微波辅助下木质纤维素降解与溶解过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维素主要是由纤维素、半纤维素和木质素构成的,作为人类可利用的最丰富的天然可再生资源,木质纤维素中的半纤维素、纤维素经水解后,分别可以获得以木糖为主的五碳糖及以葡萄糖为主的六碳糖。玉米秸秆中纤维素含量约为30%,半纤维素含量约为17%,木质素含量约为17%,经过降解可以将生物质转化为还原糖,利用水解生成的糖进一步发酵可以制取酒精、糠醛等高附加值的化工原料。本文重点讨论了不同降解方法对纯纤维素和玉米秸秆降解、溶解过程的影响,得出如下结论:
     首先,探讨了盐酸/H2O2催化下,常规加热与微波加热条件下纯纤维素降解过程的规律。通过单因素实验,确定了微波-盐酸/H2O2耦合条件下,催化降解纯纤维素最佳工艺条件为:催化剂体积分数为5.0%,纯纤维素质量与水溶液体积比为300mg:100ml水溶液,搅拌速度200r/min,反应温度100℃,反应时间2.0h,还原糖得量为2.15mg/ml。利用IR、SEM对纯纤维素降解后的固体剩余物进行了分析,IR分析结果表明,微波加热与常规加热下固体降解剩余物的结构相似;而SEM分析表明:微波加热较常规加热更大程度地促进纤维素中的糖苷键断裂,因而提高了还原糖的产量。
     其次,探讨了微波加热下,磷钨杂多酸为催化剂,玉米秸秆的降解过程。通过单因素实验,确定了最适宜的反应条件为:玉米秸秆质量:杂多酸质量:水溶液体积为5.0g:1.0g:200ml,反应温度90℃,反应时间50min,此条件下,玉米秸秆的降解率为46.5%。
     第三,研究了常规加热下,离子液体(1-丁基-3甲基咪唑氯盐)在酸性(盐酸)条件下,玉米秸秆的降解过程。通过单因素实验、正交试验及SAS软件对数据进行优化和回归,确定了该体系下玉米秸秆降解的适宜工艺条件为:玉米秸秆质量与离子溶液体积比5.0g:100ml,催化剂体积分数为7.4%,反应温度为85℃,反应时间2.5h,玉米秸秆的降解率为65.8%,比水溶液体系下的玉米秸秆降解率提高了48.7%。
     最后,探讨了玉米秸秆在两种碱性体系下的溶解过程及规律:(1)微波加热条件下,6%NaOH/4%Urea/90%水体系下,玉米秸秆溶解的最适宜参数:液固比25ml:1.0g,溶解时间1.0h,溶解温度60℃,玉米秸秆溶解率为48.6%。在常规加热条件下,玉米秸秆溶解最适宜参数:液固比25ml:1.0g,溶解时间6.0h,溶解温度60℃,溶解率为46.7%,并且通过对玉米秸秆溶解后的固体剩余物进行IR和SEM分析,发现微波体系和常规加热体系下,固体降解剩余物的结构相似,玉米秸秆在微波加热体系下的溶解情况优于常规加热体系下的溶解情况。
     (2)确定了常规加热条件下,6%NaOH/5%Thiourea/89%水体系下,玉米秸秆溶解的最适宜参数:液固比35ml:1.0g,溶解时间9.0h,溶解温度50℃,玉米秸秆的溶解率为54.4%。微波加热下,液固比35ml:1.0g,溶解时间1.0h,溶解温度50℃时,得到玉米秸秆的溶解率为48.0%。通过玉米秸秆溶解后的固体剩余物的IR和SEM分析表明,玉米秸秆在微波加热下的溶解性比常规加热下的溶解性好。
Ligno cellulose contains cellulose, hemi-cellulose,and lignin.Cellulose is the most abundant and renewable biomass in the biosphere. There is about30%cellulose, about17%hemi-cellulose, and about17%lignin in maize straw. Cellulose can be converted to glucose,and hemi-cellulose can be converted to glucose xylose.By degradation these reducing sugars further can be converted ethanol and other more valuable chemical materials.
     This article has firstly discussed the influence of the conventional heating and the microwave heating on the degradation of pure cellulose under catalysis HC1/H2O2. By single-factor experiments, the optimal degradation condition were received as follows: HCl/H2O2concentration5.0%, the ratio of solid to solvent300mg:100ml, stirring speed200r/min, reaction temperature100℃and reaction time2.Oh, The yield of reducing sugars is2.15mg/ml. IR and SEM analysis of the solid remains after pure cellulose degradation displays that there is not seriously destruction of the molecular structure of cellulose under microwave heating. SEM indicates microwave heating can help to enhance the scission of the chain of cellulose.therefore,more reducing sugars is obtained.
     Secondly,the lignocellulose degradation with H3PW12O40as catalyst under conventional heating and microwave heating have been conducted. By single-factor experiments, the optimal conditions has been found as following:mass of Maize straw:mass of heteroploly-acid:volume of aqueous solution is5.0g:1.0g:200ml,reaction temperature90℃and reaction time50min.The degradation yield is46.5%.
     Third, maize straw degradation by conventional heating in ionic liquid have been conducted. By single-factor experiment and orthogonal experimental design,the optimal conditions were obtained as follows:the ratio of solid to solvent5.Og:100ml, catalyst concentration7.4%, solvent pH of4.8, reaction temperature85℃and reaction time2.5h, The degradation yield is68.5%.
     Last, maize straw dissolution in two alkaline liquid systems have been conducted. Maize straw dissolution in NaOH-urea solution system was studied by conventional heating and microwave heating. A series of experiments on maize straw dissolution by microwave heating were finished and the following were the optimal conditions:the ratio of solid to solvent1.0g:25ml, dissolution temperature60℃and dissolution time1.0h.The dissolution yield of maize straw is48.6%. Under conventional heating, the optimal conditions were obtained as follows:the ratio of solid to solvent1.0g:25ml, dissolution temperature60℃and dissolution time6.Oh.The dissolution yield of maize straw is46.7%. IR and SEM analysis of the solid remains after dissolution displays that crystalline region of cellulose in maize straw by microwave heating is less than that by conventional heating, Therefore,the dissolution effect by microwave heating is better than that by conventional heating.
     Maize straw dissolution in NaOH-Thiourea solution system was also studied by conventional heating. the following were the optimal conditions:the ratio of solid to solvent1.0g:35ml, dissolution temperature50℃and dissolution time9.Oh.The dissolution yield is54.4%.
     Under microwave heating, the optimal conditions were obtained, dissolution time1.0h.The dissolution yield of maize straw is48.0%. The solid remains of maize straw dissolution in these two systems have been identified by IR and SEM analysis.The dissolution effect by conventional heating is better than that by microwave heating.
引文
[1]李日强.纤维素类废弃物的综合利用[J].中国环境科学,2002,22(1):24-27.
    [2]陈玉放,谢来苏.植物纤维素纤维在新技术领域应用[Jl,天津造纸,1998,4(2):29-32.
    [3]张继泉,王瑞明等.玉米秸秆同时糖化发酵生产燃料酒精的研究]Jl,纤维素科学与技术,2001,10(3):35-39.
    [4]王伟平,屈桂银,陈小林,可再生能源发电展望[J],可再生能源2003,12(3):50-55.
    [5]蒋剑春.生物质能源应用现状[Jl,林产化学与工业,2002,22(2):7580.
    [6]蒋剑春,生物质能源应用研究现状与发展前景[J],林产化学与工业,2002,22(2):3235.
    [7]王璀璨等.木质纤维生产燃料乙醇工艺的研究[J].生物技术通报,2012,(2):30-34.
    [8]胡代泽.我国农作物秸秆资源的利用现状与前景[Jl,资源开发与市场,2000,16(1):19-20.
    [9]张强,秦涛,张红艳等.玉米秸秆的综合开发利用[J].玉米科学,2006,14(2):168-169.
    [10]杨建队.农作物秸秆综合利用探讨[J],农业技术与装备,2007,(6):40-41.
    [11]张强,陆军,候霜等.玉米秸秆发酵法生产燃料酒精的研究进展[J].饲料工业,2005,26(9):20.
    [12]陈立祥,章怀云.木质素生物降解及其应用研究进展[J].中南林学院学报,2003,23(1):79-80.
    [13]Rosamond L, Naylor. Energy and resource constraints on intensive agricultural production[J].Annu. Rev. Energy Environ,1996,21:99-123.
    [14]马放,杨基先,金文标等.环境生物制剂的开发与应用[M].化学工业出版社,2004,14(4):25-28
    [15]崔宗均,李美丹,朴哲等.一组高效稳定纤维素分解菌复合系MC1的筛选及功能[J].环境科学,2002,23(3):36-39.
    [16]张树政主编,酶制剂工业[M],科学出版社,北京,1984:595624.
    [17]杨斌,高孔荣.甘蔗渣的糖化及转化为酒精研究概况[J],食品与发酵工程1995,(5):61-71.
    [18]张继泉,王瑞明等,玉米秸秆同时糖化发酵生产燃料酒精的研究[J],纤维素科学与技术,2001,10(3):35-39.
    [19]颜涌捷,纤维素连续催化水解研究[J],太阳能学报,1999,20(1):5558.
    [20]张继泉,孙玉英等,玉米秸秆稀硫酸预处理条件的初步研究[J],纤维素科学与技术,2002,10(2):32-36.
    [21]宋颖琦,杨谦.纤维素降解菌的筛选及其降解特征的研究[J].哈尔滨工业大学学报,2002,34(2):197-199.
    [22]刘倩,宋金柱,宋颖琦等.影响玉米秸秆微生物降解制肥的因素浅析[J].环境卫生工程,2002,10(3):103-106.
    [23]夏黎明.植物纤维原料酶法水解的研究.林产化学与工业,1998,18(4):23-26.
    [24]李建法,宋湛谦.纤维素制备高吸水材料研究进展[J].林产化学与工业,2002,22(2):81-85.
    [25]李西开.土壤农业化学常规分析方法[M].北京:科学出版社,1983.
    [26]Charles E,Wyman.Biomass ethanol technical progress, oppor-tunities, and commercial hallenges[J].Annun. Rev. EnergyEnviron,1999,24:189-226.
    [27]HAMooney. On the road to global ecology[J].Annnu. Rev.Energy Environ.199924:1-31.
    [28]Swee Chua. Economic growth, liberalization, and the environment.A review of the economic evidence[J].Annu. Rev. Energy Environ,1999,24:391-430.
    [29]Xi B D,Liu H L,Zeng G M,et al.Composting MSW and sewage sludge with effective complex microorganisms. Journal of Environmental Sciences (China),1112002,14(2):264-268.
    [30]张博润,刘玉方,陈玉梅.农作物秸杆发酵剂的研究[Jl,微生物学通报1996,23(3):136-137
    [31]徐坚平,刘均松,孔维,等利用秸杆类物质进行微生物共发酵生产单细胞蛋白]Jl,微生物学通报,1995,22(4):222-225·
    [32]李宪臻,黄云战,需德贵,等.天然纤维素的微生物降解机理研究[J],食品与发酵工业,1996,2:74-77
    [33]天津轻工学院,大连轻工学院,等.工业发酵分析[M],北京:轻工业出版社,1994,3-6
    [34]阎伯旭等.内切葡聚糖苷酶的化学修饰[J].生物化学杂志,1997(13):302.
    [35]张玉忠等.天然纤维素超微结构研究[J].生物物理学报,1997(13):375.
    [36]Warwicker J O, JefIRies R, Colbran R L,et al. A reviewof the literature on the effect of caustic soda and otherswelling agents on the fine structure of cotton[A]. TheCotton Silk and Man-made Fibers Research Association[C]. Didsbury, Manchester and England:Shirely Institute,1996.
    [37]Zhang Lina, Yang Guang, Fang Wei. Regenerated cellulose membrane IRom cuoxam/zincoxene blend[J]. J Membr Sci,1991,56:207-215.
    [38]Bianchi E, Ciferri A, Conio G,et al.Mesophase formation and chain rigidity in cellulose and derivatives,Cellulose in N, N-dimethylacetamide-lithium chloride[J]. Macromolecules,1985,18:646-650.
    [39]ElKaIRawy A. Investigation of the cellulose/LiCl/dimethylacetamide and cellulose/LiCl/N-methyl-2-pyrrolidinone solutions by13C NMR spectroscopy[J]. Appl Polym Sci,1982,27:2435-2443.
    [40]Seymour R B, Johnson E L. The effect of solution variables on the solution of cellulose in dimethyl sulfoxide[J]. Appl Polym Sci,1976,20(12):3425-3429.
    [41]Inamoto M, Miymoto I, Hongo T,et al. Morphologicalformation of the regenerated cellulose membranes recovered IRom its cuprammonium solution using various coagulants [J]. Polym J,1996,28(6):507-512.
    [42]Kamide K, Iijima H, Matsuda S. Thermodynamics ofporous polymeric membrane by phase separation method.I. Nucleation and growth of nuclei[J]. Polym J,1993,25:1113-1131.
    [43]Iijima H, Iwata M, Inamoto M,et al.Phenomenological effects of solvent-casting conditions on pore charac-teristics of regenerated cellulose membranes[J]. Polym J,1997,29(2):147-157.
    [44]张俐娜,王浩.二甲亚砜/多聚甲醛制纤维素膜孔径的研究[J].膜科学与技术,1995,15(4):33-37.
    [45]Akizawa T, Kitaoka T, Koshikawa S,et al.Develop-ment of a regenerated cellulose non-complement activating membrane for hemodialysis [J]. ASAIO Trans,1986,32(1):76-80.
    [46]George U, Gensrich H J, Kasulke U. Cellulose treatment of hollow fiber membranes to improve their fluid-flow characteristics[R].Ger (East):Ger Dem.Rep,1987.4.
    [47]Lim S L,Fane A G, Fell C J D. Radiation-inducedgrafting of regenerated cellulose hollow-fiber membranes[J]. J Applied Polym Sci,1990,41:1609-1616.
    [48]杨光,张俐娜.再生纤维素/聚乙烯醇共混膜的研究[J].高分子学报.1994(2):176-181.
    [49]冯继华.应用Van Soest法和常规法测定纤维素及木质素的比较[J].西南民族学院学报(自然科学版),1994,20(1):55-56.
    [50]王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素、木质素的定量分析程序[J].微生物学通报,1987(14):81-84.
    [51]黄忠乾,龙章福,彭卫红.农作物秸秆资源的综合利用[Jl,资源开发与市场,1999,15(1):32-34.
    [52]孙可伟.固体废弃物资源化的现状和展望[Jl,中国资源综合利用,2000(1):10-13.
    [53]Nick Nagie. AProcess Economic Approach to Develop a Dilute-AcidCellulose Hydrolysis process to produce ethanol IRom Biomass[J].ApplBiochem Biotechnol,1999(79):599-607.
    [54]Bessesen D H. The role of carbohydrates in insulin resistance [J]. J Nutr,2001,131(10):45-49.
    [55]Krishna SHari and Chowdary G V. Optimization of Simultaneous Sacchrification and Fermentation for the Production of Ethanol IRomLignocellulosic Biomass[J]. Agric Food Chem,2000,48,1971-1976.
    [56]余晓斌,具润.谟分批与流加发酵法和平纤维素酶的研究[Jl,食品与发酵工业,1999,25(1):16-19.
    [57]李稳宏,吴大雄,高新等.麦秸纤维素酶解法产糖预处理工艺条件研究[Jl,西北大学学报(自然科学版),1997,27(3):227-230.
    [58]张博润,刘伟平,刘玉方,等.发酵白酒糟生产饲料蛋白的优良菌种的筛选[J].微生物学报,1997,37(2):130-134.
    [59]王建华,梁金钟,王宇.利用酒糟固态发酵多维多酶高赖氨酸饲料的研究[J].酿酒,1999,(2):93-99.
    [60]候文华,李政一,杨力,等.利用酒糟生产饲料蛋白的菌种选育[J].环境科学,1999,20(1):77-79.
    [61]天津轻工业学院,大连轻工业学院,无锡轻工业不院等编著,工业发酵分析[M]·北京:中国轻工业出版社,1997.
    [62]杜秉海,曲音波,高培基.纤维废渣固态酒精发酵及纤维素淀粉共发酵的研究[J],食品与发酵工业,1995,21(5):15-20.
    [63]Robert Eklund and Guido Zacchi.Simultaneous Saccharification andFermentation of Steam-pretreated Willow [J]. Enzyme Microb Technol,1995,17:255-259.
    [64]Eliane D G D,Angelo S M M,Carlota de O R Y,et al.Effect of carbon:nitrogenratio(C:N)and substrate source on glucose-6-phosphate dehydrogenase(G-6-PDH)production by recombinant Saccharomyces cerevisiae. Journal of Food Engineering,2006,75(1):96-103.
    [65]Wei S,Jeanette M N,Bruce E M,et al.Effects of aeration and moisture duringwindrow composting on the nitrogen fertilizer values of dairy waste composts.Applied Soil Ecology,1999,11(1):17-28.
    [66]Fan Y T,Li C L,Lay J J,et al.Optimization of initial substrate and pH levels forgermination of sporing hydrogen-producing anaerobes in cow dung compost.Bioresource Technology,2004,91(2):189-193.
    [67]林云琴,周少奇.白腐菌降解纤维素和木质素的研究进展[Jl.环境技术,2003,4:29-30.
    [68]陈学武,苗芳,候建革等.玉米秸秆半纤维素的水解研究[J].河北科技大学学报,1999,20(2):47-48.
    [69]Rowan A K,Snape J R,Fearnside D,et al.Composition and diversity ofammonia oxidising bacterial communities in waste water treatment reactions ofdifferent design treating identical waste water.FEMS Microbiology Ecology,2003,43(2):195-206.
    [70]郁红艳,曾光明,胡天觉等.真菌降解木质素研究进展及在好氧堆肥中的研究展望[J].中国生物工程杂志,2003,23(10):57-58.
    [71]尹峻峰,王涛.真菌降解木质素的研究现状[J].云南林业科技,2003(1):75-77.
    [72]孟雷,陈冠军,王怡等.纤维素酶的多型性[J].纤维素科学与技术,2002,10(2):47-54.
    [73]王建平,陈小娥.纤维素酶的研究概况[J].浙江水产学院学报,1996,15(2):140-144.
    [74]阎伯旭,高培基.纤维素酶分子结构与功能研究进展[J].生命科学,1995,7(5):22-24.
    [75]王春卉,汪天虹,高培基.纤维素酶分子的纤维素吸附区的研究进展[J].纤维素科学与技术,1997,5(4):6-9.
    [76]Reese E T. Polysaccharases and the hydrolysis of insoluble substrates[A]. PROCsess,1976(6):9-12.
    [77]陈洪章,李佐虎.影响纤维素酶解的因素和纤维素酶被吸附性能的研究[J].化学反应工程与工艺,2000,16(1):30-35.
    [78]邓桂兰,彭超英,卢峰.利用微生物和酶降解粗纤维的研究[J].饲料工业,2005,25(11):48-51
    [79]张建军,罗勤慧.木质素酶及其化学模拟的研究进展[J].化学通报,2001,8:470-477.
    [80]Kenneth E H. Extra cellular IRee radical biochemistry of ligninolyticfungi[J]. New Journal of Chemistry,1991,20(2):195-198.
    [81]Rosanne M. Measurement of saccharification by cellulases [J].Enzyme Microb. Technol,1985,(7):586-587.
    [82]曹玉风,李英,刘荣昌等.生物技术在处理农作物秸秆饲料中的应用[J].饲料研究,1999,(1):25-26.
    [83]Chtistian P.The trichoderma cellulase regulatory puzzle [J],Enzyme Microb.Technol,1993,15(2):90-99-
    [84]Eriksson K-E L,Blanchette R A,Ander P.Michobil and Enzymatic Degradation of wood and wood compents. springer-verlag[C].Berlin Heidelberg,1990·89·
    [85]李越中,胡玮,吴斌辉.纤维堆囊菌的代谢产物及其生物学活性分析[Jl,微生物学报,2001,41(6):716-722.
    [86]Mandels M,Weber J.The production of cellulases[J].Reese ET Cellulases and theirs application,1996,(95):391-413.
    [87]Robson L M,an chambliss G H.Cellulases of bacterialOrigin [J],Enzyme Microb Technol,1989,(11):626-644.
    [88]陈国符,邬义明.植物纤维化学[M],北京:轻工业出版社,1986,142-168
    [89]阎伯旭,孙迎庆,高培基.有限酶切拟康氏木霉纤维素酶分子研究其结构域的结构与功能[Jl,纤维素科学与技术,1998,6(30):1-9.
    [90]Sinnott M L.Catalytic Mechanism of enzymatic glycosyltransfers[J],Chem Rev,1990,90(12):1171-1192.
    [91]范桂芳,张树政.康氏木霉纤维素酶系中Cx酶的定位[J],微生物学报,1986,26(2):151-153.
    [92]Tilbeugh H V,Tomme P,Claeyssens M,et al.Limitedproteolysis of the cellobiohydrolase I IRomT ressei[J].FEBB Lett-,1986,204(2):223-227.
    [93]高培基,曲音波,汪天虹.微生物降解纤维素机制的分子生物学研究进展[Jl,纤维素科学与技术,1995,3(2):1-19.
    [94]阎伯旭,齐飞,张颖舒.纤维素酶分子结构和功能研究进展[J],生物化学与生物物理进展,1999,26(3):235-237.
    [95]Nowles J,Lethovaara P,Teeri T T.Cellulases families and their genes [J]·Thends Biotechnology,1987,(5):225-261.
    [96]Coutinho J B,Gilkes N R,Warren R A J,et al.The binding of Cellulomonas fimi endoglucanases C to cellulose and Sepradex is mediated by the N-terminal repeats [J],Molecular Microbiology,1992,6(9):1243-1252.
    [97]Gilkes N R.Domains in microbial beta-1,4-glycanases:sequence conservation,function,and enzyme families[J],Microbiological Review,1991,55(2):303-3155.
    [98]Laymon R A, Adney W S, Mohagheghi A,et al.Cloning and expression of Full-length Trichoderma reeseicellu biohydrolase I cDNA in Escherichia coli[J].Applied Bioch And Biotech,1996,57(58):389-397.
    [99]汪天虹,王春卉,高培基.纤维素酶分子的纤维素吸附区的结构与功能[J],生物工程,2000,20(2):37-40.
    [100]陈育如,夏黎明,岑沛霖等.蒸汽爆破预处理对植物纤维素性质的影响[J],高校化工工程学报,1999,13(3):234-239.
    [101]罗君,夏黎明.纤维素酶水解及同时糖化和乳酸发酵过程的动力学[J].化工学报,1998,49(2):162-169.
    [102]居乃琥.酶工程研究和酶工程产业的新发展(II)[J].食品与发酵工业,2000,26(4):40-42.
    [120]梁如玉,杨婉身,冯明镜.纤维素酶水解啤酒糟的研究[J].微生物学通报,1997,24(3):145-148.
    [103]M Mandels. Measuring cellulase activities [J]. Biotech. Bioeng.,1976,36(6):86-109.
    [104]王兰芬.纤维素酶的作用机理及开发应用[J].酿酒科技,1997(6):16-17.
    [105]Vendula PeterB.Degradationofcelluloseandhemicelluloses by the brown rot fungusPiptoporus betulinus:Production of extracellular enzymes and characterization of the majorcellulases[J].Microbiology,2006,152(12):3613-3622.
    [106]WatsonBJ,ZHANG Hal-tao,AtkinsonG L,etal.Processive endoglucanases mediate degradation of cellulose by saccharophagus degradans[J]. J Bacteriol,2009,191(9):5697-5705.
    [107]HansR, ElkeL, PeterS, etal. Byssovoraxcruentagennov,spnov,nom rev:A cellulose-degrading myxobacterium:rediscovery of 'Myxococcuscruentus'Thaxter1897[J]. IntJSystEvol Microbiol,2006,56(10):2357-2363.
    [108]Jung-Hoon Jong H C, So-Jung K, etal. Jeongeupianaejangsanensis gen nov, sp nov:A cellulose-degradingbacterium isolatedIRom forestsoilIRom NaejangMountainin Korea[J]. IntJSystEvolMicrobiol,2010,60(3):615-619.
    [109]PereyraL P, HiibelSR, PrietoR M V etal. Detectionandquantification of functional genes of cellulose-degrading, fermentative and sulfate-reducing bacteria and methanogenic archaea[J]. ApplEnvirMicrobiol,2010,76(4):2192-2202.
    [110]HatsumiS, KinuyoS, HitomiO, etal. Clostridium clarilfavumsp. nov. and Clostridium caenicola sp nov, moderately themr ophilic, cellulose-/cellobiose-digesting bacteria isolated rfom methanogenicsludge[J]. IntJSystEvolMicrobiol,2009,59(7):1764-1770.
    [111]WEN Fei, SUN Jie, ZHAO Hui-min. Yeast surface display of triufnctional minicellulosomes for simultaneous saccharication and fermentation of cellulose to ethanol[J],Appl Envir Microbiol,2010,76(2):1257-1260.
    [112]Farzaneh R,XING De-feng,Rachel et al. Simultaneous cellulose dergadation nadelectricity production by enterobacter cloacaeina microbialfuelcell[J].Appl Envir Microbiol,2009,75(6):3673-3678.
    [113]Eunki Kim, Diana C Lrwin, Larry P Walker, et al. Factorial optimization of a six cellulase mixture[J]. Biotechnology and Bioengineering,1998,58(5):496-501.
    [114]夏黎明.植物纤维原料酶法水解的研究[J].林产化学与工业,1998,18(4):23-26.
    [115]Dietrichs,Hans-Herm ann,Sinner,et al. Process for the production ofglucose rfom cellulose containing vegetable raw materials:United States Patent,4160695[P].1979-07-10.
    [116]宋贤良,温其标,郭桦.以纤维素为基础的功能材料[J].高分子通报,2002(4):47-52.
    [117]汤列贵,朱玉琴,纤维素的功能材料[J],功能材料,1995,26(2):101105.
    [118]唐爱民,梁文芷,纤维素的功能化[J],高分子通报,2000,10(4):1-90.
    [119]张俐娜,肖玲,聂学先等.再生纤维素膜孔性研究[J].高分子材料科学与工程,1991,1:109-113.
    [120]Yoshiyuki N, Saroj K R, Manley R St J.Blends of cellu-lose with polyacrylonitrile prepared IRom N, N-dimethy-lacetamide-lithium chloride solutions [J]. Polymer,1987,28:1385-1390.
    [121]金耀光.浅析白色污染和治理方法[J].中国包装,1996,16(1):24-25.
    [122]黄鹏,曲卫平,黄鸿.治理白色污染发展绿色包装之我见[J].中国包装,1998,18(2):39-41.
    [123]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学出版社.1999.94-98.
    [124]任露泉.试验优化设计与分析[M].高等教育出版社.2009.
    [125]王恩波,胡长文,许林著,多酸化学导论,北京:化学工业出版社,1998:1
    [126]赵景联,陈红,王云海.NaY型分子筛负载PW12催化肌苷合成四乙酰核糖的研究[J].精细化工,2001,18(2):106-109.
    [127]Verhoef M J, Kooyman P J, Peters J A,et al. A study onthe stability of MCM-41-supported heteropoly acids under liquid-and gas-phase esterification conditions[J].Microporous and Mesoporous Materials,1999,(27):365-371.
    [128]Kzhevnikov I V. Heteropoly acids and related com-pounds as catalysts for fine chemical synthesis[J].Catal Rev Sci Eng,1995,37(2):311-352.
    [129]吴越,叶兴凯,杨向光,等.杂多酸的固载化关于制备负载型酸催化剂的一般原理[J].分子催化,1996,10(4):299-313.
    [130]谢文华,叶兴凯,杨向光,等.紫外光谱法测定杂多酸的酸强度[J].化学世界,1996,37(6):490-493.
    [131]Okuhara T. New catalytic functions of heteropoly compounds as solid acids [J].Catal Today,2002,73(1):167-176.
    [132]Misono M, Ono I, Koyano G,et al. Heteropoly acids:Versatile green catalysts usable in a variety of reactionmedia [J].Pure Appl Chem,2000,72(7):1305-1311.
    [133]金明善,索掌怀,荆济荣,等.负载型杂多酸催化剂在乙醇溶剂中的溶脱性研究[A].可持续发展战略中的催化科学与技术(第十一届全国催化学术会议论文集)[C],杭州:浙江大学出版社,2002-10,139-140.
    [134]Reichle W T, Catalytic reactions by thermally activated synthetic,anionic clay mineral J Catal,1985,94:547-550
    [135]Vaccar Angelo, Preparation and catalytic properties of cationic and anionic clays.Catal Today1998,41:53-58
    [136]侯文华,颜其洁.12-钨钼硅系杂多酸的热稳定性和酸催化性能的研究[J].无机化学,1991,(3):366~369.
    [137]杨师棣,汤发有H3PW12O40/C催化合成三甘醇双丙烯酸酯的研究[J].化学试剂,2001,23(3):180-181.
    [138]楚文玲,杨向光,叶兴凯,等.活性炭固载杂多酸气相催化合成甲基叔丁基醚和乙基叔丁基醚[J].石油化工,1996.25(7):462-465.
    [139]楚文玲,杨向光,叶兴凯,等.活性炭固载杂多酸的气相催化合成异丙苯的烷基化反应[J].催化学报,1995,16(6):431-432.
    [140]Nishimura T, Okohara T, Misono M. Dodecyl phenol Synthesis Using Tungstophosphoric Acid Catalysts [J]. ChemLett,1991,8:1695-1698.
    [141]王恩波,段颖波,张元峰,等.杂多酸催化剂连续法合成乙酸乙酯[J].催化学报,1993,14(2):147-149.
    [142]杨师棣,汤发有.活性炭负载磷钨酸催化合成三羟甲基丙烷三丙烯酸酯[J].化学世界,2001,42(4):200-202.
    [143]杨师棣,王福民.磷钨酸/活性炭催化合成二甘醇双丙烯酸酯[J].西北大学学报,2002,32(4):371-373.
    [144]杨师棣,王福民.磷钨酸/二氧化钛催化合成甲基丙烯酸丁酯的研究[J].化学试剂,2002,24(6):27-28.
    [145]CAVANI F, VACCARI A T. Hydrotalcite-type anionic clays:preparation, properties and applications[J].Catalysts Today,1991,11(2):173-301.
    [146]TAGAYA H, SATO S, KUWAHARA T, et al.Preferential intercalation of isomers of naphthalenecarborylate ions into the interlayer of layered double hydro-oxides[J].Mater Chem,1994,4(12):1907-1912.
    [147]IMAMURA S, SHONO M, OKAMOTO A, et al.Effect of cerium on the mobility of oxygen on manganese oxides[J].Applied Catalysis A,1996,142:279-288.
    [148]KANNAN S, SWAMY C S. Catalytic decomposition of nitrous oxide on"in situ"generated thmermolly calcined hydrotalcites[J].Applied Catalysis B,1994,3:109-116.
    [149]MAHZOUL H, BRILHAC J F, GILOT P. Experimental and mechanistic study of adsorption over Nox trap catalysts[J].Applied Catalysis B,1999,20:47.
    [150]OI J, OBUCHI A, OGATA A. Zn,Al,Rh-mixed oxides derived IRom hydrotalcite-like compound and their catalytic properties for N2O decomposition[J].Applied Catalysis B,1997,13:197-203.
    [151]ARMOR J N, BRAYMER T A, FARRIS T S, et al.Calcined hydrotalcities for the catalytic decomposition of N2O in simulated process streams [J].Applied Catalysis B,1996,7:397-406.
    [152]张晟卯,张春丽,吴志申,等.室温离子液体介质中尺寸、结构可控Ni纳米微粒的制备及结构表征[J].化学学报,2004,62(15):1443-1446.
    [153]YenM Y,Chiu CW, Chen F R,et al.Convergent electron beam induced growth of copper nanostructures:evidence of the importance of a soft template [J].Langmuir,2004,20(2):279-281.
    [154]P Wasserscheid, W Keim. Preparation of ionic liquids for catalysts[J]. Angew Chem Int Ed,2000,39:3772-3789.
    [155]K R Seddon, A Stark, M Torres. Ionic liquid for clean technology [J]. Pure Appl Chem,2000,72:2275-2278.
    [156]J Dupount, C S Consorti, J Spencer. Room Temperature Molten Salts:Neoteric Green Solvents for Chemical Reactions and Processes[J]. Braz Chem Soc,2000,11:337-344.
    [157]Najdanovic-Visak, V Esperanca, Rebelo, et al. Phase behaviour of room temperature ionic liquid solution [J]. Phys Chem Chem Phys,2002,4:1701-1703.
    [158]杨家振,桂劲松,吕兴梅,等.离子液体BMIBF4性质的研究[J].化学学报,2005,63(7):577-580.
    [159]Yang J Z, Tian P, He L L, et al. Studies on room temperature ionic liquid InC13-EMIC [J]. Fluid Phase Equilibria,2003,204:295-302.
    [160]杨家振,金一,潘伟.在室温离子液体BPBF4中电化学性质的研究[J].化学学报,2004,62:2124-2125.
    [161]Yang J Z, Lu X M, Gui J S, et al. A new theory for ionic liquids-the interstice model part1. the density and surface tension of ionic liquid EMISE [J]. Green Chem,2004,6:541-543.
    [162]Wilkes J S, Levisky J A, Wilson R A, et al. Dialkylimidazolium Chloroaluminate Melts:A new calss of Room temperature ionic liquids for electrochemistry, Spectroscopy and Synthesis[J]. Inorg Chem,1982,21:1263.
    [163]Zhang Q G, Feng Xue, Jing Tong, et al. Studies on volumetric properties of concentrated aqueous solution of ionic liquid BMIBF4[J]. Solution Chem,2006,35(3):297-309.
    [164]Suarez P A Z, Dullius J E L, Einloft S, et al. The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes [J]. Polyhedron Communication,1996,15:1217-1219.
    [165]张俐娜,阮东等.溶解纤维素的硫脲碱水溶剂及制备再生纤维素膜的方法:中国,1126760C[P].2002-07-17.
    [166]MAO Y,ZHOU J P,CA1J,et al.Efects of coagulants on porousstmcture of membranes prepared IRom cellulose in NaOH/urea aqueous solutionl[J]. Journal of Membrane Science,2006,279:246-255.
    [167]吴翠玲,李新平,秦胜利.纤维素/NMMO· H2O溶液体系流变性能的研究[J].纤维素科学技术,2005,13(1):34-38.
    [168]赵晓霞,朱平等.再生细菌纤维素在NaOH/尿素/硫脲溶剂体系中的溶解性能研究[J].天津工业大学学报,2008,27(5):28-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700