木质纤维素预处理和酶水解回收的过程调控与强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以强化纤维素乙醇核心生产过程、降低过程工艺经济成本为目的,选择农林废弃资源玉米芯为原料,考察了预处理过程中原料的综合利用方式、研究了预处理及酶解过程的强化手段、开发了多种调控纤维素酶吸/脱附的方法,最终考察了影响纤维素酶定量的操作因素。
     (1)碱性过氧化氢预处理:选取玉米芯作为木质纤维素原料,提出了常压中温下H_2O_2/NaOH同步预处理-组分回收工艺,该工艺实现了玉米芯三大组份的有效分离与回收,同时得到了较高的木质素脱除率(85.2%)和纤维素保留率(81.3%)。
     (2)超声辅助氨浸预处理:选择玉米芯为原料,设计并优选了超声辅助氨浸预处理方案,并对工艺参数进行了优化。最佳工艺条件下处理的玉米芯样品,酶解率可提高34.2%,而还原糖释放速率与还原糖平衡浓度分别为未超声的氨浸玉米芯样品的1.3和1.4倍。
     (3)超声调控酶吸附和水解:恒温超声反应器中,Spezyme CP酶在氨浸玉米芯上的吸/脱附表现出周期性的振荡,并且这种振荡是可逆可控的。通过改变底物表面性质和脱除木质素,超声能够极大地提高氨浸玉米芯底物的酶解效率。另外,应使用较低的能量输出和超声温度,以避免超声对纤维素酶的失活效应。
     (4)pH调控酶吸附行为:纤维素酶在木质纤维素底物上的吸/脱附行为可以通过改变环境pH来调控。具体表现为酸性pH有利于吸附而中性和碱性pH则更有利于脱附。虽然调节pH也会带来纤维素酶的失活,但是在低温下,可以通过将pH调回4.8的方式使纤维素酶酶活可逆地恢复。
     (5)酶回收策略:采用pH7溶液对氨浸玉米芯24h酶解残渣进行脱附,90min后脱附率可达91.9%。将上述指标带入重吸附过程游离酶回收率方程,预测得到引入pH调控的重吸附首轮即可回收70.9%的初始酶活。
     (6)离心影响纤维素酶定量分析:离心对纤维素酶定量分析的影响由离心方式决定,当采用“取清液离心”的方式时,基本不会为后续蛋白定量带来影响;而当采用“混合态离心”的方式时,则会因为离心场的作用造成底物-酶体系中的游离酶下降,进而导致测得的吸附酶数据偏大、而脱附酶与底物的酶可及度数据偏小。
For the purpose to intensify the core processes and to reduce the economic costsin cellulosic ethanol bioconversion, this dissertation selects corncobs, a biomassresource from agricultural and forestry waste, as the raw materials to investigate thecomprehensive utilization of lignocellulose in the pretreatment process, to study theintensification approaches of the pretreatment and enzymatic hydrolysis process, todevelop a variety of methods controlling the adsorption/desorption of the cellulase,and finally discovered the operational factors that influence the cellulase quantitation.
     Alkaline peroxide pretreatment: It established a synchronous pretreating andfraction-recycling process, using corncob feedsotcks and H_2O_2/NaOH solvents, andunder mild temperature. This novel process realized the effective separation andrecovery of three key components whilst attained high lignin removal rate (85.2%)and cellulose retention rate (81.3%).
     Ultrasound-assisted soaking in aqueous ammonia: Selecting corncob as rawmaterials, it designed and screened the optimum strategy of ultrasound-assistedsoaking in aqueous ammonia, as well as optimized the process parameters. Theenzymatic hydrolysis rate of corncob samples under the optimum conditions couldincrease34.2%whilst the release rate and equilibrium concentration of reducing sugarwere1.3and1.4times of the non-ultrasound treated samples, respectively.
     Cellulase adsorption and lignocellulosic hydrolysis controlled by ultrasound:In the isothermal ultrasonic reactor, Spezyme CP enzymes oscillatingly adsorbed onto/desorbed from the soaking in aqueous ammonia treated corncob (SAA-CC), whichwere reversible and controllable. Through improving the accessibility and removingthe lignin, ultrasound could greatly increase the enzymatic hydrolysis efficiency of thelignocellulosic substrates (SAA-CC). In addition, the lower energy outputs and themilder ultrasonic temperatures should be employed in lignocellulosic hydrolysis toavoid the inactivation of cellulase.
     Controllable cellulase adsorption by pH adjustment: Cellulase adsorption anddesorption on the lignocellulosic substrate could be controlled by pH adjustment. Indetail, the acidic pHs were benefit to cellulase adsorption while the neutral and alkaline pHs were more conducive to cellulase desorption. Moreover, adjusting thepH could inactivate cellulase. But, after adjusting the pH back to4.8as long as at lowtemperatures, the cellulase activity could recover reversibly.
     Design of the strategy of cellulase recycling: After90min incubation with pH7solution and SAA-CC residues, substrate and enzyme mixtures after24h hydrolysis,the91.9%cellulase could be desorbed from solid residues. To substitute this valueinto the recovery rate predictive equation, it is estimated that70.9%of the cellulaseactivity could be recovered in first round readsorption by the employment of pHadjustment.
     Factors influence the cellulase quantitation: The influence of centrifugationon cellulase quantitation was depended on the centrifugal way. In detail, whenemploying the “aliquot centrifugation” way, the centrifugation did not influencecellulase concentration; but when following the “mixture centrifugation” way, the freeenzyme concentration would decrease. This negative effect could greatly influence thesubsequent quantitation process, such as increased the measured adsorption values,decreased the measured desorption values and accessibility values.
引文
[1] Grayson M. Biofuels. Nature,2011,474(7352): S1-S1
    [2] Fairley P. Introduction: Next generation biofuels. Nature,2011,474(7352):S2-S5
    [3] Tilman D, Socolow R, Foley JA, et al. Beneficial biofuels-the food, energy, andenvironment trilemma. Science,2009,325(5938):270-271
    [4] Farrell AE, Plevin RJ, Turner BT, et al. Ethanol can contribute to energy andenvironmental goals. Science,2006,311(5760):506-508
    [5] Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-inputhigh-diversity grassland biomass. Science,2006,314(5805):1598-1600
    [6] Fargione J, Hill J, Tilman D, et al. Land clearing and the biofuel carbon debt.Science,2008,319(5867):1235-1238
    [7] Sims REH, Mabee W, Saddler JN, et al. An overview of second generationbiofuel technologies. Bioresource. Technol.,2010,101(6):1570-1580
    [8] Ragauskas AJ, Williams CK, Davison BH, et al. The path forward for biofuelsand biomaterials. Science,2006,311(5760):484-489
    [9] Chheda JN, Huber GW, Dumesic JA. Liquid-phase catalytic processing ofbiomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew.Chem. Int. Edit.,2007,46(38):7164-7183
    [10] Lynd LR, Wyman CE, Gerngross TU. Biocommodity engineering. Biotechnol.Progr.,1999,15(5):777-793
    [11] Merino ST, Cherry J, Progress and challenges in enzyme development forbiomass utilization, in Advances in biochemical engineering/biotechnology, L.Olsson, Editor.2007, Springer Berlin. p.95-120.
    [12] Wingren A, Galbe M, Zacchi G. Techno-economic evaluation of producingethanol from softwood: comparison of SSF and SHF and identification ofbottlenecks. Biotechnol. Progr.,2003,19(4):1109-1117
    [13] Lynd LR, Weimer PJ, Zyl WHv, et al. Microbial cellulose utilization:fundamentals and biotechnology. Microbiol. Mol. Biol. R.,2002,66(3):506-577
    [14] Gauss WF, Suzuki S, Takagi M, Manufacture of alcohol from cellulosicmaterials using plural ferments, Japan, US Patent, US3990944,1976
    [15] hgren K, Bura R, Lesnicki G, et al. A comparison between simultaneoussaccharification and fermentation and separate hydrolysis and fermentationusing steam-pretreated corn stover. Process. Biochem.,2007,42(5):834-839
    [16] Tomás-Pejó E, Oliva JM, Ballesteros M, et al. Comparison of SHF and SSFprocesses from steam-exploded wheat straw for ethanol production byxylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiaestrains. Biotechnol. Bioeng.,2008,100(6):1122-1131
    [17] Chen HZ, Xu J, Li ZH. Temperature cycling to improve the ethanol productionwith solid state simultaneous saccharification and fermentation. Appl. Biochem.Micro+,2007,43(1):57-60
    [18] Jeffries TW, Grigoriev IV, Grimwood J, et al. Genome sequence of thelignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat.Biotechnol.,2007,25(3):319-326
    [19] Seo J-S, Chong H, Park HS, et al. The genome sequence of the ethanologenicbacterium Zymomonas mobilis ZM4. Nat. Biotechnol.,2005,23(1):63-68
    [20] Ho NWY, Chen Z, Brainard AP. Genetically engineered Saccharomyces yeastcapable of effective cofermentation of glucose and xylose. Appl. Environ.Microb.,1998,64(5):1852-1859
    [21] Zhang M, Eddy C, Deanda K, et al. Metabolic engineering of a pentosemetabolism pathway in ethanologenic Zymomonas mobilis. Science,1995,267(5195):240-243
    [22] Lawford HG, Rousseau JD. The effect of glucose on high-level xylosefermentations by recombinant Zymomonas in batch and fed-batch fermentations.Appl. Biochem. Biotech.,1999,77(1):235-249
    [23] Lawford HG, Rousseau JD. Performance testing of Zymomonas mobilismetabolically engineered for cofermentation of glucose, xylose, and arabinose.Appl. Biochem. Biotech.,2002,98-100(1):429-448
    [24] Hogsett DA, Ahn H-J, Bernardez TD, et al. Direct microbial conversion. Appl.Biochem. Biotech.,1992,34-35(1):527-541
    [25] Lynd LR. Overview and evaluation of fuel ethanol from cellulosic biomass:Technology, economics, the environment, and policy. Annu. Rev. Energ.Environ.,1996,21(1):403-465
    [26] Lynd LR, Laser MS, Bransby D, et al. How biotech can transform biofuels. Nat.Biotechnol.,2008,26(2):169-172
    [27] Huang R, Su R, Qi W, et al. Bioconversion of lignocellulose into bioethanol:process intensification and mechanism research. Bioenerg. Res.,2011,4(4):225-245
    [28] Kristensen JB, Felby C, J rgensen H. Yield-determining factors in high-solidsenzymatic hydrolysis of lignocellulose. Biotechnol. Biofuels.,2009,2(1):11
    [29] Pimenova NV, Hanley TR. Effect of corn stover concentration on rheologicalcharacteristics. Appl. Biochem. Biotech.,2004,114(1):347-360
    [30] Hodge DB, Karim MN, Schell DJ, et al. Soluble and insoluble solidscontributions to high-solids enzymatic hydrolysis of lignocellulose.Bioresource. Technol.,2008,99(18):8940-8948
    [31] Pan X. Role of functional groups in lignin inhibition of enzymatic hydrolysis ofcellulose to glucose. J. Biobased. Mater. Bio.,2008,2(1):25-32
    [32] Yang B, Wyman CE. BSA treatment to enhance enzymatic hydrolysis ofcellulose in lignin containing substrates. Biotechnol. Bioeng.,2006,94(4):611-617
    [33] J rgensen H, Vibe-Pedersen J, Larsen J, et al. Liquefaction of lignocellulose athigh-solids concentrations. Biotechnol. Bioeng.,2007,96(5):862-870
    [34] Zhang J, Chu D, Huang J, et al. Simultaneous saccharification and ethanolfermentation at high corn stover solids loading in a helical stirring bioreactor.Biotechnol. Bioeng.,2010,105(4):718-728
    [35] Hodge DB, Karim MN, Schell DJ, et al. Model-based fed-batch for high-solidsenzymatic cellulose hydrolysis. Appl. Biochem. Biotech.,2009,152(1):88-107
    [36] Liu K, Lin X, Yue J, et al. High concentration ethanol production from corncobresidues by fed-batch strategy. Bioresource. Technol.,2010,101(13):4952-4958
    [37] Zhang M, Wang F, Su R, et al. Ethanol production from high dry mattercorncob using fed-batch simultaneous saccharification and fermentation aftercombined pretreatment. Bioresource. Technol.,2010,101(13):4959-4964
    [38] J rgensen H, Kristensen JB, Felby C. Enzymatic conversion of lignocelluloseinto fermentable sugars: challenges and opportunities. Biofuel. Bioprod. Bior.,2007,1(2):119-134
    [39] Chundawat SPS, Beckham GT, Himmel ME, et al. Deconstruction oflignocellulosic biomass to fuels and chemicals. Annu. Rev. Chem. Biomol.,2011,2(1):121-145
    [40] Himmel ME, Ding S-Y, Johnson DK, et al. Biomass recalcitrance: engineeringplants and enzymes for biofuels production. Science,2007,315(5813):804-807
    [41] Somerville C, Youngs H, Taylor C, et al. Feedstocks for lignocellulosic biofuels.Science,2010,329(5993):790-792
    [42] Wang GS, Lee J-W, Zhu JY, et al. Dilute acid pretreatment of corncob forefficient sugar production. Appl. Biochem. Biotech.,2011,163(5):658-668
    [43] Garrote G, Yá ez R, Alonso JL, et al. Coproduction of oligosaccharides andglucose from corncobs by hydrothermal processing and enzymatic hydrolysis.Ind. Eng. Chem. Res.,2008,47(4):1336-1345
    [44] Himmel ME, Picataggio SK, Our challenge is to acquire deeper understandingof biomass recalcitrance and conversion, in Biomass Recalcitrance.2009,Blackwell. p.1-6.
    [45] Cosgrove DJ. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol.,2005,6(11):850-861
    [46] Iiyama K, Lam T, Stone BA. Covalent cross-links in the cell wall. Plant.Physiol.,1994,104(2):315-320
    [47] Himmel ME, Ruth MF, Wyman CE. Cellulase for commodity products fromcellulosic biomass. Curr. Opin. Biotech.,1999,10(4):358-364
    [48] Wyman CE, Dale BE, Elander RT, et al. Coordinated development of leadingbiomass pretreatment technologies. Bioresource. Technol.,2005,96(18):1959-1966
    [49] Nishiyama Y, Sugiyama J, Chanzy H, et al. Crystal structure and hydrogenbonding system in cellulose I from synchrotron X-ray and neutron fiberdiffraction. J Am. Chem. Soc.,2003,125(47):14300-14306
    [50] Ding S-Y, Himmel ME. The maize primary cell wall microfibril: a new modelderived from direct visualization. J. Agr. Food. Chem.,2006,54(3):597-606
    [51] Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bondingsystem in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. JAm. Chem. Soc.,2002,124(31):9074-9082
    [52] Qian X, Ding S-Y, Nimlos MR, et al. Atomic and electronic structures ofmolecular crystalline cellulose Iβ: a first-principles investigation.Macromolecules,2005,38(25):10580-10589
    [53] Matthews JF, Skopec CE, Mason PE, et al. Computer simulation studies ofmicrocrystalline cellulose Iβ. Carbohyd. Res.,2006,341(1):138-152
    [54] Saar BG, Zeng Y, Freudiger CW, et al. Label-free, real-time monitoring ofbiomass processing with stimulated raman scattering microscopy. Angew.Chem. Int. Edit.,2010,49(32):5476-5479
    [55] Yarbrough JM, Himmel ME, Ding S-Y. Plant cell wall characterization usingscanning probe microscopy techniques. Biotechnol. Biofuels.,2009,2(1):17
    [56] Chang VS, Holtzapple MT. Fundamental factors affecting biomass enzymaticreactivity. Appl. Biochem. Biotech.,2000,84-86(1):5-37
    [57] Pan X, Arato C, Gilkes N, et al. Biorefining of softwoods using ethanolorganosolv pulping: preliminary evaluation of process streams for manufactureof fuel-grade ethanol and co-products. Biotechnol. Bioeng.,2005,90(4):473-481
    [58] Kim TH, Kim JS, Sunwoo C, et al. Pretreatment of corn stover by aqueousammonia. Bioresource. Technol.,2003,90(1):39-47
    [59] Mosier N, Wyman C, Dale B, et al. Features of promising technologies forpretreatment of lignocellulosic biomass. Bioresource. Technol.,2005,96(6):673-686
    [60] Kumar R, Wyman CE. Cellulase adsorption and relationship to features of cornstover solids produced by leading pretreatments. Biotechnol. Bioeng.,2009,103(2):252-267
    [61] Kumar R, Wyman CE. Access of cellulase to cellulose and lignin for poplarsolids produced by leading pretreatment technologies. Biotechnol. Progr.,2009,25(3):807-819
    [62] Gray KA, Zhao L, Emptage M. Bioethanol. Curr. Opin. Chem. Biol.,2006,10(2):141-146
    [63] Alvira P, Tomás-PejóE, Ballesteros M, et al. Pretreatment technologies for anefficient bioethanol production process based on enzymatic hydrolysis: areview. Bioresource. Technol.,2010,101(13):4851-4861
    [64] Yang B, Wyman CE. Pretreatment: the key to unlocking low-cost cellulosicethanol. Biofuel. Bioprod. Bior.,2008,2(1):26-40
    [65] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review. Bioresource. Technol.,2002,83(1):1-11
    [66] Duff SJB, Murray WD. Bioconversion of forest products industry wastecellulosics to fuel ethanol: a review. Bioresource. Technol.,1996,55(1):1-33
    [67] Lloyd TA, Wyman CE. Combined sugar yields for dilute sulfuric acidpretreatment of corn stover followed by enzymatic hydrolysis of the remainingsolids. Bioresource. Technol.,2005,96(18):1967-1977
    [68] Jacobsen SE, Wyman CE. Cellulose and hemicellulose hydrolysis models forapplication to current and novel pretreatment processes. Appl. Biochem.Biotech.,2000,84-86(1):81-96
    [69] Oliva JM, Sáez F, Ballesteros I, et al. Effect of lignocellulosic degradationcompounds from steam explosion pretreatment on ethanol fermentation bythermotolerant yeast Kluyveromyces marxianus. Appl. Biochem. Biotech.,2003,105(1):141-153
    [70] Alfani F, Gallifuoco A, Saporosi A, et al. Comparison of SHF and SSFprocesses for the bioconversion of steam-exploded wheat straw. J. Ind.Microbiol. Biot.,2000,25(4):184-192
    [71] Brownell HH, Yu EKC, Saddler JN. Steam-explosion pretreatment of wood:effect of chip size, acid, moisture content and pressure drop. Biotechnol.Bioeng.,1986,28(6):792-801
    [72] Chundawat SPS, Chang L, Gunawan C, et al. Guayule as a feedstock forlignocellulosic biorefineries using ammonia fiber expansion (AFEX)pretreatment. Ind. Crop. Prod.,2012,37(1):486-492
    [73] Gao D, Chundawat SPS, Uppugundla N, et al. Binding characteristics ofTrichoderma reesei cellulases on untreated, ammonia fiber expansion (AFEX),and dilute-acid pretreated lignocellulosic biomass. Biotechnol. Bioeng.,2011,108(8):1788-1800
    [74] Li C, Cheng G, Balan V, et al. Influence of physico-chemical changes onenzymatic digestibility of ionic liquid and AFEX pretreated corn stover.Bioresource. Technol.,2011,102(13):6928-6936
    [75] Kim TH, Taylor F, Hicks KB. Bioethanol production from barley hull usingSAA (soaking in aqueous ammonia) pretreatment. Bioresource. Technol.,2008,99(13):5694-5702
    [76] Kim TH, Lee YY. Pretreatment of corn stover by soaking in aqueous ammoniaat moderate temperatures. Appl. Biochem. Biotech.,2007,137-140(1):81-92
    [77] Mosier N, Hendrickson R, Ho N, et al. Optimization of pH controlled liquid hotwater pretreatment of corn stover. Bioresource. Technol.,2005,96(18):1986-1993
    [78] Pérez JA, Ballesteros I, Ballesteros M, et al. Optimizing liquid hot waterpretreatment conditions to enhance sugar recovery from wheat straw forfuel-ethanol production. Fuel,2008,87(17–18):3640-3647
    [79] Laser M, Schulman D, Allen SG, et al. A comparison of liquid hot water andsteam pretreatments of sugar cane bagasse for bioconversion to ethanol.Bioresource. Technol.,2002,81(1):33-44
    [80] Zhao X, Cheng K, Liu D. Organosolv pretreatment of lignocellulosic biomassfor enzymatic hydrolysis. Appl. Microbiol. Biot.,2009,82(5):815-827
    [81] Gould JM. Alkaline peroxide delignification of agricultural residues to enhanceenzymatic saccharification. Biotechnol. Bioeng.,1984,26(1):46-52
    [82] Yang B, Boussaid A, Mansfield SD, et al. Fast and efficient alkaline peroxidetreatment to enhance the enzymatic digestibility of steam-exploded softwoodsubstrates. Biotechnol. Bioeng.,2002,77(6):678-684
    [83] Gould JM. Studies on the mechanism of alkaline peroxide delignification ofagricultural residues. Biotechnol. Bioeng.,1985,27(3):225-231
    [84] Simmons BA, LoquéD, Ralph J. Advances in modifying lignin for enhancedbiofuel production. Curr. Opin. Plant. Biol.,2010,13(3):312-319
    [85] Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu. Rev. Plant. Biol.,2003,54(1):519-546
    [86] Studer MH, DeMartini JD, Davis MF, et al. Lignin content in natural Populusvariants affects sugar release. P. Natl. Acad. Sci. USA,2011,108(15):6300-6305
    [87] Akin DE. Plant cell wall aromatics: influence on degradation of biomass.Biofuel. Bioprod. Bior.,2008,2(4):288-303
    [88] Hamelinck CN, Hooijdonk Gv, Faaij AP. Ethanol from lignocellulosic biomass:techno-economic performance in short-, middle-and long-term. Biomass.Bioenerg.,2005,28(4):384-410
    [89] Vega-Sánchez ME, Ronald PC. Genetic and biotechnological approaches forbiofuel crop improvement. Curr. Opin. Biotech.,2010,21(2):218-224
    [90] Sticklen MB. Plant genetic engineering for biofuel production: towardsaffordable cellulosic ethanol. Nat. Rev. Genet.,2008,9(6):433-443
    [91] Chen F, Dixon RA. Lignin modification improves fermentable sugar yields forbiofuel production. Nat. Biotechnol.,2007,25(7):759-761
    [92] Mansfield SD, Kang K-Y, Chapple C. Designed for deconstruction–poplartrees altered in cell wall lignification improve the efficacy of bioethanolproduction. New. Phytol.,2012,194(1):91-101
    [93] Weng J-K, Li X, Bonawitz ND, et al. Emerging strategies of lignin engineeringand degradation for cellulosic biofuel production. Curr. Opin. Biotech.,2008,19(2):166-172
    [94] Jones L, Ennos AR, Turner SR. Cloning and characterization of irregularxylem4(irx4): a severely lignin-deficient mutant of Arabidopsis. Plant. J.,2001,26(2):205-216
    [95] Franke R, Hemm MR, Denault JW, et al. Changes in secondary metabolism anddeposition of an unusual lignin in the ref8mutant of Arabidopsis. Plant. J.,2002,30(1):47-59
    [96] Hongoh Y, Sharma VK, Prakash T, et al. Complete genome of the unculturedTermite Group1bacteria in a single host protist cell. P. Natl. Acad. Sci. USA,2008,105(14):5555-5560
    [97] Scharf ME, Boucias DG. Potential of termite-based biomass pre-treatmentstrategies for use in bioethanol production. Insect. Sci.,2010,17(3):166-174
    [98] Geib SM, Filley TR, Hatcher PG, et al. Lignin degradation in wood-feedinginsects. P. Natl. Acad. Sci. USA,2008,105(35):12932-12937
    [99] Warnecke F, Luginbühl P, Ivanova N, et al. Metagenomic and functionalanalysis of hindgut microbiota of a wood-feeding higher termite. Nature,2007,450(7169):560-565
    [100] Willis JD, Oppert C, Jurat-Fuentes JL. Methods for discovery andcharacterization of cellulolytic enzymes from insects. Insect. Sci.,2010,17(3):184-198
    [101] Shi W, Ding S-Y, Yuan JS. Comparison of insect gut cellulase and xylanaseactivity across different insect species with distinct food sources. Bioenerg.Res.,2011,4(1):1-10
    [102] Vrs anská M, Biely P. The cellobiohydrolase I from Trichoderma reesei QM9414: action on cello-oligosaccharides. Carbohyd. Res.,1992,227(0):19-27
    [103] Rouvinen J, Bergfors T, Teeri T, et al. Three-dimensional structure ofcellobiohydrolase II from Trichoderma reesei. Science,1990,249(4967):380-386
    [104] Esterbauer H, Steiner W, Labudova I, et al. Production of Trichodermacellulase in laboratory and pilot scale. Bioresource. Technol.,1991,36(1):51-65
    [105] Nieves RA, Ehrman CI, Adney WS, et al. Survey and analysis of commercialcellulase preparations suitable for biomass conversion to ethanol. World. J.Microb. Biot.,1998,14(2):301-304
    [106] Zhang Y-HP, Lynd LR. Toward an aggregated understanding of enzymatichydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng.,2004,88(7):797-824
    [107] Vinzant TB, Adney WS, Decker SR, et al. Fingerprinting Trichoderma reeseihydrolases in a commercial cellulase preparation. Appl. Biochem. Biotech.,2001,91-93(1):99-107
    [108] Lee HJ, Jr. RMB. A comparative structural characterization of twocellobiohydrolases from Trichoderma reesei: a high resolution electronmicroscopy study. J. Biotechnol.,1997,57(1-3):127-136
    [109] Linder M, Tee TT. The roles and function of cellulose-binding domains. J.Biotechnol.,1997,57(1-3):15-28
    [110] Liu Y-S, Zeng Y, Luo Y, et al. Does the cellulose-binding module move on thecellulose surface? Cellulose,2009,16(4):587-597
    [111] Xu Q, Song Q, Ai X, et al. Engineered carbohydrate-binding module (CBM)protein-suspended single-walled carbon nanotubes in water. Chem. Commun.,2009(3):337-339
    [112] Dagel DJ, Liu Y-S, Zhong L, et al. In situ imaging of singlecarbohydrate-binding modules on cellulose microfibrils. J. Phys. Chem. B.,2010,115(4):635-641
    [113] Igarashi K, Uchihashi T, Koivula A, et al. Traffic jams reduce hydrolyticefficiency of cellulase on cellulose surface. Science,2011,333(6047):1279-1282
    [114] Zhang Y-HP, Himmel ME, Mielenz JR. Outlook for cellulase improvement:screening and selection strategies. Biotechnol. Adv.,2006,24(5):452-481
    [115] Suurn kki A, Tenkanen M, Siika-aho M, et al. Trichoderma reesei cellulasesand their core domains in the hydrolysis and modification of chemical pulp.Cellulose,2000,7(2):189-209
    [116] Divne C, Stahlberg J, Reinikainen T, et al. The three-dimensional crystalstructure of the catalytic core of cellobiohydrolase I from Trichoderma reesei.Science,1994,265(5171):524-528
    [117] Divne C, Sinning I, St hlberg J, et al. Crystallization and preliminary X-raystudies on the core proteins of cellobiohydrolase I and endoglucanase I fromTrichoderma reesei. J. Mol. Biol.,1993,234(3):905-907
    [118] Arantes V, Saddler JN. Access to cellulose limits the efficiency of enzymatichydrolysis: the role of amorphogenesis. Biotechnol. Biofuels.,2010,3(1):4
    [119] Fan LT, Lee Y-H, Beardmore DH. Mechanism of the enzymatic hydrolysis ofcellulose: effects of major structural features of cellulose on enzymatichydrolysis. Biotechnol. Bioeng.,1980,22(1):177-199
    [120] Mandels M, Reese ET. Fungal cellulases and the microbial decomposition ofcellulosic fabric. J. Ind. Microbiol. Biot.,1999,22(4):225-240
    [121] Reese ET, Siu RGH, Levinson HS. The biological degradation of solublecellulose derivatives and its relationship to the mechanism of cellulosehydrolysis. J. Bacteriol.,1950,59(4):485-497
    [122] Ramos LP, Nazhad MM, Saddler JN. Effect of enzymatic hydrolysis on themorphology and fine structure of pretreated cellulosic residues. Enzyme.Microb. Tech.,1993,15(10):821-831
    [123] Kleman-Leyer KM, Gilkes NR, R C Miller J, et al. Changes in themolecular-size distribution of insoluble celluloses by the action of recombinantCellulomonas fimi cellulases. Biochem. J.,1994,302(2):463–469
    [124] Kleman-Leyer KM, Siika-Aho M, Teeri TT, et al. The cellulases endoglucanaseI and cellobiohydrolase II of Trichoderma reesei act synergistically tosolubilize native cotton cellulose but not to decrease its molecular size. Appl.Environ. Microb.,1996,62(8):2883-7
    [125] Zhang M, Su R, Qi W, et al. Enzymatic hydrolysis of cellulose with differentcrystallinities studied by means of SEC-MALLS. Chinese. J. Chem. Eng.,2011,19(5):773-778
    [126] Qing Q, Wyman CE. Supplementation with xylanase and β-xylosidase toreduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of celluloseand pretreated corn stover. Biotechnol. Biofuels.,2011,4(1):18
    [127] Kumara R, Wyman CE. Effect of xylanase supplementation of cellulase ondigestion of corn stover solids prepared by leading pretreatment technologies.Bioresource. Technol.,2009,100(18):4203-4213
    [128] Zhang M, Su R, Qi W, et al. Enhanced enzymatic hydrolysis of lignocelluloseby optimizing enzyme complexes. Appl. Biochem. Biotech.,2010,160(5):1407-1414
    [129] Berlin A, Maximenko V, Gilkes N, et al. Optimization of enzyme complexes forlignocellulose hydrolysis. Biotechnol. Bioeng.,2007,97(2):287-296
    [130] Kumar R, Wyman CE. Effect of enzyme supplementation at moderate cellulaseloadings on initial glucose and xylose release from corn stover solids pretreatedby leading technologies. Biotechnol. Bioeng.,2009,102(2):457-467
    [131] Tu M, Saddler JN. Potential enzyme cost reduction with the addition ofsurfactant during the hydrolysis of pretreated softwood. Appl. Biochem.Biotech.,2010,161(1):274-287
    [132] Tu M, Zhang X, Paice M, et al. The potential of enzyme recycling during thehydrolysis of a mixed softwood feedstock. Bioresource. Technol.,2009,100(24):6407-6415
    [133] Tu M, Chandra RP, Saddler JN. Recycling cellulases during the hydrolysis ofsteam exploded and ethanol pretreated lodgepole pine. Biotechnol. Progr.,2007,23(5):1130-1137
    [134] Seo D-J, Fujita H, Sakoda A. Effects of a non-ionic surfactant, Tween20,on adsorption/desorption of saccharification enzymes onto/from lignocellulosesand saccharification rate. Adsorption,2011,17(5):813-822
    [135] Otter DE, Munro PA, Scott GK, et al. Desorption of Trichoderma reeseicellulase from cellulose by a range of desorbents. Biotechnol. Bioeng.,1989,34(3):291-298
    [136] Khanal SK, Montalbo M, Leeuwen JHv, et al. Ultrasound enhanced glucoserelease from corn in ethanol plants. Biotechnol. Bioeng.,2007,98(5):978-985
    [137] Nitayavardhana S, Rakshit SK, Grewell D, et al. Ultrasound pretreatment ofcassava chip slurry to enhance sugar release for subsequent ethanol production.Biotechnol. Bioeng.,2008,101(3):487-496
    [138] Li C, Matsunaga T, Seki K, et al. Effects of sparging gas properties andsubstrate size on enzymatic hydrolysis of waste paper in an ultrasonic externalloop airlift. Chem. Eng. Technol.,2006,29(9):1090-1096
    [139] Li C, Yoshimoto M, Ogata H, et al. Effects of ultrasonic intensity and reactorscale on kinetics of enzymatic saccharification of various waste papers incontinuously irradiated stirred tanks. Ultrason. Sonochem.,2005,12(5):373-384
    [140] Zhang J, Wang S, Xu B, et al. Effect of alternating magnetic field treatments onenzymatic parameters of cellulase. J. Sci. Food. Agr.,2012,92(7):1384-1388
    [141] Mandels M, Kostick J, Parizek R. The use of adsorbed cellulase in thecontinuous conversion of cellulose to glucose. J. Polymer. Sci. Polymer. Symp.,1971,36(1):445-459
    [142] Castanon M, Wilke CR. Adsorption and recovery of cellulases duringhydrolysis of newspaper. Biotechnol. Bioeng.,1980,22(5):1037-1053
    [143] Singh A, Kumar PKR, Schügerl K. Adsorption and reuse of cellulases duringsaccharification of cellulosic materials. J. Biotechnol.,1991,18(3):205-212
    [144] Vallander L, Eriksson K-E. Enzyme recirculation in saccharification oflignocellulosic materials. Enzyme. Microb. Tech.,1987,9(12):714-720
    [145] Girard DJ, Converse AO. Recovery of cellulase from lignaceous hydrolysisresidue. Appl. Biochem. Biotech.,1993,39-40(1):521-533
    [146] Ramos LP, Breuil C, Saddler JN. The use of enzyme recycling and theinfluence of sugar accumulation on cellulose hydrolysis by Trichodermacellulases. Enzyme. Microb. Tech.,1993,15(1):19-25
    [147] Ramos LP, Saddler JN. Enzyme recycling during fed-batch hydrolysis ofcellulose derived from steam-exploded Eucalyptus viminalis. Appl. Biochem.Biotech.,1994,45-46(1):193-207
    [148] Lee D, Yu AHC, Saddler JN. Evaluation of cellulase recycling strategies for thehydrolysis of lignocellulosic substrates. Biotechnol. Bioeng.,1995,45(4):328-336
    [149] Qi B, Chen X, Su Y, et al. Enzyme adsorption and recycling during hydrolysisof wheat straw lignocellulose. Bioresource. Technol.,2011,102(3):2881-2889
    [150] Tu M, Chandra RP, Saddler JN. Evaluating the distribution of cellulases and therecycling of free cellulases during the hydrolysis of lignocellulosic substrates.Biotechnol. Progr.,2007,23(2):398-406
    [151] Lu Y, Yang B, Gregg D, et al. Cellulase adsorption and an evaluation of enzymerecycle during hydrolysis of steam-exploded softwood residues. Appl. Biochem.Biotech.,2002,98-100(1):641-654
    [152] Steele B, Raj S, Nghiem J, et al. Enzyme recovery and recycling followinghydrolysis of ammonia fiber explosion-treated corn stover. Appl. Biochem.Biotech.,2005,124(1):901-910
    [153] Qi B, Luo J, Chen G, et al. Application of ultrafiltration and nanofiltration forrecycling cellulase and concentrating glucose from enzymatic hydrolyzate ofsteam exploded wheat straw. Bioresource. Technol.,2012,104(0):466-472
    [154] Pristavka AA, Salovarova VP, Zacchi G, et al. Enzyme recovery in high-solidsenzymatic hydrolysis of steam-pretreated willow: requirements for the enzymecomposition. Appl. Biochem. Micro+,2000,36(3):237-244
    [155] Gan Q, Allen SJ, Taylor G. Design and operation of an integrated membranereactor for enzymatic cellulose hydrolysis. Biochem. Eng. J.,2002,12(3):223-229
    [156] Yang S, Ding W, Chen H. Enzymatic hydrolysis of rice straw in a tubularreactor coupled with UF membrane. Process. Biochem.,2006,41(3):721-725
    [157] Bélafi-Bakó K, Koutinas A, Nemestóthy N, et al. Continuous enzymaticcellulose hydrolysis in a tubular membrane bioreactor. Enzyme. Microb. Tech.,2006,38(1–2):155-161
    [158] Zhang M, Su R, Li Q, et al. Enzymatic saccharification of pretreated cornstover in a fed-batch membrane bioreactor. Bioenerg. Res.,2011,4(2):134-140
    [159] Johansson A-C, Mosbach K. Acrylic copolymers as matrices for theimmobilization of enzymes: I. covalent binding or entrapping of variousenzymes to bead-formed acrylic copolymers. Biochim. Biophys. Acta.Enzymol.,1974,370(2):339-347
    [160] Johansson A-C, Mosbach K. Acrylic copolymers as matrices for theimmobilization of enzymes: II. the effect of a hydrophobic microenvironmenton enzyme reactions studied with alcohol dehydrogenase immobilized todifferent acrylic copolymers. Biochim. Biophys. Acta. Enzymol.,1974,370(2):348-353
    [161] Spagna G, Andreani F, Salatelli E, et al. Immobilization of the glycosidases:-L-arabinofuranosidase and β-D-glucopyranosidase from Aspergillus niger ona chitosan derivative to increase the aroma of wine. Part II. Enzyme Microb.Technol.,1998,23(7-8):413-421
    [162] Gallifuoco A, D'Ercole L, Alfani F, et al. On the use of chitosan-immobilizedβ-glucosidase in wine-making: kinetics and enzyme inhibition. ProcessBiochem.,1998,33(2):163-168
    [163] Juang RS, Wu FC, Tseng RL. Use of chemically modified chitosan beads forsorption and enzyme immobilization. Adv. Environ. Res.,2002,6(2):171-177
    [164] Shen XL, Xia LM. Production and immobilization of cellobiase fromAspergillus niger ZU-07. Process Biochem.,2004,39(11):1363-1367
    [165] Abdel-Fattah AF, Osman MY, Abdel-Naby MA. Production and immobilizationof cellobiase from Aspergillus niger A20. Chem. Eng. J.,1997,68(2-3):189-196
    [166] Tu MB, Zhang X, Kurabi A, et al. Immobilization of β-glucosidase on EupergitC for lignocellulose hydrolysis. Biotechnol. Lett,2006,28(3):151-156
    [167] Wang P, Hu X, Cook S, et al. Influence of silica-derived nano-supporters oncellobiase after immobilization. Appl. Biochem. Biotech.,2009,158(1):88-96
    [168] Karagulyan HK, Gasparyan VK, Decker SR. Immobilization of fungalβ-glucosidase on silica gel and kaolin carriers. Appl. Biochem. Biotechnol.,2008,146(1-3):39-47
    [169] Azevedo H, Ramos LP, Cavaco-Paulo A. Desorption of cellulases from cottonpowder. Biotechnol. Lett.,2001,23(17):1445-1448
    [170] Rad BL, Yazdanparast R. Desorption of the cellulase systems of Trichodermareesei and a Botrytis sp. from Avicel. Biotechnology Techniques,1998,12(9):693-696
    [171] Zhu Z, Sathitsuksanoh N, Zhang Y-HP. Direct quantitative determination ofadsorbed cellulase on lignocellulosic biomass with its application to studycellulase desorption for potential recycling. Analyst,2009,134(11):2267-2272
    [172] Hu G, Heitmann JA, Rojas JOJ, et al. Monitoring cellulase protein adsorptionand recovery using SDS-PAGE. Ind. Eng. Chem. Res.,2010,49(18):8333-8338
    [173] Karag z P, Rocha IV, zkan M, et al. Alkaline peroxide pretreatment ofrapeseed straw for enhancing bioethanol production by same vesselsaccharification and co-fermentation. Bioresource. Technol.,2012,104(0):349-357
    [174] Silverstein RA, Chen Y, Sharma-Shivappa RR, et al. A comparison of chemicalpretreatment methods for improving saccharification of cotton stalks.Bioresource. Technol.,2007,98(16):3000-3011
    [175] Saha BC, Cotta MA. Comparison of pretreatment strategies for enzymaticsaccharification and fermentation of barley straw to ethanol. New. Biotechnol.,2010,27(1):10-16
    [176] Selig MJ, Vinzant TB, Himmel ME, et al. The effect of lignin removal byalkaline peroxide pretreatment on the susceptibility of corn stover to purifiedcellulolytic and xylanolytic enzymes. Appl. Biochem. Biotech.,2009,155(1):94-103
    [177] Banerjee G, Car S, Liu T, et al. Scale-up and integration of alkaline hydrogenperoxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.Biotechnol. Bioeng.,2012,109(4):922-931
    [178] Chen H, Han Y, Xu J. Simultaneous saccharification and fermentation of steamexploded wheat straw pretreated with alkaline peroxide. Process. Biochem.,2008,43(12):1462-1466
    [179] Kumar L, Chandra R, Saddler JN. Influence of steam pretreatment severity onpost-treatments used to enhance the enzymatic hydrolysis of pretreatedsoftwoods at low enzyme loadings. Biotechnol. Bioeng.,2011,108(10):2300-2311
    [180] Sun R, Tomkinson J, Zhu W, et al. Delignification of maize stems byperoxymonosulfuric acid, peroxyformic acid, peracetic acid, and hydrogenperoxide.1. physicochemical and structural characterization of the solubilizedlignins. J. Agr. Food. Chem.,2000,48(4):1253-1262
    [181] Sun R-C, Sun X-F, Wen J-L. Fractional and structural characterization oflignins isolated by alkali and alkaline peroxide from barley straw. J. Agr. Food.Chem.,2001,49(11):5322-5330
    [182] Fang JM, Sun RC, Tomkinson J. Isolation and characterization ofhemicelluloses and cellulose from rye straw by alkaline peroxide extraction.Cellulose,2000,7(1):87-107
    [183] Segal L, Creely JJ, Jr AEM, et al. An empirical method for estimating thedegree of crystallinity of native cellulose using the X-ray diffractometer. Text.Res. J.,1959,29(10):786-794
    [184] Huang R, Su R, Qi W, et al. Understanding the key factors for enzymaticconversion of pretreated lignocellulose by partial least square analysis.Biotechnol. Progr.,2010,26(2):384-392
    [185] Montalbo-Lomboy M, Khanal SK, Leeuwen JHv, et al. Simultaneoussaccharification and fermentation and economic evaluation of ultrasonic and jetcooking pretreatment of corn slurry. Biotechnol. Progr.,2011,27(6):1561-1569
    [186] Montalbo-Lomboy M, Khanal SK, Leeuwen JHv, et al. Ultrasonic pretreatmentof corn slurry for saccharification: a comparison of batch and continuoussystems. Ultrason. Sonochem.,2010,17(5):939-946
    [187] Montalbo-Lomboy M, Johnson L, Khanal SK, et al. Sonication of sugary-2corn: a potential pretreatment to enhance sugar release. Bioresource. Technol.,2010,101(1):351-358
    [188] Montalbo-Lomboy M, Johnson L, Khanal SK, et al. Ultrasound improvedethanol fermentation from cassava chips in cassava-based ethanol plants.Bioresource. Technol.,2010,101(8):2741-2747
    [189] Imai M, Ikari K, Suzuki I. High-performance hydrolysis of cellulose usingmixed cellulase species and ultrasonication pretreatment. Biochem. Eng. J.,2004,17(2):79-83
    [190] Velmurugan R, Muthukumar K. Ultrasound-assisted alkaline pretreatment ofsugarcane bagasse for fermentable sugar production: optimization throughresponse surface methodology. Bioresource. Technol.,2012,112(0):293-299
    [191] Gadhe JB, Gupta RB, Elder T. Surface modification of lignocellulosic fibersusing high-frequency ultrasound. Cellulose,2006,13(1):9-22
    [192] G.M. T, S. Y, N. T. The Effect of ultrasonic irradiation on delignificationreactions. ii. behavior of lignin under ultrasonic irradiation. MokuzaiGakkaishi,1985,31(5):388-396
    [193] Chundawat SPS, Donohoe BS, Sousa LdC, et al. Multi-scale visualization andcharacterization of lignocellulosic plant cell wall deconstruction duringthermochemical pretreatment. Energ. Environ. Sci.,2011,4(3):973-984
    [194] Khanal SK, Grewell D, Sung S, et al. Ultrasound applications in wastewatersludge pretreatment: a review. Crit. Rev. Env. Sci. Tec.,2007,37(4):277-313
    [195] Kwiatkowska B, Bennett J, Akunna J, et al. Stimulation of bioprocesses byultrasound. Biotechnol. Adv.,2011,29(6):768-780
    [196] Rokhina EV, Lens P, Virkutyte J. Low-frequency ultrasound in biotechnology:state of the art. Trends. Biotechnol.,2009,27(5):298-306
    [197] Wyman CE. What is (and is not) vital to advancing cellulosic ethanol. Trends.Biotechnol.,2007,25(4):153-157
    [198] Dasari RK, Dunaway K, Berson RE. A scraped surface bioreactor forenzymatic saccharification of pretreated corn stover slurries. Energ. Fuel.,2008,23(1):492-497
    [199] Jorgensen H, Vibe-Pedersen J, Larsen J, et al. Liquefaction of lignocellulose athigh-solids concentrations. Biotechnol. Bioeng.,2007,96(5):862-870
    [200] Rudolf A, Alkasrawi M, Zacchi G, et al. A comparison between batch andfed-batch simultaneous saccharification and fermentation of steam pretreatedspruce. Enzyme Microb. Technol.,2005,37(2):195-204
    [201] Ohgren K, Bengtsson O, Gorwa-Grauslund MF, et al. Simultaneoussaccharification and co-fermentation of glucose and xylose in steam-pretreatedcorn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J.Biotechnol.,2006,126(4):488-498
    [202] Jin M, Lau MW, Balan V, et al. Two-step SSCF to convert AFEX-treatedswitchgrass to ethanol using commercial enzymes and Saccharomycescerevisiae424A(LNH-ST). Bioresource. Technol.,2010,101(21):8171-8178
    [203] Mores WD, Knutsen JS, Davis RH. Cellulase recovery via membrane filtration.Applied Biochemistry and Biotechnology,2001,91-93(1):297-309
    [204] Knutsen JS, Davis RH. Combined sedimentation and filtration process forcellulase recovery during hydrolysis of lignocellulosic biomass. AppliedBiochemistry and Biotechnology,2002,98-100(1):1161-1172
    [205] Tu M, Zhang X, Kurabi A, et al. Immobilization of β-glucosidase on Eupergit Cfor lignocellulose hydrolysis. Biotechnol. Lett.,2006,28(3):151-156
    [206] Suslick KS. Sonochemistry. Science,1990,247(4949):1439-1445
    [207] Adewuyi YG. Sonochemistry: environmental science and engineeringapplications. Ind. Eng. Chem. Res.,2001,40(22):4681-4715
    [208] Chakma S, Moholkar VS. Mechanistic features of ultrasonic desorption ofaromatic pollutants. Chem. Eng. J.,2011,175(0):356-367
    [209] Hamdaoui O, Naffrechoux E. An investigation of the mechanisms ofultrasonically enhanced desorption. AIChE. J.,2007,53(2):363-373
    [210] Ghose TK. Measurement of cellulase activities. Pure. Appl. Chem.,1987,59:257-268
    [211] Bradford MM. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding. Anal.Biochem.,1976,72(1-2):248-254
    [212] Goodman LP, Dugan LR. The effect of sonication on lipase activity. Lipids,1970,5(3):362-365
    [213] zbek B, ülgen K. The stability of enzymes after sonication. Process.Biochem.,2000,35(9):1037-1043
    [214] Kashkooli HA, Rooney JA, Roxby R. Effects of ultrasound on catalase andmalate dehydrogenase. J. Acoust. Soc. Am.,1980,67(5):1798-1801
    [215] Dunn F, Macleod RM. Effects of intense noncavitating ultrasound on selectedenzymes. J. Acoust. Soc. Am.,1968,44(4):932-940
    [216] Du R, Su R, Li X, et al. Controlled adsorption of cellulase onto pretreatedcorncob by pH adjustment. Cellulose,2012,19(2):371-380
    [217] Zhu Z, Sathitsuksanoh N, Zhang YHP. Direct quantitative determination ofadsorbed cellulase on lignocellulosic biomass with its application to studycellulase desorption for potential recycling. Analyst,2009,134(11):2267-2272
    [218] Margeot A, Hahn-H gerdal B, Edlund M, et al. New improvements forlignocellulosic ethanol. Curr. Opin. Biotech.,2009,20(3):372-380
    [219] Banerjee G, Scott-Craig JS, Walton JD. Improving enzymes for biomassconversion: a basic research perspective. Bioenerg. Res.,2010,3(1):82-92
    [220] Gupta R, Lee YY. Investigation of biomass degradation mechanism inpretreatment of switchgrass by aqueous ammonia and sodium hydroxide.Bioresource. Technol.,2010,101(21):8185-8191
    [221] Kumar R, Wyman CE. Does change in accessibility with conversion depend onboth the substrate and pretreatment technology? Bioresource. Technol.,2009,100(18):4193-4202
    [222] Kumar S, Gupta R, Lee YY, et al. Cellulose pretreatment in subcritical water:effect of temperature on molecular structure and enzymatic reactivity.Bioresource. Technol.,2010,101(4):1337-1347
    [223] Lamsal BP, Madl R, Tsakpunidis K. Comparison of feedstock pretreatmentperformance and its effect on soluble sugar availability. Bioenerg. Res.,2011,4(3):193-200
    [224] Gregg DJ, Saddler JN. Factors affecting cellulose hydrolysis and the potentialof enzyme recycle to enhance the efficiency of an integrated wood to ethanolprocess. Biotechnol. Bioeng.,1996,51(4):375-383
    [225] J ger G, Wu Z, Garschhammer K, et al. Practical screening of purifiedcellobiohydrolases and endoglucanases with-cellulose and specification ofhydrodynamics. Biotechnol. Biofuels.,2010,3(1):18
    [226] Bansal P, Hall M, Realff MJ, et al. Modeling cellulase kinetics onlignocellulosic substrates. Biotechnol. Adv.,2009,27(6):833-848
    [227] Dourado F, Mota M, Pala H, et al. Effect of cellulase adsorption on the surfaceand interfacial properties of cellulose. Cellulose,1999,6(4):265-282
    [228] Gerber PJ, Joyce TW, Heitmann JA, et al. Adsorption of a Trichoderma reeseiendoglucanase and cellobiohydrolase onto bleached Kraft fibres. Cellulose,1997,4(4):255-268
    [229] Palonen H, Tjerneld F, Zacchi G, et al. Adsorption of Trichoderma reesei CBH Iand EG II and their catalytic domains on steam pretreated softwood andisolated lignin. J. Biotechnol.,2004,107(1):65-72
    [230] Zhu Z, Sathitsuksanoh N, Vinzant T, et al. Comparative study of corn stoverpretreated by dilute acid and cellulose solvent-based lignocellulosefractionation: enzymatic hydrolysis, supramolecular structure, and substrateaccessibility. Biotechnol. Bioeng.,2009,103(4):715-724
    [231] Tu M, Pan X, Saddler JN. Adsorption of cellulase on cellulolytic enzyme ligninfrom lodgepole pine. J. Agr. Food. Chem.,2009,57(17):7771-7778
    [232] Ryu DDY, Kim C, Mandels M. Competitive adsorption of cellulase componentsand its significance in a synergistic mechanism. Biotechnol. Bioeng.,1984,26(5):488-496
    [233] Kyriacou A, Neufeld RJ, MacKenzie CR. Effect of physical parameters on theadsorption characteristics of fractionated Trichoderma reesei cellulasecomponents. Enzyme. Microb. Tech.,1988,10(11):675-681
    [234] Ding H. Adsorption and synergism of cellulases during hydrolysis of cellulosicmaterials.[Ph. D. Thesis], University of California, Davis,2000
    [235] Knutsen JS, Davis RH. Cellulase retention and sugar removal by membraneultrafiltration during lignocellulosic biomass hydrolysis. Appl. Biochem.Biotech.,2004,114(1):585-599
    [236] Zhang MJ, Su RX, Qi W, et al. Enhanced enzymatic hydrolysis oflignocellulose by optimizing enzyme complexes. Appl. Biochem. Biotech.,2010,160(5):1407-1414
    [237] Converse AO, Ooshima H, Burns DS. Kinetics of enzymatic hydrolysis oflignocellulosic materials based on surface area of cellulose accessible toenzyme and enzyme adsorption on lignin and cellulose. Appl. Biochem.Biotech.,1990,24-25(1):67-73
    [238] Gilkes NR, Jervis E, Henrissat B, et al. The adsorption of a bacterial cellulaseand its two isolated domains to crystalline cellulose. J Biol. Chem.,1992,267(10):6743-6749
    [239] Bommarius AS, Katona A, Cheben SE, et al. Cellulase kinetics as a function ofcellulose pretreatment. Metab. Eng.,2008,10(6):370-381
    [240] Nakagame S, Chandra RP, Kadla JF, et al. The isolation, characterization andeffect of lignin isolated from steam pretreated Douglas-fir on the enzymatichydrolysis of cellulose. Bioresource. Technol.,2011,102(6):4507-4517
    [241] Pribowo A, Arantes V, Saddler JN. The adsorption and enzyme activity profilesof specific Trichoderma reesei cellulase/xylanase components whenhydrolyzing steam pretreated corn stover. Enzyme. Microb. Tech.,2012,50(3):195-203
    [242] Kumar L, Arantes V, Chandra R, et al. The lignin present in steam pretreatedsoftwood binds enzymes and limits cellulose accessibility. Bioresource.Technol.,2012,103(1):201-208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700