Systems inCommunication Engineering.2ndEdition. England: John Wiley&Sons,2007.151-154.
    [94]王金龙,王呈贵,阚春荣等.无线超宽带(UWB)通信原理与应用.第1版.北京:人民邮电出版社,2005.58-62.
    [95] Qiu R C, Liu H, Shen X. Ultra wideband for multiple access communications. IEEECommunications Magazine.2005,2,43(2):80-87.
    [96] Welborn M L. System considerations for ultra wideband wireless networks. Proceedingsof the IEEE Radio and Wireless Conference (RAWCON), Waltham, MA.2001,8:5-8.
    [97] Zhang H, Gulliver T A. Biorthogonal pulse position modulation for time hoppingmultiple access UWB communications. IEEE Trans. on Wireless Communications.2005,5,4(3):1154-1162.
    [98] Suzuki H. A statistical model for urban radio propagation. IEEE Trans. onCommunications.1977,7,25(7):673-680
    [99] Saleh A, Valenzuela R. A statistical model for indoor multipath propagation. IEEEJournal on Selected Areas in Communications.1987,2,5(2):128-137.
    [100] Fernando R M. On the performance of ultra wideband signals in Gaussian noise anddense multipath. IEEE Trans. on Vehicular Technology.2001,1,50(1):244-249.
    [101] Hashemin H. The indoor radio propagation channel. Proceedings of IEEE.1993,7,81(7):943-968.
    [102] Cassioli D, Win M Z, Molisch A F. The ultra wide bandwidth indoor channel: fromstatistical model to simulations. IEEE Journal on Selected Areas in Communications.2002,8,20(6):1247-1257.
    [103] Yano S M. Investigating the ultra wideband indoor wireless channel. Proceeding ofIEEE VTC.2002,3,3:120-1204.
    [104] Siwiak K, Petroff A. A path link model for ultra wide band pulse transmissions. IEEEVehicular Technology Conference (VTC-2001).2001,2:1173-1175.
    [105] Hayar A M, Vitetta G M. Channel models for ultra-wideband communications: anoverview.15th Mobile&Wireless Communications Summit.2005,6:1-5.
    [106] Molisch A F, Balakrishnan K, Cassioli D, et al. IEEE802.15.4a channel model finalreport. Tech. Rep. Doc. IEEE802.15-04-0662-00-004a.2004,12.
    [107] Greenstein L J. A new path-gain/delay-spread propagation model for digital cellularchannels. IEEE Trans. on Vehicular Technology.1997,2,46(2):477-485.
    [108] Ghavami M, Michael L B, Kohno R. Ultra wideband signals and systems incommunication engineering.2nd Edition. England: John Wiley&Sons Ltd,2007.76-83.
    [109] Hashemi H. Impulse response modeling of indoor radio propagation channels. IEEEJournal on selected Areas in Communications.1993,9,11(7):967-978.
    [110] Win M Z, Scholtz R A. On the robustness of ultra wide bandwidth signals in densemultipath environments. IEEE Communications Letters.1998,2,2(2):51-53
    [111] Saleh A A, Valenzuela R A. A statistical model for indoor multipath propagation. IEEEJournal of Selected Areas in Communications.1987,2,5(2):128-137.
    [112] Suzuki H. A statistical model for urban radio propagation. IEEE Trans. oncommunications.1977,7,25(7):673-680.
    [113] Foerster J, Li Q. UWB Channel Modeling Contribution from Intel. IEEE802.15.3SG3aContributions:02279r0P802-15.doc. IEEE Computer Society.2002,7.
    [114] Ghassemzadeh, S. S, Greenstein L, Tarokh V. The ultra wideband indoor multipathchannel model. IEEE802.15.3SG3a Contributions:02282r1P802-15.pdf from AT&TLabs-Research, WinLAB-Rutgers University and Harvard University. IEEE ComputerSociety.2002,7.
    [115] Cramer, R J M, Scholtz R A, Win M Z. Evaluation of an indoor ultra widebandpropagation channel. IEEE802.15.3SG3a Contributions:02286r0P802-15.doc. IEEEComputer Society.2002,6.
    [116] Foerster J. Channel Modeling Sub-committee Final Report. IEEE802.15.3SG3aContributions:02279r0P802-15.doc. IEEE Computer Society.2002,11.
    [117] Saleh A A, Valenzuela R A. A statistical model for indoor multipath propagation. IEEEJournal on Selected Areas in Communications.1987,2,5(2):128-137.
    [118] Alavi B, Alsindi N, Pahlavan K. UWB channel measurements for accurate indoorlocalization. Proceedings of the IEEE Military Communications Conference.2006,10:1-7.
    [119] Dabin A, Haimovich A M, Grebel H. A statistical ultra wideband indoor channel modeland effects of antenna directivity on loss and multipath propagation. IEEE JournalSelected Areas in Communications.2006,4,24(4):752-758.
    [120] Ghassemzadeh S S, Jana R, Rice C, et al. Measurement and modeling of an ultra-widebandwidth indoor channel. IEEE Trans. on Communications.2004,10,52(10):1786-1796.
    [121] Karedal J, Wyne S, Almers P, et al. Statistical analysis of the UWB channel in anindustrial environment. IEEE Vehicular Technology Conference.2004,1:81-85.
    [122] Renzo M D, Graziosi F, Minutolo R, et al. The ultra-wide bandwidth outdoor channel:from measurement campaign to statistical modeling. Mobile Networks and Applications,2006,8,11(4):451-467.
    [123] Chehri A, Fortier P, Tardif P M. Large-Scale Fading and Time Dispersion Parameters ofUWB Channel in Underground Mines. EURASIP Journal on Intermational Journal ofAntennas and Propagation (IJAP).2008,10:1-10.
    [124] Chehri A, Fortier P, Tardif P M. Frequency-Domain Analysis of UWB ChannelPropagation in Underground Mines. IEEE Vehicular Technology Conference (VTC),2006,9:1-5.
    [125] Turin W, Jana R, Ghassemzadeh S, et al. Autoregressive modeling of an indoor UWBchannel. Proceedings of the IEEE Conference on Ultra Wideband Systems andTechnologies (UWBST2002),2002,3:71-74.
    [126]王艳芬,于洪珍,张申等.超宽带多径信道的频域建模与仿真.计算机工程与应用.2007,11,43(33):138-140.
    [127] Brennan D G. Linear diversity combining techniques. Proceedings of the IRE.1959,47:1075-1102.
    [128] Choi J D, Stark W E. Performance of ultra wideband communications with suboptimalreceivers in multipath channels. IEEE Journal on Selected Areas in Communications.2002,12,20(9):1754-1766.
    [129] Zhuang W, Shen X, Bi Q. Ultra wideband wireless communications. WirelessCommunications and Mobile Computing.2003,3(6):663-685.
    [130] Chao Y L, Scholtz R A. Optimal and suboptimal receivers for ultra widebandtransmitted reference systems. IEEE GLOBECOM (USA).2003,10,2:759-763.
    [131] Stefan Franz, Urbashi Mitra. On optimal data detection for UWB transmitted referencesystems. IEEE GLOBECOM (USA).2003,10,2:744-748.
    [132] Ahmed Q Z, Yang L L, Chen S. Reduced Rank Adaptive Least Bit-Error-Rate Detectionin Hybrid Direct Sequence Time-Hopping Ultrawide Bandwidth Systems. IEEE Trans.on Vehicular Technology.2011,3,60(3):849-857.
    [133] Li X H. CDMA Rake Receiver [EB/OL].[2010-07-06] http://ucesp.ws.binghamton.edu/~xli/tutor/t6-eq.pdf,2003-08-27.
    [134] Liu H, Li K. A decorrelating RAKE receiver for CDMA communications overfrequency selective fading channels. IEEE Trans. on Communications.1999,7,47(7):1036-1045.
    [135]王伶,焦李成,刘芳.一种频率选择性衰落信道下的盲自适应去相关Rake接收机.通信学报.2002,6,23(6):42-50.
    [136] Cassioli D, Win M Z, Vatalaro F, et al. Low complexity Rake receivers in ultrawideband channels. IEEE Trans. on Wireless Communications.2007,4,6(4):1265-1275.
    [137] Das S, Das B. Time domain equalization technique using Rake-MMSE receivers forhigh data rate UWB communication system. First International Conference onNetworks&Communications.2009,10:350-353.
    [138] Torabi E, Mietzner J, Schober R. Pre-equalization for MISO DS-UWB systems withPre-Rake combining. IEEE Trans. on Wireless Communications.2009,3,8(3):1-13.
    [139] Malik W Q, Stevens C J, Edwards D J. Multipath effects in ultra wideband Rakereception. IEEE Trans. on Antennas and Propagation.2008,2,56(2):507-514.
    [140] Mohsenian A H, Mietzner J, Schober R, et al. Pre-equalization for pre-rake DS-UWBsystems with spectral mask constraints. IEEE Trans. on Communications.2011,3,59(3):780-791.
    [141] Jung S Y, Park D J. Multi-user detection using hidden training sequence for DS-CDMAUWB system. Proceedings of the Vehicular Technology Conference.2004,9,3:1924-1928.
    [142] Jiao S C. Adaptive multiuser interference cancellation for DS-UWB. IEEE Conferenceon Sensor and Ad Hoc Communications and Networks.2006,9,3:892-895.
    [143] Zhang Y H, Wu S, Gulliver T A. Recursive multiuser detection for DS-UWB systems.IEEE Pacific Rim conference on Communications, Computers and Signal processing.2005,8:534-537.
    [144] Honig M L, Madhow U, Verdu S. Blind adaptive multiuser detection. IEEE Trans.Information Theory.1995,7,41(4):944-960.
    [145] Haykin S. Adaptive filter theory.3th Edition. NJ: Prentice Hall, Upper Saddle River.2002.365-439.
    [146] Xu Z Y. Further study on MOE-Based Multiuser Detection in Unknown Multipath.EURASIP Journal on Applied Signal Processing: Multiuser Detection Blind Estimation.2002,12:1377-1386.
    [147] Hao K, Gubner J A. The distribution of sums of path gains in the IEEE802.15.3a UWBchannel model. IEEE Trans. on Wireless Communications.2007,3,6(3):811-816.
    [148] Molisch, A F. Ultra-wide-band propagation channels. Proceedings of the IEEE.2009,2,97(2):353-371.
    [149] Tsatsanis M, Xu Z. Performance analysis of minimum variance CDMA receivers. IEEETrans. on Signal Processing.1998,11,46(11):3014-3022.
    [150] Yang L L, Hanzo L. Residue number system assisted fast frequency hoppedsynchronous ultra-wideband spread spectrum multiple access: a design alternative toimpulse radio. IEEE Journal on Selected Areas Communications.2002,12,20(9):1652-1663.
    [151] Foerster J R. The performance of direct-sequence spread ultra-wideband system in thepresence of multipath, narrowband interference. IEEE Conference on UWB Syst.Technol.(UWBST).2002,87-91.
    [152] Jiao S C. Adaptive multiuser interference cancellation for DS-UWB. IEEE Conferenceon Sensor and Ad Hoc Communications and Networks.2006,9,3:892-895.
    [153] Zhang Y H, Wu S, Gulliver T A. Recursive multiuser detection for DS-UWB systems.IEEE Pacific Rim conference on Communications, Computers and Signal processing.2005,8:534-537.
    [154] Wang X, Poor H V. Wireless communication systems advanced techniques for signalreception.1stEdition. NJ: Prentice Hall,2003.71-73.
    [155] Fan H H, Li X H. Linear prediction approach for joint blind equalization and blindmultiuser detection in CDMA systems. IEEE Trans. on Signal Processing.2000,11,48(11):3134-3145.
    [156] Maria-Gabriella Di Benedetto, Guerino Giancola.葛利嘉,朱林,袁晓芳,等译.超宽带无线电基础.第1版.北京:电子工业出版社,2005.169-208.
    [157] Widow B, Hoff M E. Adaptive switching circuits. IRE WEDCON Convertion Record.1960,4:96-104.
    [158]张贤达.现代信号处理.第2版.北京:清华大学出版社,2002.204-209.
    [159] Deherty J, Porayath R. A robust echo canceler for acoustic environments. IEEE Trans.on Circuits and Systems, II: Analog and Digital Signal Processing.1997,5,44(5):389-398.
    [160] Mboup M, Bonnet M, Bershad N. LMS coupled adaptive prediction and systemidentification: A statistical model and transient mean analysis. IEEE Trans. on SignalProcessing.1994,10,42(10):2607-2615.
    [161] Mikhael W, Spanias A. Comparison of several frequency domain LMS algorithms.IEEE Trans. on Circuits and Systems.1987,534(5):586-588
    [162] Narayan S, Peterson A M, Narasimha M J. Transform domain LMS algorithm. IEEETrans. on Acoustics, Speech, Signal Processing.1983,6,31(3):609-615.
    [163] Lee J, Un C. Performance of transform domain adaptive digital filters. IEEE Trans. onAcoustics, Speech and Signal Processing.1986,7,34(3):499-510.
    [164] Godard D N. Self-recovering equalization and carrier tracking in two dimensional datacommunication systems. IEEE Trans. on Communications.1980,11,28(11):1867-1875.
    [165] Treichler J R, Aggee B G. A new approach to multi-path correction of constant modulussignals. IEEE Trans. on Aconst. Speech Signal Process.1983,2,31(2):459-472.
    [166] Lee W, Vojcic B R, Pickholtz R L. Constant modulus algorithm for blind multiuserdetection. IEEE Proceedings Int. Symp. on spread spectrum Techniques andApplications.1996,9,3:1262-1266.
    [167] Chen Y, Le-Ngoc T, Champagne B Recursive least squares constant modulus algorithmfor blind adaptive array. IEEE Trans. on signal processing.2004,5,52(5):1452-1456.
    [168] Wang X M, Lu W S, Antoniou A. A VCM approach to multi-user detection forDS-CDMA frequency-selective fading channels. IEEE Pacific Rim Conference onCommunications, Computers and Signal Processing (PACRIM'03), Victoria, Canada.2003,8,1:430-433.
    [169] Miguez J, Castedo L. A Linearly constrained constant modulus approach to blindadaptive multi-user interference suppression. IEEE Communications Letters.1998,8,2(8):217-219.
    [170] Fishler E, Poor H V. On the tradeoff between two types of processing gains. IEEE Trans.on Communications.2005,9,53(9):1744-1753.
    [171] Hu C C, Lin H Y. Multiuser detection using adaptive multistage matrix wiener filteringschemes with stage selection criteria in DS-UWB. EURASIP journal on Advances inSignal Processing, Article ID426807.2008,1,9:1-9.
    [172]谢跃雷,欧阳缮,赖伟明.多径衰落信道下的一种盲多用户检测方法.通信学报.2005,2,26(2):51-55.
    [173] Troesch F, Zasowski T, Wittneben A. Non-linear UWB receivers with MLSEpost-detection. IEEE Conference on Vehicular Technology, Singapore.2008,5:468-477.
    [174] Chang Y H, Tsai S H, Yu X, et al. Codeword design for ultra-wideband (UWB)precoding. IEEE Trans. on Wireless Communications.2010,1,9(1):198-207.
    [175] Luecken H, Zasowski T, Steiner C, et al. Location-aware adaptation and precoding forlow complexity IR-UWB receivers. IEEE International Conference on Ultra-Wideband(ICUWB).2008,9,3:31-34.
    [176] Chen M, Li X. Transmitter-based channel equalization and MUI suppression for UWBsystems. Proceedings of the IEEE International Conference on Modern Problems ofRadio Engineering, Telecommunications and Computer Science, Slavsko, Ukraine.2004,2:501-504.
    [177] Luecken H, Wittneben A. Multiuser Precoding for UWB Sensor Networks.8thInternational Symposium on Wireless Communication Systems (ISWCS).2011,11:156-160.
    [178]洪利,马俊飞,许方敏等.认知超宽带网络的容量分析.通信学报.2009,5,30(5):136-140.
    [179] Steiner C, Wittneben A. Cognitive interference suppression for low complexity UWBtransceivers. IEEE International Conference on Ultra-Wideband (ICUWB2008).2008,9,2:165-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700