用户名: 密码: 验证码:
地下管线探测数据处理及可视化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探地雷达(Ground Penetrating Radar,GPR)探测技术在地球物理探测和浅表层测绘等方面具有快速、无损、分辨率高等突出优势,已成为最具潜力的浅表层遥感新技术之一,国内外研究人员已对该技术进行了大量研究。但由于受数据获取、数据处理和可视化等关键技术的制约,目前国内探地雷达探测技术的实用化程度尚不尽人意。
     本文结合国家科技部和江苏省国际合作科研项目的研究,重点对GPR探测中的散射建模、目标识别与提取、区域测量、可视化以及与3S技术集成等问题进行了较深入的研究,以提高测量效率、精度和数据的管理与表达水平。论文的主要研究成果和创新点包括:
     1.在总结GPR探测技术的发展现状和分析地下目标遥感特性、GPR探测及成像的基本原理和处理流程的基础上,阐明了利用GPR开展浅表层测绘研究的意义。
     2.在经典Maxwell方程基础上,采用二维、三维时域有限差分方法模拟了雷达波在有耗地电介质中传播的全过程,并对典型地下目标、复杂地形和高损耗介质中GPR探测进行了散射建模及实验比较,验证了高损耗地电模型散射建模及成像的正确性;在研究、分析地形因素对雷达剖面图像影响的基础上,提出了考虑地形改正的GPR数据处理方法。
     3.针对地下管线B-scan雷达探测数据,建立了地下管线所成像的双曲线特征模型,为管线的雷达数据判读和定量探测提供了理论基础;提出了基于广义Hough变换的地下管线提取方法;建立了管线的雷达反射波与管径之间的数学模型,验证了基于双曲线拟合、多次波反射间距两种管径测量方法。
     4.定量分析了测线、测点间距等因素对GPR区域测量的影响规律,设计了GPR区域测量方案;提出了一种基于序列B-scan图像的地下目标三维重建方法;
     5.以地下管线的空间分布特征为基础,提出了一种用于综合管网地理信息系统的一体化三维数据模型;综合利用组件对象模型、GDAL(Geospatial DataAbstraction Library)等技术实现了管线要素的可视化建模与三维显示,提出了一种基于顶点混合技术的管线衔接处的平滑处理方法,改善了管线要素的三维可视化效果。
     6.将3S技术集成应用于GPR的数据获取、表达和管理中,设计了GPS支持的区域测量方法;设计实现了地下管线探测数据处理与可视化原型系统,利用意大利RIS型、加拿大Pulse EKKO型等多套不同频率的GPR设备进行了地下管线探测和数据处理,对原型系统的可靠性进行了验证。
There are some prominent merits of GPR (Ground Penetrating Radar) technique ingeophysical exploration and shallow surface surveying, such as speediness, non-destructiveness,high accuracy, etc. Now, it has been one of the most potential techniques for shallow surfaceremote sensing. At present there are lots of studies on it worldwide, but the practicality of GPRin China is not satisfactory due to some key techniques including data acquisition, dataprocessing and visualization, etc.
     In combination with the Ministry of Science and Technology and Jiangsu Province’sinternational cooperative research projects, in this thesis deep research are put on some keyprocessing techniques, such as the scattering modeling, target recognition and extraction, areasurvey, visualization of underground pipeline, and integration with the3S technology, etc. Thestudy goal is to improve the measurement efficiency and accuracy and data management andexpression level. The main works and innovations of this thesis are listed as follows:
     1. A summarization of GPR technology was given on the current status. And an analysis wasmade on the remote sensing characteristics of the underground targets, and the basic principlesand processes of GPR detection and imaging. Based upon the analysis, the significance for GPRin the shallow surface surveying and mapping was clarified.
     2. Using2D and3D finite difference time domain method simulation of radar wave in thelossy medium propagation process based on classical Maxwell equations. And scatteringmodeling and imaging tests were carried out on typical underground targets. GPR detection incomplex terrain and high-loss media was molded and tested. The correctness of high loss modelscattering modeling and imaging was verified. A method GPR data processing methodconsidering topographic correction was proposed, based on the analysis of topographic factorsinfluence on radar profile image.
     3. The hyperbolic characteristics underground pipeline imaging model was established forB-scan radar data. It provides a theoretical foundation for the radar data interpretation andquantitative detection of pipeline. A hyperbolic underground pipeline extraction method based ongeneralized Hough transform was proposed. The mathematical model between the radarreflectivity wave and diameter of the pipeline was established. Two diameter measurementmethods based on hyperbolic fitting and interval of repeatedly reflected waves were verified.
     4. The complete regional measurement programs of GPR was designed based on quantitativeanalysis of the survey line spacing, survey point spacing in GPR area survey. Athree-dimensional reconstruction based on the sequence of the B-scan image was proposed for underground targets.
     5. A three-dimensional data integration model for the pipeline network was proposed basedon space distribution characteristics of the underground pipeline network. Visual modeling andthree-dimensional display of the various elements of the pipeline was achieved based on thecomprehensive utilization of the COM (component object model), the GDAL (Geospatial DataAbstraction Library) technology. A vertex blending based pipeline smoothing method wasproposed convergence to improve the three-dimensional visualization of the pipeline elements.
     6. The3S technology was integrated to GPR data acquisition, expression and management.The method of area survey with GPS supporting was designed. A prototype system ofunderground pipeline network detection data processing and visualization was designed andimplemented. Some sorts of GPR equipment for the underground pipeline detection and dataprocessing were used, such as, the Italy RIS-type, the Canada Pulse EKKO type, etc. Thereliability of the prototype system was validated by these measurements.
引文
[1]粟毅、黄春琳、雷文太.探地雷达理论与应用[M].北京:科学出版社,2006.
    [2]曾昭发、刘四新、冯晅.探地雷达原理与应用[M].北京:电子工业出版社,2010.
    [3] Harry M. Jol. Ground Penetrating Radar:Theory and Applications [M]. London, Great Britain, ElsevierB.V.,2009.
    [4] David, J. D. Ground Penetrating Radar–2nd Edition [M]. London, United Kingdom, The Institution ofElectrical Engineers,2004.
    [5]李大心.探地雷达方法与应用[M].北京:科学出版社,1994.
    [6] Balaji Bhosle, B. Parkash, A.K. Awasthi, V.N. Singh, Satvindar Singh. Remote sensing-GIS and GPRstudies of two active faults, Western Gangetic Plains, India [J]. Journal of Applied Geophysics,2007,61:155–164.
    [7]周立军、董荣伟、徐波等.探地雷达在城市地质调查中的应用[J].工程地球物理学报,2009,6(5):632-635.
    [8] Alain Denis, Frédéric Huneau, Stéphane Hoerlé, et a1. GPR data processing for fractures and flakesdetection in sandstone [J]. Journal of Applied Geophysics,2009,68:282–288.
    [9] Jorge Lu′s Porsani, William A. Sauck, Abad O.S. Ju′nior. GPR for mapping fractures and as a guidefor the extraction of ornamental granite from a quarry: A case study from southern Brazil [J]. Journal ofApplied Geophysics,2006,58:177–187.
    [10] Alastair F. McClymont, Alan G. Green, Anna Kaiser, et a1. Shallow fault segmentation of the Alpinefault zone, New Zealand revealed from2-and3-D GPR surveying [J], Journal of Applied Geophysics,2010,70:343–354.
    [11] Robert W. Jacobel, Erin M. Peterson, Douglas R. Stone, et a1. Studies of englacial water inStorglaci ren using GPR-year two [J]. Tarfala Research Station Annual Report2001–2002.
    [12]徐亚明、刘宗星.GPR在地下管线探测中的应用[J].测绘信息与工程,2004,29(3):15-16.
    [13]范志雄、黄东达、沈博等.地质雷达技术在城市管道探测中的应用[J].工程地球物理学报,2009,6(S1):59-61.
    [14]邹延延.地下管线探测技术综述[J].勘探地球物理进展,2006,29(1):14-18.
    [15]李延军.探地雷达干扰抑制及波速估计问题的研究[D].成都:电子科技大学,2008.
    [16]高立兵、王贇、夏明军.GPR技术在考古勘探中的应用研究[J].地球物理学进展,2000,15(1):61-69.
    [17] Joel Brown, Josh Nichols, Leah Steinbronn, John Bradford. Improved GPR interpretation throughresolution of lateral velocity heterogeneity: Example from an archaeological site investigation [J].Journal of Applied Geophysics,2009,68:3-8.
    [18] Fathy A.Shaaban, Abbas M. Abbas, Magdy A. Atya, Mahfouz A. Hafez. Ground-penetrating radarexploration for ancient monuments at the Valley of Mummies-Kilo6, Bahariya Oasis, Egypt[J]. Journalof Applied Geophysics,2009,68:194-202.
    [19] Sabine Fiedler, Bernhard Illich, Jochen Berger, Matthias Graw. The effectiveness of ground-penetratingradar surveys in the location of unmarked burial sites in modern cemeteries [J]. Journal of AppliedGeophysics,2009,68:380-385.
    [20] Alexandre Novo, Henrique Lorenzo, Fernando I. Rial, Manuel Pereira, Mercedes Solla. Ultra-dense gridstrategies for3D GPR in Archaeology[C].12th International Conference on Ground Penetrating Radar,Birmingham, UK,2008:1-5.
    [21]祝炜平、黄世强、李江林.杭州雷峰塔遗址地下遥感考古研究[J].地球信息科学,2002,2:104-107.
    [22]尚向阳.探地雷达在河道探测中的应用研究[D].郑州:郑州大学,2008.
    [23]尚向阳、张汝印、苏茂荣、孙伟、马平召.探地雷达在黄河枣树沟水下探测中的应用[J].人民黄河,2011,33(3):10-12.
    [24] Sun Wei, Xu Qing, Shang Xiangyang etc. Application of Ground Penetrating Radar with GPS inUnderwater Topographic Survey[C]. AIMSEC2011, Zhengzhou,2011,3:1946-1949.
    [25]武震、刘时银、张世强.祁连山老虎沟12号冰川冰下形态特征分析[J].地球科学进展,2009,24(10):1149-1158.
    [26] Monica Moldoveanu-Constantinescu and Robert Stewart.3D ground penetrating radar surveys on afrozen river lagoon [J]. CSEG RECORDER,2004:32–35.
    [27] Peter Torrione, Leslie M. Collins, Senior Member. A Texture Features for Antitank Landmine DetectionUsing Ground Penetrating Radar [J]. IEEE Transactions on geoscience and remote sensing,2007,45(7):2374-2382.
    [28]赵或、黄春琳、粟毅、雷文太.超宽带穿墙探测雷达的反向投影成像算法[J].雷达科学与技术,2007,5(1):49-59.
    [29]徐进前.GPR在公路桥梁质量无损检测中的应用[J].工程与建设,2009,23(4):515-519.
    [30]王永鑫.浅谈地质雷达在铁路隧道无损检测中的应用[J].山西建筑,2010,36(2):340-342.
    [31]苏强.探地雷达在高速公路工程质量检测中的应用[J].地质装备,2009,6(4):29-31.
    [32] Jonathan Miller, Gregory Schultz, Darryl Calkins, Christopher Benda. Assessing NondestructiveGeophysical Methods for Investigating Roadway Structural Health, http://segdl.org/eegsrc/.
    [33] Carl Leusehen. Surface penetrating radar for Mars exploration [D]. University of Kansas,2001.
    [34] http://gb.chinareviewnews.com/doc/1019/9/2/3/101992355.html?coluid=7&kindid=0&docid=101992355&mdate=0128084528
    [35] Grasmueck, M.3-D Ground-penetrating Radar Applied to Fracture Imaging in Gneiss [J]. Geophysics,1996,61:1050-1064.
    [36] Annan, A. P., Davis, J. L., and Johnston, G. B. Maximizing3D GPR Image Resolution: A SimpleApproach[C]. Proceedings of the High Resolution Geophysics Workshop,University of Arizona, Tucson,AZ, January6-9,1997.
    [37] Cosgrove Russell B., Milanfar Peyman, Kositsky Joel. Trained detection of buried mines in SARimages via the deflection-optimal criterion [J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(11):2569-2575.
    [38] Wilson Joseph N., Gader Paul, et a1. A large-scale systematic evaluation of algorithms usingground-penetrating radar for landmine detection and discrimination [J]. IEEE Transactions onGeoscience and Remote Sensing,2007,45(8):2560-2572.
    [39] Ho K. C., Collins Leslie M., et a1. Discrimination mode processing for EMI and GPR Sensors forhand-held land mine detection [J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(1):249-263.
    [40]严勇.地下管线的三维可视化研究[D].武汉:武汉大学,2003.
    [41]杜国明、龚建雅等.城市三维管网的可视化及其系统功能实现的关键技术[J].武汉大学学报(信息科学版),2005,27(5):57-63.
    [42]孙伟、姚志强、徐青、周桥.基于3D GIS技术的综合管网地理信息系统的设计与实现[C].测绘学科博士生学术论坛论文集,2009:524-529.
    [43] Zeng X, Mcmechan G A, Cai J,et a1. Comparison of ray and Fourier methods of for Modeling ofmonostatic ground-penetrating radar profiles [J]. Geophysics,1995,60:1727-1731.
    [44] Baugartner F, Munk J, Daniels J. A geometric optics model for high-frequency electromagneticscattering from dielectric cylinders [J]. Geophysics,2001,66:1130-1135.
    [45]底青云、许琨、王妙月.衰减雷达波有限元偏移[J].地球物理学报,2000,43(2):257-263.
    [46] Roberts R L, Daniels J J. Modeling near-filed GPR in three dimensions using the FDTD method [J].Geophysics,1997,62:1114-1118.
    [47] Carcione J M, Schoenberg M A.3-D ground penetrating radar simulation and plane wave theory inanisotropic media [J]. Geophysics,2000,65:1527-1532.
    [48] Pervago E, Mousatov A, Shevnin V. Electric filed modeling in arbitrary anisotropic layered media usingthe set of Fast Hankel Transformations of integer order [M].73rd Annual Internat. Mtg. Soc. Expl.Geophysicist, Expanded Abstracts,2003.
    [49]冯德山、戴前伟.基于小波多分辨探地雷达三维正演模拟及偏移处理[J].中南大学学报(自然科学版),2007,38(4):758-763.
    [50]谢昭晖.地下不同目标体的探地雷达图像特征研究[J].工程地球物理学报,2005,2(1):8-11.
    [51]陈德莉、粟毅、黄春琳.地表探测雷达图像ROI的人工神经网络提取方法[J].雷达科学与技术,2005,3(6):372-377.
    [52]李延军、周正欧.探地雷达中双曲线的提取及在波速估计中的应用[J].电波科学学报,2008,23(1):124-128.
    [53]李德仁.地理空间信息学的机遇[J].武汉大学学报(信息科学版),2005,29(9):753-756.
    [54]丁鹭飞,耿富录.雷达原理[M].西安:西安电子科技大学出版社,1995.
    [55] www.geo-radar.pl.
    [56] Gerlitz K., Knoll M.D., Cross G.M., Luzitano R.D., Knight R. Processing ground penetrating radar datato improve resolution of near-surface targets[A]. Proceedings of the Symposium on the Application ofGeophysics to Engineering and Environmental Problems (SAGEEP’93)[C]. San Diego, USA,1993:561-575.
    [57] J. M. Bourgeois and G. S. Smith. A fully three-dimensional simulation of a ground-penetrating radar:FDTD theory compared with experiment [J], IEEE Trans. Geosci. Remote Sensing,1996,34:36–44.
    [58] How-Wei Chen, Tai-Min Huang. Finite-difference time-domain simulation of GPR data [J]. Journal ofApplied Geophysics,1998,40:139–163.
    [59] F. L. Teixeira, Weng Cho Chew, M. Straka et al. Finite-Difference Time-Domain Simulation of GroundPenetrating Radar on Dispersive, Inhomogeneous, and Conductive Soils[J]. IEEE Transactions onGeoscience and Remote Sensing,1998,36(6):1928-1937.
    [60] Goldman D. Ground-penetrating radar simulation in engineering and archaeology [J]. Geophysics,1994,59:224–232.
    [61] Roberts R L, Daniels J. Finite-difference time domain (FDTD) forward modeling of GPR data[C].5thInt Conf Ground Pentrating Radar, Expanded Abstracts, Univ of Waterloo,1994:185–204.
    [62] DAI Qian-wei, FENG De-shan, HE Ji-shan. Finite difference time domain method forward simulationof complex geoelectricity ground penetrating model [J]. Journal of Central South University ofTechnology,2005,12(4):478482.
    [63]冯德山、戴前伟、何继善.探地雷达的正演模拟及有限差分波动方程偏移处理[J].中南大学学报(自然科学版),2006,37(2):361-365.
    [64]冯德山.基于小波多分辨探地雷达正演及偏移处理研究[D].长沙:中南大学信息物理工程学院,2006.
    [65] K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equation inisotropic media [J]. IEEE Trans. Antennas Propagat,1966,14:302–307.
    [66] Berenger, J. P. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal ofComputational Physics,1994,114(2):185-200.
    [67]许程翔.透地雷达对地下管线探查之应用研究[D].台湾:国立成功大学,2003.
    [68]张汉春.RIS-K2探地雷的地下管线图像特征[J].数字测绘与GIS技术应用研讨交流会论文集,2008,5(4):460–465.
    [69] Al-Nuaimy, W., Huang, Y., Nakhkash, M., Fang, M., Nguyen, V., and Eriksen, A. Automatic detectionof buried utilities and solid objects using neural networks and pattern recognition [J]. Appl. Geophys,2000,43(2–4):157–165.
    [70] Shihab, S., Al-Nuaimy, W. Radius estimation for cylindrical objects detected by ground penetratingradar[J]. Subsurface Sensing Technologies and Applications2005,6:151–166.
    [71] Aleksandar Vaso Ristic, Dusan Petrovacki, Miro Govedarica. A new method to simultaneously estimatethe radius of a cylindrical object and the wave propagation velocity from GPR data [J]. Computers&Geosciences,2009,35:1620–1630.
    [72]申家双.海岸带等水位线信息提取与垂直基准转换技术研究[D].郑州:信息工程大学博士学位论文,2011.
    [73]张祖勋、张剑清.数字摄影测学[M].武汉:武汉大学出版社,1997:130-131.
    [74]贾永红,数字图像处理[M].武汉:武汉大学出版社,2003:63-64,143-144.
    [75]金钟,汪炳权.自动多门限CT图像的分割[J].安徽大学学报(自然科学版),2002,26(3):10-14.
    [76]葛如冰、丘广新.地质雷达探测地下非金属给水管的管径大小[J].城市勘测,2009,6:133-134.
    [77] Gunawardena. A, Longstaff D. Wave equation formulation of synthetic aperture radar (SAR) algorithmsin the time-space domain [J]. IEEE Transactions on GeoScience and Remote Sensing,1998,36(6):1995-1999.
    [78]于景兰、王春和.探地雷达探测地下目标时的波速估计[J].地球物理学报进展,2003,18(3):477-480.
    [79]张劲松.地质雷达技术在京沪高速公路病害探测中的应用研究[D].北京:中国地质大学,2010.
    [80] M Levoy. Display of Surfaces from Volume Data [J]. IEEE CG&A,1988,8(3):29-37.
    [81]田玲,诸昌钤,罗艳.体视化关键技术[J].成都信息工程学院学报,2007,22(1):50-54.
    [82]陈为.短径癌症放射治疗中的医学可视化技术研究[D].杭州:浙江大学博士学位论文,2002.
    [83]王鹏.基于HLA的空间环境要素建模与仿真技术研究[D].郑州:信息工程大学博士学位论文,2006.
    [84]周杨.深空测绘时空数据建模与可视化技术研究[D].郑州:信息工程大学博士学位论文,2009.
    [85]朱会平,魏峰远.探讨图像增强中直方图均衡化的应用[J].测绘与空间地理信息,2010,33(1):174-176
    [86]周芳芳,樊晓平,杨斌.体绘制中传递函数设计的研究现状与展望[J].中国图像图形学报,2008,13(6):1034-1045
    [87] Oh KS, Jeong CS. Acceleration technique for volume rendering using2D texture based ray planecasting on GPU[C]. Proceedings of international conference on Computational Intelligence and Security2006, Guangzhou,2006:1755-1758.
    [88] Cullip T J, Neumann U. Accelerating Volume Reconstruction with3D Texture Mapping Hardware[R].University of North Carolina, Technical Report: TR93-027,1993.
    [89] Kruger J. and Westermann R. Acceleration Techniques for GPU-based Volume Rendering[C]. InProceedings of the14th IEEE Visualization,2003:287-292.
    [90]罗艳.基于可编程图形硬件的体绘制技术[J].成都信息工程学院学报,2010,25(1):50-55.
    [91]袁明德.地质雷达起始零点的标定[J].公路交通科技应用技术版,2005:26-27.
    [92]干国强、邱致和.导航与定位——现代战争的北斗星[M].北京:国防工业出版社,2000.
    [93]钱天爵、瞿学林.GPS全球定位系统及其应用[M].北京:北京海潮出版社,1994.
    [94]吕继书、万仕平、李玮.GPS结合测深仪水下地形测量原理与应用[J].天然气与石油,2010,28(2):50-58.
    [95]姚志强.城市管网的三维建模与可视化技术研究[D].郑州:解放军信息工程大学,2009.
    [96]何江龙.地下管线三维专题地理信息系统研究[D].昆明:昆明理工大学,2006.
    [97]蓝朝桢.近地空间环境三维建模与可视化技术[D].郑州:解放军信息工程大学,2004.
    [98]刘维敏,姚志强,王峰,卢战伟.基于OpenGL城市大规模管网三维建模[J].测绘科学,2010,35(3):185-189.
    [99]孙伟,姚志强,徐青,王孟和.一种三维管线的无缝连接显示方法[C].第六届全国地图学与GIS学术研讨会论文集,2008:311-315.
    [100] OpenGL Shading Language Tutorials. http://www.clockworkcoders.com/oglsl/index.html/
    [101] Randi J.Rost OpenGL Shading Language[M].人民邮电出版社,2006.
    [102] http://www.cnblogs.com/neoragex2002/archive/2007/09/13/Bone_Animation.html
    [103] http://www.chinaitlab.com/
    [104] http://www.yesky.com/314/26314.shtml
    [105] NVIDIA GPU Programming Guide2.4.0. http://developer.nvidia.com/
    [106]蚁平,汤泽滢,曹先彬.基于关键属性索引HASH函数的星型模型构造算法[J].计算机工程与应用,2006,21.
    [107]袁培森,皮德常.用于内存数据库的Hash索引的设计与实现[J].计算机工程,2007,9.
    [108]蚁平,汤泽滢,曹先彬.基于关键属性索引HASH函数的星型模型构造算法[J].计算机工程与应用,2006,2.
    [109]周杨.数字城市三维可视化技术及应用[D].郑州:解放军信息工程大学硕士学位论文,2002.
    [110]李观石.基于LOD的大范围地形漫游技术研究[D].武汉:武汉大学硕士学位论文,2004.
    [111]石刚.探地雷达系统优化及在隧道地质超前预报中的应用研究[D].西安:长安大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700