氧化锆基固体电解质低成本制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文深入、系统地研究了水基注模凝胶法制备固体氧化物燃料电池用氧化锆基电解质薄片的工艺过程,利用XRD、SEM、TEM等技术对材料的相结构和微观组织进行了分析。系统研究了ZrO_2-Y_2O_3和ZrO_2-Y_2O_3-Al_2O_3体系的力学性能和电性能,从而展示了这一材料的良好工业化应用前景。
     系统研究了注模凝胶成型用ZrO_2水基料浆的制备及其稳定性和流变性,确定了pH值、分散剂、固含量及球磨时间对ZrO_2水基料浆的稳定性和流变性的影响规律,最终优化出本材料体系的最佳实验参数,即pH=8~10,分散剂含量为2vol%,球磨时间为20~24h。首次配制出高固含量(56vol%)、低粘度(0.5Pa·s)的ZrO_2水基料浆。并首次用水基注模凝胶法制备出100mm×100mm,厚度仅为0.2mm的光滑、平整,致密度高达98.1%的ZrO_2固体电解质薄片,为进一步工业化批量生产奠定了基础。
     研究了加热凝胶、催化剂凝胶和氧化还原凝胶三种凝胶方式中各参数对ZrO_2水基料浆凝胶化成型的影响,以及温度、湿度和厚度对水基注模凝胶坯体的干燥过程的影响规律;研究了排胶前后坯体中颗粒的结合及分布状态,并与干压坯体进行比较,发现水基注模凝胶坯体的断口较平整,颗粒分布均匀,没有大的团聚体存在;此外通过对烧结工艺的研究表明,烧结温度、保温时间、升温速率、坯体密度等均对烧结过程有很大影响。1600℃×4h烧结时,瓷体晶界平直,晶粒发育较好。
     本文系统研究了水基注模凝胶法制备的Al_2O_3-Y_2O_3-ZrO_2体系氧化锆基固体电解质的综合力学性能和电性能,并与Y_2O_3-ZrO_2体系进行对比。结果表明,Al_2O_3/YSZ的σ和K_(1c)均随Al_2O_3含量的增加而增大。Y_2O_3-ZrO_2陶瓷随Y_2O_3含量的增加,σ是先增加后减小,而K_(1c)是一直降低的;3mol%的Y_2O_3-ZrO_2陶瓷的抗弯强度最高,可达891Mpa,其断裂韧性可达9.2MPa·m~(1/2),综合力学性能最佳。随着Y_2O_3含量的增加,Y_2O_3-ZrO_2体系材料的电导率呈现出了先增加后减小的趋势。离子电导率随着温度的升高而增大,1nσ-1/T曲线基本上是呈线性关系。
     Al_2O_3-Y_2O_3-ZrO_2体系的电导率则随Al_2O_3增加呈现先增大后减小的趋势,1wt%Al_2O_3-YSZ材料电导率最大,此时电导率高于YSZ电解质材料的电导率。本文对此现象进行了认真的分析研究,并首次制得在1000℃时的电导率可以达到0.15S/cm的Al_2O_3-YSZ大面积固体电解质薄片,其电导激活能为0.821eV,这为实用化提供了可能。
In present paper, the process of zirconia solid electrolyte in solid oxide fuel cell prepared by aqueous gel-casting technique was studied thoroughly. Microstructure and phase configuration were analyzed by XRD, SEM, TEM and so on. The mechanic properties and electric performances of ZrO_2-Y_2O_3 and ZrO_2-Y_2O_3-Al_2O_3 systems were studied thoroughly, these opened up a bright prospect for their industrial applications.
     Stability and rheological characteristics of aqueous zirconia slurry were studied firstly. The effects of pH value, dispersant, solid loading and milling time on stability and rheological characteristics were determined. The ultimately optimized pH value is from 8 to 10, the content of dispersant is 2% in volume, and milling time is from 20h to 24h. Zirconia aqueous slurries of high solid loading(56vol%) and low viscosity(0.5Pa.s) were first prepared. And YSZ electrolyte thin substrate, which thickness is 200μm and areas are 100×100 mm~2, was also first fabricated. When sintering is carried out at 1600℃for 4h, crystal boundaries are straight, crystal particles grow rightly and relative density reaches 98.1 percent, these give a base for industrial production.
     Secondly the effects of some parameters such as temperature, catalyst, humidity and sample thickness on gel forming and drying process were also investigated. Moreover, the distribution of particles in green bodies before and after binder burnt-out was studied. Compared with drying pressing green body, AGC green body has narrow pore distribution and high dispersible particles. Lastly, sintering progress was studied. The results show that sintering temperature, holding time, increasing temperature rate and density of green body have a great influence on sintering progress.
     The mechanic properties and electric performances of ZrO_2-Y_2O_3 and ZrO_2-Y_2O_3-Al_2O_3 systems prepared by aqueous gel casting method were also studied in this thesis. Results show that bending strength and fracture toughness of Al_2O_3-YSZ increase with increasing alumina content. Bending strength increases firstly, then decreases with increasing yittra content, but fracture toughness decreases straightly. When yittra content is 3 mol percent. bending strength reaches as high as 891MPa and fracture toughness is 9.2 MPa·m~(1/2), its general mechanic properties are best of all.
     Ionic electric conductivity increases firstly, then decreases with increasing yittra content. Electric conductivity increases with increasing temperature, and is linearity. Ionic electric conductivity also increases firstly, then decreases with increasing alumina content. Electric conductivity of 1 weight percent ratio-YSZ is higher than that of YSZ. Ionic electric conductivity of zirconia solid electrolyte thin substrate using aqueous gel casting technique reaches 0.15 S/cm at 1000℃, and its activation energy for ionic conduction is 0.821eV. This provides the possibility of applications.
引文
[1]Nguyen Q.Minh.Ceramic Fuel Cells.J.Am.Ceram.Soc.76(3),1993:563-88.
    [2]刘旭利,马峻峰等,固体氧化物燃料电池的研究进展,硅酸盐通报,1,2001。
    [3]农宝廉,燃料电池-高效、环境友好的发电方式,化学工业出版社,2000,11。
    [4][美]W·D·金格瑞等著,清华大学无机非金属材料教研组译,庄炳群校,陶瓷导论,中国建筑工业出版社,1982。
    [5]孔宪文,关于燃料电池发电技术调研报告,www.google.com.
    [6]马文会,谢刚,陈秀华,固体氧化物燃料电池复合掺杂材料研究进展,功能材料,32(5),2001。
    [7]KEVIN KENDALL,Ceramic in Fuel Cells,Ceramic Bulletin,70(7),1991:1159-1160.
    [8]郑恩华,周伟等,燃料电池的研究与开发(Ⅲ),贵金属,21(2),2000。
    [9]J.M.Ralph,A.C.Schoeler,M.Krumpelt,Materials for lower temperature solid oxide fuel cells,J.Mater.Sci.36,2001:1161-1172.
    [10]张中太,黄传勇,固体氧化物燃料电池的研究进展,材料导报,1998,8。
    [11]Isenberg.High temperature solid electrolyte fuel cell configurations and inter connections.United States Patent 4490444.12,1984.
    [12]Hsu.Compact,light-weight,solid-oxide electrochemical converter.United States Patent 4629537.12,1986.
    [13]Ruhl.Solid electrolyte fuel cell and assembly.United States Patent 4770955.9,1988.
    [14]N.Minh,F.Liu,P.Staszak,T.Stillwagon,and J.Van Ackeren,"Monolithic Solid Oxide Fuel Cell Fabrication Development",1988 Fuel CellSeminar Abstracts.Courtesy Associates,Washington.DC,1988.
    [15]贺天民,吕哲,黄应龙等,低成本YSZ电解质膜管的制备和性能研究,功能材料,2002,33(1)。
    [16]贺天民,吕哲,裴力等,改进注浆法制备YSZ电解质薄管的烧结和电性能,功能材料,2002,33(1)。
    [17]阎景旺,董永来,丁春英,江义,中温固体氧化物燃料电池阳极基底及负载型电解质薄膜的研制,无机材料学报,2001,9。
    [18]Poeppel,et al.Solid oxide fuel cell having monolithic cross flow core and manifolding.United States Patent 4476196.10,1984.
    [19]Ackerman,et al.Solid oxide fuel cell having monolithic core.United States Patent 4476198.10,1984.
    [20]Herceg.Integral manifolding structure for fuel cell core having parallel gas flow.United States Patent 4476197.10,1984.
    [21]J.P.P.Huijsmans,F.P.F.van Berkel,G.M.Christie.Intermediate temperature SOFC-a promise for the 21~(st) century.J.Power sources.71,1998:107-110.
    [22]Lone-Wen Tai and Paul A.Lessing,Tape casting and sintering of strontium-doped lanthanum chromite for a planar solid oxide fuel cell bipolar plate,J.Am.Ceram.Soc.,74[1],1991:155-160.
    [23]周伟,周光月,郑恩华等,燃料电池的研究与开发(Ⅱ),贵金属,21(1),2000。
    [24]吴驰明,王鹏,杨芝洲,孙成文,Sc_2O_3稳定的ZrO_2超细粉的制备与烧结,无机材料学报,11(2),1996。
    [25]梁广川,刘文西等,Bi_2O_3基固体电解质材料研究进展,兵器材料学与工程,23(1),2000。
    [26]唐光敏,向梅芝,孙尧卿,固体氧化物电解质燃料电池的材料研究进展,材料导报,1,1995.
    [27]蒋凯,张秀英,郭崇峰,尉体氧化物燃料电池中的电解质,稀有金属,2001,3。
    [28]George Stathis,Dimitrios Simwonis and Frank Tietz,Antonia Moropoulou,Aristides Naoumides,Oxidation and resulting mechanical properties of Ni/8Y_2O_3-stabilized zirconia anode substrate for solid-oxide fuel cells,J.Mater.Res.17(5),2002:951-958.
    [29]Janusz Nowotny,science of ceramic interfaces Ⅱ[M],elsevier,Amsterdam-lausanne-New York-Oxford-Shannon-Tokyo,1994.
    [30]A.S.Carrillo,T.Tagawa,S.Goto,Application of mist pyrolysis method to preparation Ni/ZrO_2 anode catalyst for SOFC type reactor,Materials Research Bulletin,36,2001:1017-1027.
    [31]江金国,陈文,徐庆等,中低温固体氧化物燃料电池陶瓷阴极材料,材料导报,2000,5。
    [32]刘旭利,博士学位论文,昆明理工大学,2001.
    [33]J.VAN HERLE,A.J.McEVOY,K.RAVINDRANATHAN THAMPI.Conductivity measurements of various yttria-stabilized zirconia samples.J Mater Sci.29,1994:3691-3701.
    [34]M.MIYAYAMA,T.NISHI,H.YANAGIDA.Oxygen ionic conduction in Y_2O_3-stabilized Bi_2O_3and ZrO_2 composites.J Mater Sci.22,1987:2624-2628.
    [35]O.P.F.DE SOUZA,A.L.CHINELATTO.Impure zirconia electrical conductivity enhancement by rare-earth minority ions in the Y_2O_3 RE_2O_3 ZrO_2 system.J Mater Sci.30,1995:4355-4362.
    [36]Hiroshi Yamamura,Noriaki Utsunomiya,Toshiyuki Mori,Tooru Atake.Electrical conductivity in the system ZrO_2-Y_2O_3-Sc_2O_3.Solid State Ionics.107,1998:185-189.
    [37]Kon Tsukuma and Kuniyoshii Ueda.Strength and Fracture Toughness of Isostatically Hot-Pressed Composites of Al_2O_3 and Y_2O_3-Partially-Stabilized ZrO_2.J.Am.Ceram.Soc.68(1),1985:C-4-C-5.
    [38]MANIKPRAGE JAYARATNA,MASAHIRO YOSHIMURA,SHIGEYUKI SOMIYA.Electrical conductivity of Cr_2O_3-doped Y_2O_3-stabilized ZrO_2.J Mater Sci.22,1987:2011-2016.
    [39]RALPH V.WILHELM,JR.and DAVID S.HOWARTH.Iron Oxide-Doped Yttria-Stabilized Zirconia Ceramic:Iron Solubility and Electrical Conductivity.Ceramic Bulletin.58(2),1979:228-232.
    [40]G.S.CORMAN and V.S.STUBICAN.Phase Equilibria and Ionic Conductivity in the System ZrO_2-Yb_2O_2-Y_2O_3.J.Am.Ceram.Soc.68(4),1985:174-181.
    [41]Hiroyuki Kaneko,Fuxue Jin,and Hitoshi Taimatsu.Electrical Conductivity of Zirconia Stabilized with Scandia and Yttria.J.Am.Ceram.Soc.76(3),1993:793-95.
    [42]李英,唐子龙等,(Y_2O_3,CaO)复合掺杂ZrO_2材料的交流复阻抗研究,功能材料,32(3),2001。
    [43]D.W.STRICKLER and W.G.CARLSON,Ionic Conductivity of Cubic Solid Solutions in the System CaO-Y_2O_3-ZrO_2,J.Am.Ceram.Soc.,47,1964:122-127.
    [44]黄克勤,刘庆国,固体电解质直接定氧技术,冶金工业出版社,1993,12。
    [45]史美伦,固体电解质,科学技术文献出版社重庆分社,1982,7。
    [46]哈根穆勒(P.Hagenmuller)著,陈立泉译,固体电解质:一般原理、特征、材料和应用,北京科技出版社,1984,12。
    [47]B.F.SORENSEN and A.N.KUMAR,Fracture resistance of 8mol%yttria stabilized zirconia,Bull.Mater.Sci.,24(2),2001.
    [48]Khandkar.Zirconia-bismuth Oxide graded electrolyte.USP 5171645,12,1992.
    [49]余明清,范仕刚,孙淑珍等,Al_2O_3增强ZrO_2陶瓷的制备及性能研究,硅酸盐通报,2001,2。
    [50]O.O.OMATETE,A.BLEIER,C.G.WESTMORELAND,AND A.C.YOUNG,gelcast zirconia-alumina composites,Ceram.Eng.Sci.Proc.,12[9-10],1991:2084-2094
    [51]E.P.Butler and J.Drennan,Microstructural analysis of sintered high-conductivity zirconia with Al203 additions,J.Am.Ceram.Soc.,65[10],1998:474-478.
    [52]Juan de Dios Solier,Miguel A.Perez-Jubindo,Arturo Dominguez-Rodriguez et al.Low-Temperature Ionic Conductivity of 9.4-mol%-Yttria-Stabilized Zirconia Single Crystals,J.Am.Ceram.Soc.72(8),1989:1500-502.
    [53]S.P.S.Badwal.Effect of micro-and nano-structures on the properties of ionic conductors.Solid State Ionics.70/71,1994:83-95.
    [54]I.ABRAHAM,G.GRITZNER.Mechanical properties of doped cubic zirconia ceramics.J Mater Sci.12,1993:995-997.
    [55]T.M.GUR,I.D.RAISTRICK and R.A.HUGGINS.Ionic Conductivity of 8mol.%Sc_2O_3-ZrO_2Measured by Use of Both A.C.and D.C.Techniques.Materials Science and Engineering.46,1980:53-62.
    [56]K.C.Radford,R.J.Bratton,Zirconia electrolyte cells-part 1 sintering studies,J.Mater.Sci.14,1979:59-65.
    [57]R.P.INGEL and D.LEWIS Ⅲ.Lattice Parameters and Density for Y_2O_3-Stabilized ZrO_2.J.Am.Ceram.Soc.69(4),1986:325-32.
    [58]T.H.ETSELL and S.N.FLENGAS.THE ELECTRICAL PROPERTIES OF SOLID OXIDE ELECTROLYTES.Chemical Reviews.70(3),1970:339-376.
    [59]李世普,特种陶瓷工艺学,武汉工业大学出版社,1990.
    [60]Akio Nakamura and J.Bruce Wagner,Jr.,Defect Structure,Ionic Conductivity,and Diffusion in Yttria Stabilized Zirconia and Related Oxide Electorlytes with Fluorite Structure,Journal of the Electrochemical Society,133(8),1986:15421548.
    [61]Akio Nakamura and J.Bruce Wagner,Jr.,Defect Structure,Ionic Conductivity,and Diffusion in Calcia-Stabilized Zirconia,Journal of the Electrochemical Society,127(11),1980:2325-2333.
    [62]李英,博士学位论文,清华大学,1999。
    [63]C.R.A.CATLOW.Exafs Study of Yttria-Stabilized Zirconia.J.Am.Ceram.Soc.69(3),1986:272-77.
    [64]J.ANDRES,A.BELTRAN,V.MOLINER.Simulation of ionic crystals:calculation of Madelung potentials for stabilized zirconia.J Mater Sci.30,1995:4852-4856.
    [65]S.P.S.BADWAL,J.DRENNAN.Yttria-zirconia:effect of microstructure on conductivity.J Mater Sci.22,1987:3231-3239.
    [66]S.P.S.BADWAL.Effect of dopant concentration on electrical conductivity in the Sc_2O_3-ZrO_2 system.J Mater Sci.22,1987:4125-4132.
    [67]M.WELLER and H.SCHUBERT.Internal Friction,Dielectric Loss,and Ionic Conductivity of Tetragonal ZrO_2-3%Y_2O_3(Y-TZP).J.Am.Ceram.Soc.69(7),1986:573-77.
    [68]M.J.VERKERK,B.J.MIDDELHUIS and A.J.BURGGRAAF.EFFECT OF GRAIN BOUNDARIES ON THE CONDUCTIVITY OF HIGH-PURITY ZrO_2-Y_2O_3 CERAMICS.Solid State Ionics.6,1982:159-170.
    [69]Dae-Joon Kim.Lattice Parameters,Ionic Conductivities,and Solubility Limits in Fluorite-Structure MO_2 Oxide(M=Hf~(4+),Zr~(4+),Th~(4+),U~(4+)) Solid Solutions.J.Am.Ceram.Soc.72(8),1989:1415-21.
    [70]唐子龙,固体氧化物燃料电池的研究,清华大学博士论文,1997。
    [71]陈家林,万吉高等,氧传感器用ZrO_2-Y_2O_3固体电解质电导性能的研究,贵金属,22(1),2001。
    [72]关振铎,张中太,焦金生,无机材料物理性能,清华大学出版社,1992。
    [73]A.Brune,M.Lajavardi,D.Fister,J.B.Wagner Jr.The electrical conductivity of yttria-stabilized zirconia prepared by precipitation from inorganic aqueous solutions.Solid State Ionics.106,1998:89-101.
    [74]J.VAN HERLE,A.J.McEVOY,K.RAVINDRANATHAN THAMPI.Conductivity measurements of various yttria-stabilized zirconia samples.J Mater Sci.29,1994:3691-3701.
    [75]Hsu,et al.Solid electrolyte structure and method for forming.United States Patent 4614628.9,1986.
    [76]V.S.STUBICAN,R.C.HINK,and S.P.RAY,Phase Equilibria and ordering in the system ZrO_2-Y_2O_3,J.Am.Ceram.Soc.,61[1-2],1978:17-21.
    [77]H.SCHUBERT.Anisotropic Thermal Expansion Coefficients of Y_2O_3-Stabilized Tetragonal Zirconia.J.Am.Ceram.Soc.69(3),1986:270-71.
    [78]O.YhMAMOTO,Y.ThKEDA,R.KANNO,K.KOHNO,T.KAMIHARAI.Electrical conductivity of polycrystalline tetragonal zirconia ZrO_2-M_2O_3,(M=Sc,Y,Yb).J Mater Sci.8,1989:198-200.
    [79]M.J.VERKERK,B.J.MIDDELHUIS and A.J.BURGGRhAF,Effect of grain boundaries on the conductivity of high-purity ZrO_2-Y_2O_3,ceramics,Solid State Ionics.6,1982:159-170.
    [80]Man Feng and John B.Goodenough.Improving Stabilized Zirconia With Strontium Gallate.J.Am.Ceram.Soc.77(7),1994:1954-56.
    [81]Masashi Mori,Masahiro Yoshikawa,Hibiki Itoh,and Toshio Abe.Effect of Alumina on Sintering Behavior and Electrical Conductivity of High-Purity Yttria-Stabilized Zirconia.J.Am.Ceram.Soc.77(8),1994:2217-19.
    [82]黄传勇,唐子龙,张中太等,燃料电池YSZ薄膜凝胶-流延成型的制备研究,材料工程,2000,7。
    [83]谢志鹏,吴建,黄勇,王林等,氮化硅陶瓷注射成型体脱脂过程的研究,现代技术陶瓷,1994,4。
    [84]谢志鹏,杨金龙,黄勇,陶瓷注射成型有机载体的选择及相容性研究,硅酸盐通报,1998,3。
    [85]MASAHIRO YOSHIMURA,TAKEHIRO HIUGA,and SHIGEYUKI SQMIYA,Dissolution and Reaction of Yttria-Stabilized Zirconia Single Crystals in Hydrothermal Solutions,J.Am.Ceram.Soc.,69(7),1986:583-584.
    [86]C.C.Chen,M.M.Nasrallah and H.U.Anderson.Synthesis and characterization of YSZ thin film electrolytes.Solid State Ionics.70/71,1994:101-108.
    [87]J.Van Herle,A.J.McEvoy,K.R.Thampi,J.Mater.Sci.29,1994:3691.
    [88]Aizawa,Solid electrolyte thin film and method for producing the same,United States Patent 5968673,1999.
    [89]R.George,Westinghouse Program Overview,Westinghouse Science and Technology Center,Pittsburgh,1997.
    [90]K.J.de Vries,R.A.Kuipers,and L.G.J.de Haart,"Planar Solid Oxide Fuel Cells Based on Thin YSZ Electrolyte Layers",Proceedings of the Second International Symposium on Solid Oxide Fuel Cells.Edited by F.Gross,P.Zegers,S.C.Singhal,and O.Yamamoto.Commission of The European Communities,Luxembourg,1991.
    [91]A.O.Isenberg,"Growth of Refractory Oxide Layers by Electrochemical Vapor Deposition(EVD) at Elevated Temperatures”,Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage.Edited by J.D.E.McIntyre,S.Srinivasan,and F.G.Will.The Electrochemical Society,Pennington,NJ,1977.
    [92]R.Draper,"Progress in Solid Oxide Fuel Cell Technology Utilizing Multi-Stage Vacuum Pumping Systems in Electrochemical Deposition Process",Ind.Heat.,[Dec.]44-46,1991.
    [93]Jenny,et al.Method for molding ceramic powders using a water-based gel casting.USP 5028362,7,1991.
    [94]Jones.Scandia,Yttria-stabilized zirconia for ultra-high temperature thermal barrier coatings.USP 6044830,4,2000.
    [95]K.Okiai,S.Yoshida,I.Kaji,M.Hasengawa,H.Yamanouchi,and M.Nagata,“Application of Plasma Spray Process for Porous Electrodes”,Proceedings of the International Symposium on Solid Oxide Fuel Cells.Edited by O.Yamamoto,M.Dokiya,and H.Tagawa.Science House.Tokyo,Japan,1990.
    [96]H.Hamatani,T.Okada,and T.Yoshida,"Development of Consistent Fabrication Process for SOFC by Hybrid Plasma Spraying",Proceedings of the International Symposium on Solid Oxide Fuel Cells.Edited by O.Yamamoto,M.Dokiya,and H.Tagawa.Science House.Tokyo,Japan,1990.
    [97]卢立柱,用电泳沉积-电沉积联合法制备二氧化锆(YSZ)薄膜,材料研究学报,2001,10。
    [98]韩敏芳,李伯涛,彭苏萍,刘丽俭,SOFC电解质薄膜YSZ制备技术,电池,32(3),2002。
    [99]Basu,Fabrication of zirconia electrolyte films by electrophoretic deposition,United States Patent 6270642,2001.
    [100]Rajendra N.Basu,Clive A.Randall,and Merrilea J.Mayo,fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition,J.Am.Ceram.Soc.,84[1],2001:33-40.
    [101]黄勇,向军辉,谢志鹏,杨金龙,陶瓷材料流延成型研究现状,硅酸盐学报,2001,5。
    [102]Annika Kristoffersson,Water-based tape casting of ceramics and fabrication of ceramic laminate[D],Goteborg,Swedish,1999.
    [103]D.Hotza,P.Greil,Review:aqueous tape casting of ceramic powders,Materials Science and Engineering,A202,1995:206-217.
    [104]Wen-Cheng J.Wei,Sheng-Chang Wang,and Fang-Yuan Ho,Electrokinetic properties of colloidal zirconia powders in aqueous suspension,J.Am.Ceram.Soc.,82[12],1999:3385-3392.
    [105]C.C.McPheeters and T.D.Claar,Tape-Casting High-Density Electrolyte for Solid Oxide Fuel Cells,1986 Fuel CellSeminar Abstracts.Courtesy Associates,Washington.DC,1986.
    [106]OGBEMII O.OMATETE,MARK A.JANNEY,and RICHARD A.STREHLOW.Gelcasting-A New Ceramic Forming Process.Ceramic Bulletin.70(10),1991:1641-1649.
    [107]钦征骑,新型陶瓷材料手册,江苏科学技术出版社,1995。
    [108]Do-Hyeong Kim and Chong Hee Kim.Entrapped Gas Effect in the Fast Firing of Yttria-Doped Zirconia.J.Am.Ceram.Soc.75(3),1992:716-18.
    [109]Anil V.Virkar.Internal Precipitation of Molecular Oxygen and Electromechanical Failure of Zirconia Solid Electrolytes.J.Am.Ceram.Soc.73(11),1990:3382-90.
    [110]Jenny,et al.Method for molding ceramic powders using a water-based gel casting process.USP 5145908,9,1992.
    [111]Jenny.Method for molding ceramic powders.USP 4894194,1,1990.
    [112]Walls,et al.Gelcasting methods.UPS 6066279,5,2000.
    [113]Albert C.Young,Ogbemi O.Omatete,Mark A.Janney,and Paul A.Menchhofer,gelcasting of alumina,J.Am.Ceram.Soc.,74[3],1991:612-618.
    [114]赵国玺,表面活性剂科学的一些进展,物理化学学报,8,1987。
    [115]张晓峰,李海林,稳定α-Al_2O_3注浆料的制备,硅酸盐通报,4,1996。
    [116]刘旭利,马峻峰,唐竹兴等,Gel-casting法制备氧化锆陶瓷,第十一届全国高技术陶瓷学术年会论文集,中国硅酸盐学会特种陶瓷分会,2000,10。
    [117]Jose M.F.Ferreira and Henrique M.M.Diz,effect of solids loading on slip-casting performance of silicon carbide slurries,J.Am.Ceram.Soc.,82[8],1999:1993-2000.
    [118]B.J.Briscoe,G.Lo Biundo and N.Ozkan,Drying of aqueous ceramic suspensions,Key engineering materials,132-136,1997:354-357.
    [119]Sarbajit Ghosal and Abbas Emamai-Nacini,A Physical Model for the Drying of Gelcast Ceramics,J.Am.Ceram.Soc.82(3),1999:513-520.
    [120]George W.Scherer,Theory of Drying,J.Am.Ceram.Soc.73(1),1991:3-14.
    [121]陈宗淇,王光信,徐桂英,胶体与界面化学,高等教育出版社,2001,8。
    [122]S.P.S.BADWAL.Electrical conductivity of single crystal and polycrystalline yttria-stabilized zirconia.J Mater Sci.19,1984:1767-1776.
    [123]梁忠友,表面活性物质在陶瓷中的应用,现代技术陶瓷,2,1996。
    [124]孙静,高濂,郭景坤,湿法成型中稳定料浆的制备,硅酸盐通报,3,1999。
    [125]刘方兴,刘家臣,杜海燕,ZrO_2-Al_2O_3系浆料性能的研究,硅酸盐通报,20(1),1992。
    [126]王瑞刚,吴厚政,陈玉如,杨正方,陶瓷料浆稳定分散进展,陶瓷学报,20(1),1999。
    [127]孙静,高濂,郭景坤,纳米Y-TZP形成稳定料浆的流变性质,无机材料学报,12(1),1997。
    [128]Khandkar.Zirconia-bismuth Oxide graded electrolyte.USP 5171645,12,1992.
    [129]王红洁,贾书海,王永兰,金志浩,凝胶注成型中排胶温度对生坯强度及显微结构的影响,西安交通大学学报,2001,11。
    [130]Ch.Laberty-Robert,F.Ansart,C.Deloget,M.Gaudon,A.Rousset,Powder synthesis of nanocrystalline ZrO_2-8%Y_2O_3 via polymerization route,Materials Research Bulletin,36,2001:2083-2101.
    [131]梁长海,维持凝胶织构的干燥理论、技术及应用,功能材料,28(1),1997:10-14。
    [132]胡勇胜,陈文,徐庆,溶胶-凝胶陶瓷薄膜制备工艺技术的研究,现代技术陶瓷,2000,4。
    [133]郭亚丽,张建华,毕进子等,溶胶-凝胶ZrO_2陶瓷薄膜早期干燥过程研究,宇航材料工艺,2002,3。
    [134]刘旭利,马峻峰等,氧化锆陶瓷注浆成型研究,硅酸盐通报,3,2000。
    [135]刘晓林,杨金龙,黄勇,纳米级四方多晶氧化锆凝胶注膜成型及其力学性能研究,现代陶瓷技术,1998。
    [136]周龙捷,黄勇,谢志鹏等,碳化硅的凝胶注膜成型,现代陶瓷技术,1998。
    [137]Sukhvinder P.S.Badwal,Comment on "Low-Temperature Ionic Conductivity of 9.4mol%-Yttria-Stabilized Zirconia Single Crystals",J.Am.Ceram.Soc.,73(12),1990:3718-3719.
    [138]师吕绪,材料大辞典,化学工业出版社,1994。
    [1] K. Tsukuma, and K. Ueda, Strength and fracture toughness of isostatically hot-pressed composites of Al_2O_3 and Y_2O_3-partially stabilized ZrO_2, J. Am. Ceram. Soc, 1985, 68[1], 4-c-5.
    [2] D. D. Upadhyaya, D. Y. Dalvi and G. K. Dey, processing and properties of Y-TZP/Al_2O_3 composites, J. Mater. Sci., 1993, 28:6103-6106.
    [3] J. G. Duh, H. J. Wan, Development in highly toughened CeO2-Y2O3-ZrO2 ceramic system, J. Mater. Sci., 1991, 27:6197-6203.
    [4] K. M. Liang, G. Orange, and G. Fantozzi, evolution by indentation of fracture toughness cermic materials, J. Mater. Sci., 1990, 25:207-214.
    
    [5] K. Niihara, R. Morena, and D. P. Hasselman, evaluation of K_(IC) of brittle solid by the indentation method with low crack-indentations, J. Mater. Sci. Lett., 1982, 1:13-16.
    [6] G.. A. Anstis, P. Chantikul, and B. R. Lawn, et al, a critical evaluation of indentation techniques for measuring fracture toughness: direct crack measurement., J. Am. Ceram. Soc, 1981, 64 [9]:533-538.
    [7] Lankford, indentation microstructure in the palmqvist crack regime: implication for fracture toughness evaluation by the indentation method, J. Mater. Sci. Lett. 1982, 1:492-498.
    [8] D. K. Shetty, I. G. Wright, and P. N. Mincer, et al, J. Mater. Sci., 1985, 20:1873-1882.
    [9] B. R. Lawn, A. G. Evans, and D. B. Marshall, J. Am. Ceram. Soc., 1980, 63[9-10]:574-580.
    [1]丁传贤,张叶方,中国表面工程,1994,4。
    [2]郑学斌,丁传贤,无机材料学报,2000,2。
    [3]陈大明,材料导报,2000,6:14-15。
    [4]R.George,Westinghouse Program Overview,Westinghouse Science and Technology Center,Pittsburgh,1998.
    [5]Janez Holc,Solid State Ionics.68,1994:331-334.
    [6]黄勇,李建保,谢志鹏,杨金龙,先进陶瓷材料成型技术的现状与发展趋势,94全国结构陶瓷、功能陶瓷、金属/陶瓷封接学术会议,1994,10。
    [7]Hiroyuki Kaneko,Fuxue Jin,and Hitoshi Taimatsu.Electrical Conductivity of Zirconia Stabilized with Scandia and Yttria.J.Am.Ceram.Soc.76(3),1993:793-95.
    [8]Dae-Joon Kim.Lattice Parameters,Ionic Conductivities,and Solubility Limits in Fluorite-Structure MO_2 Oxide(M=Hf~(4+),Zr~(4+),Th~(4+),U~(4+)) Solid Solutions.J.Am.Ceram.Soc.72(8),1989:1415-21.
    [9]Man Feng and John B.Goodenough.Improving Stabilized Zirconia With Strontium Gallate.J.Am.Ceram.Soc.77(7),1994:1954-56.
    [10]Do-Hyeong Kim and Chong nee Kim.Entrapped Gas Effect in the Fast Firing of Yttria-Doped Zirconia.J.Am.Ceram.Soc.75(3),1992:716-18.
    [11]Masashi Mori,Masahiro Yoshikawa,Hibiki Itoh,and Toshio Abe.Effect of Alumina on Sintering Behavior and Electrical Conductivity of High-Purity Yttria-Stabilized Zirconia.J.Am.Ceram.Soc.77(8),1994:2217-19.
    [12]Anil V.Virkar.Internal Precipitation of Molecular Oxygen and Electromechanical Failure of Zirconia Solid Electrolytes.J.Am.Ceram.Soc.73(11),1990:3382-90.
    [13]S.P.S.BADWAL.Effect of dopant concentration on electrical conductivity in the Sc_2O_2-ZrO_2 system.J Mater Sci.22,1987:4125-4132.
    [14]Jenny,et al.Method for molding ceramic powders using a water-based gel casting.USP 5028362,7,1991.
    [15]周伯劲,王修林编著,试剂化学,广东科技出版社,广州,1988.
    [16]丁湘,杨正方,袁启明,BaTiO3悬浮液的稳定性研究,硅酸盐通报,5,2001:3-6.
    [17]王瑞刚,吴厚政,陈玉如,杨正方,陶瓷料浆稳定分散进展,陶瓷学报,20(1),1999。
    [18]刘阳桥,博士论文,上硅所,2001。
    [19]Harry L.Tuller,Johannes Schoonman and Ian Riess,Oxygen ion and mixed conductors and their technological applications,Kluwer Academic Publishers,Netherlands,2000.
    [20]孙静,高濂,郭景坤,湿法成型中稳定料浆的制备,硅酸盐通报,3,1999。
    [21]陈宗淇,王光信,徐桂英,胶体与界面化学,高等教育出版社,2001,8。
    [22]T.F.Tadros,Polymer.J,Steric stabilization and flocculation by polymers,23[5],1991:683-696.
    [23]R.H.Ottewill,Stability and instability in disperse systems,J.Coll.And Inter Sci.,58[2],1977:357-373.
    [24]D.H.Napper,Steric stabilization,J.Coll and Inter Sci.,58[2],1977:390-407.
    [25]Einstein A,Investigation on the Theory of Brownian Movement,Ed.R.Furth Dover,New York,1956.
    [26]Barnes H A,Hutton J F,Waiters K,An introduction to Rheology,Rheology Series,Vol.3,Elsevier,Amsterdam,1989.
    [27]Mooney M,The viscosity of a concentrated suspension of spherical particles,J.Colloid Sci.,1951,6:246-293o
    [28]Pugh R J,Dispersion and Stability of Ceramic Powders in Liquids,pp127-192,In surface and collid chemistry in advanced ceramics processing,Eds.R.J.Pugh,Lennart Bergstrom,1994
    [29]李国军,博士后出站报告,北京航空材料研究院,2003。
    [30]Barnes H A,Hutton J F,Waiters K,An introduction to Rheology,Rheology Series,Vol.3,Elsevier,Amsterdam,1989.
    [31]Struble L J,Zukoski C F,Maitland G C,Flow and Microstructure of Dense Suspension,Materials Research Society,Pennsylvains,1992.
    [32]徐荣九,陈大明,周洋,李斌太,固相含量对料浆及瓷体性能的影响,航空材料学报,20[3],2000。
    [33]刘方兴,刘家臣,杜海燕,ZrO_2-Al_2O_3系浆料性能的研究,硅酸盐通报,20(1),1992。
    [34]张晓峰,李海林,吴东,稳定α-Al_2O_3注浆料的制备,硅酸盐通报,4,1996。
    [35]Cesarano et al.,J.Am.Ceram.Soc.,1988,71(4):250-255.
    [36]Jose M.F.Ferreira and Henrique M.M.Diz,effect of solids loading on slip-casting performance of silicon carbide slurries,J.Am.Ceram.Soc.,82[8],1999:1993-2000.
    [37]孙静,高濂,郭景坤,纳米Y-TZP形成稳定料浆的流变性质,无机材料学报,12(1),1997。
    [38]Amit Mukherjee,B.Maiti,A.Das Sharma,R.N.Basu,et al,correlation between slurry rheology,green density and sintered density of tape cast yttria stabilized zirconia,Ceramics International,27,2001:731-739.
    [39]Toshio Kimura,Yasuyuki Kaneko,and Takashi Yamaguchi,consolidation of Alumina-Zirconia mixtures by a colloidal process,J.Am.Ceram.Soc.,74[3],1991:625-632.
    [40]Liu Xuejian,Huang Liping,Sun Xingwei,et al,rheological properties of aqueous silicon nitride suspension,J.Mater.Sci.,36,2000:3379-3384.
    [41]XIAOLIN LIU,YONG HUANG,JINLONG YANG,effect of rheological properties of the suspension on the mechanical strength of Al_2O_3-ZrO_2 composites prepared by gelcasting,Ceramic International,28,2002:159-164.
    [42]LIU XUE-JIAN,HUANG LI-PING,SUN XING-WEI,et al.rheological properties of aqueous silicon nitride suspensions,J.Mater.Sci.36,2001:3379-3384.
    [43]Annika Kristoffersson,Water-based tape casting of ceramics and fabrication of ceramic laminate[D],Goteborg,Swedish,1999.
    [1]沈彦昆,凝胶软糖及其浇注成型,食品工业,6,1990。
    [2]陈宗淇,王光信,徐桂英,胶体与界面化学,高等教育出版社,8,2001。
    [3]OGBEMII O.OMATETE,MARK A.JANNEY,and RICHARD A.STREHLOW.Gelcasting-A New Ceramic Forming Process.Ceramic Bulletin.70(10),1991:1641-1649.
    [4]潘租仁,高分子化学,化学工业出版社,1990。
    [5]向军辉,黄勇,谢志鹏,杨金龙,Al_2O_3凝胶化成型的影响因素,无机材料学报,2001,11。
    [6]钱军民,金志浩,聚合物在陶瓷及其复合材料制备中的应用,兵器材料科学与工程,25[5],2002。
    [7]彭勃,李明远,纪淑玲,吴肇亮,聚丙烯酰胺胶态分散凝胶微观形态研究,油田化学,15[4],1998。
    [8]Albert C.Young,Ogbemi O.Omatete,Mark A.Janney and Paul A.Menchhofer,Gelcasting of Alumina,J.Am.Ceram.Soc.,74[3],1991:612-618.
    [9]王善琦,高分子化学理论,北京航空航天大学出版社,1992。
    [10]徐荣九,硕士论文,北京航空材料研究院,2001。
    [11]徐荣九,陈大明等,一种水系陶瓷浆料凝胶成型方法,CN 1370758A,2002。
    [12]马自俊,金日辉,丙烯酰胺水溶液聚合的几种氧化还原引发体系的研究,精细石油化工,1[1],1997。
    [13]潘祖仁,自由基聚合,北京:化学工业出版社,1983:75-79。
    [14]孙新立,孙海虹,王友爱,一种新的制备酸性聚丙烯酰胺凝胶的引发系统,生物化学与生物物理学报,7,1998。
    [1]李世普,特种陶瓷工艺学,武汉工业大学出版社,1990。
    [2]理查德,J.布鲁克,陶瓷工艺(第1部分),科技出版社,1999。
    [3]Jenny,et al.Method for molding ceramic powders using a water-based gel casting process.USP 5145908,9,1992.
    [4]OGBEMII O.OMATETE,MARK A.JANNEY,and RICHARD A.STREHLOW.Gelcasting-A New Ceramic Forming Process[J].Ceramic Bulletin.70(10),1991:1641-1649
    [5]George W.Scherer,Theory of Drying,J.Am.Ceram.Soc.73(1),1990:3-14.
    [6]Albert C.Young,Ogbemi O.Omatete,Mark A.Janney,and Paul A.Menchhofer,gelcasting of alumina,J.Am.Ceram.Soc.,74[3],1991:612-618.
    [7]梁长海,维持凝胶织构的干燥理论、技术及应用,功能材料,28(1),1997:10-14。
    [8]仝建峰,博士学位论文,北京航空材料研究院,2002。
    [9]Sarbajit Ghosal and Abbas Emamai-Nacini,A Physical Model for the Drying of Gelcast Ceramics,J.Am.Ceram.Soc.82(3),1999:513-520.
    [10]郭亚丽,张建华,毕进子等,溶胶-凝胶ZrO_2陶瓷薄膜早期干燥过程研究[J],宇航材料工艺,3,2002:59-61。
    [11]Annika Kristoffersson,Water-based tape casting of ceramics and fabrication of ceramic laminate[D],Goteborg,Swedish,1999.
    [1]钦征骑,新型陶瓷材料手册,江苏科学技术出版社,1995。
    [2]李世普,特种陶瓷工艺学,武汉工业大学出版社,1990。
    [3]Annika Kristoffersson,Water-based tape casting of ceramics and fabrication of ceramic laminate[D],Goteborg,Swedish,1999.
    [4]谢志鹏,黄勇,王林等,氮化硅陶瓷注射成型体脱脂过程的研究,现代技术陶瓷,1994,4。
    [5]沈继耀,胡宗民,宋国强等,电子陶瓷,国防工业出版社,2,1979。
    [6]Jenny,et al.Method for molding ceramic powders using a water-based gel casting process.USP 5145908,9,1992.
    [7]Jenny.Method for molding ceramic powders.USP 4894194,1,1990.
    [8]Walls,et al.Gelcasting methods.USP 6066279,5,2000.
    [9]OGBEMII O.OMATETE,MARK A.JANNEY,and RICHARD A.STREHLOW.Gelcasting-A New Ceramic Forming Process.Ceramic Bulletin.70(10),1991:1641-1649.
    [10]Sarbajit Ghosal and Abbas Emamai-Nacini,A Physical Model for the Drying of Gelcast Ceramics,J.Am.Ceram.Soc.82(3),1999:513-520.
    [11]George W.Scherer,Theory of Drying,J.Am.Ceram.Soc.73(1),1991:3-14.
    [12]B.J.Briscoe,G.Lo Biundo and N.Ozkan,Drying of aqueous ceramic suspensions,Key engineering materials,132-136,1997:354-357.
    [13]R.W.卡恩,P.哈森,E.J.克雷默,材料科学与技术丛书—陶瓷工艺,科学出版社,1999。
    [14]理查德,J.布鲁克,陶瓷工艺(第1部分),科技出版社,1999。
    [15]仝建峰,博士学位论文,北京航空材料研究院,2002。
    [16]Toshio Kimura,Yasuyuki Kancko,and Takashi Yamaguchi,Consolidation of alumina-zirconia mixtures by a colloidal process,J.Am.Ceram.Soc.74[3],1991:625-632.
    [17]王红洁,贾书海,王永兰,金志浩,凝胶注成型中排胶温度对生坯强度及显微结构的影响,西安交通大学学报,11,2001。
    [18]李国军,博士后出站报告,北京航空材料研究院,2003。
    [1]G.C.Kuczynski,Trans.AIME,185,1949:169.
    [2]R.L.Coble,J.Appl.Phys.,32[5],1961:787-799.
    [3]R.L.Coble,J.Am.Ceram.Soc.,41[2],1958:55.
    [4]F.SHOJAI,T.A.MANTYLA,effect of sintering temperature and holding time on the properties of 3Y-ZrO_2 microfiltration,Journal of materials science,36,2001:3437-3446.
    [5]郭新,博士学位论文,华中理工大学,1992。
    [6]W.H.RHODES,J.Amer.Ceram.Soc,64,1987.
    [7]Janusz Nowo TNY,Science of ceramic interfaces,Elsevier,Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo,1994.
    [8]李世普,特种陶瓷工艺学,武汉工业大学出版社,1990。
    [9]沈继耀,胡宗民,谈家琪等,电子陶瓷,国防工业出版社,1979。
    [10]Harry L.Tuller,Johannes Schoonman nd Ian Riess,Oxygen ion and mixed conductors and their technological applications,Kluner Academic,Neterlands,2000.
    [11]David L.Bourell and Parimal,Sol-gel synthesis of nanophase yttria-stabilized tetragonal zirconia and densification behavior below 1600K,J.Am.Ceram.Soc.,76[5],1993:705-711.
    [12]王红洁,贾书海,王永兰,金志浩,凝胶注成型中排胶温度对生坯强度及显微结构的影响,西安交通大学学报,11,2001。
    [13]贺天民,吕哲,裴力等,改进注浆法制备YSZ电解质薄管的烧结和电性能,功能材料,33(1),2002。
    [14]Newton Sequre,ICDD[P],USA:PDF Card No.30-1468,1980.
    [15][美]W·D·金格瑞等著,清华大学无机非金属材料教研组译,庄炳群校,陶瓷导论,中国 建筑工业出版社,1982。
    [16]理查德,J.布鲁克,陶瓷工艺(第1部分),科技出版社,1999。
    [17]李标荣,电子陶瓷工艺原理[M],武汉:华中工学院出版社,1986。
    [18]Radford K C,Brattor R J,J.Mater.Sci.,14,1979:59
    [19]Amit Mukherjee,B.Maiti,A.Oas Sharma,R.N.Basu,H.S.Maiti,Correlation between slurry rheology,green density and sintered density of tape cast yttria stabilized zirconia,Ceramic international,27,2001:731-739.
    [20]Jane W.Adams.Young's Modulus,Flexural Strength,and Fracture of Yttria-Stabilized Zirconia versus Temperature.J.Am.Ceram.Soc.80(4),1997:903-908.
    [21]Gibson I R,Dransfield G P,Irvin J T S,J.Eur.Ceram.Soc.,1998,18.
    [22]马亚鲁,博士论文,天津大学,1997。
    [23]余明清,范仕刚,孙淑珍等,Al_2O_3增强ZrO_2陶瓷的制备及性能研究,硅酸盐通报,2001,2。
    [24]雷廷权,Al_2O_3+ZrO_2陶瓷中颗粒间界微裂纹及其增韧作用,92秋季中国材料研讨会论文集,广州,1992。
    [25]Georg Grathwohl and Tianshun Liu,Crack resistance and fatigue of transforming ceramics:1,Materials in the ZrO_2-Y_2O_3-Al_2O_3 system,J.Am.Ceram.Soc.,74[2],1991:318-325.
    [26]李廷凯,丁子上,吴速兴,ZrO_2增韧陶瓷中四方氧化锆的相变、相变区宽度及增韧机理的研究,硅酸盐学报,16[3],1998:238。,92。
    [27]K.C.Radford and R.J.Bratbon,zirconia electrolyte cells-part 1,sintering studies,J.Mater.Sci.,14,1979:59-65.
    [28]Nguyen Q.Mine Ceramic Fuel Cells.J.Am.Ceram.Soc.76(3),1993:563-88.
    [29]Kon Tsukuma and Kuniyoshii Ueda.Strength and Fracture Toughness of Isostatically Hot-Pressed Composites of Al_2O_3 and Y_2O_3-Partially-Stabilized ZrO_2.J.Am.Ceram.Soc.68(1),1985:C-4-C-5.
    [30]S.C.Singhal,M.Dokiya,solid oxide fuel cells(SOFC Ⅵ),the electrochemical society INC.10 south mainst.Penningtong,NJ.08534-2896,USA.:135o
    [31]Radford,Zirconia electrolyte cells-part 1.sintering studies,J.Mater.Sci, 14,1979: 59-65o
    [32] Masashi Mori, Masahiro Yoshikawa, Hibiki Itoh, and Toshio Abe. Effect of Alumina on Sintering Behavior and Electrical Conductivity of High-Purity Yttria-Stabi lized Zirconia. J. Am. Ceram. Soc, 1994: 2217-19.
    [1]Do-Hyeong Kim and Chong Hee Kim.Entrapped Gas Effect in the Fast Firing of Yttria-Ooped Zirconia.J.Am.Ceram.Soc.75(3),1992:716-18.
    [2]Nguyen Q.Minh.Ceramic Fuel Cells.J.Am.Ceram.Soc.76(3),1993:563-88.
    [3]S.P.S.BADWAL.Electrical conductivity of single crystal and polycrystalline yttria-stabilized zirconia.J Mater Sci.19,1984:17671776.
    [4]J.VAN HERLE,A.J.McEVOY,K.RAVINDRANATHAN THAMPI.Conductivity measurements of various yttria-stabilized zirconia samples.J Mater Sci.29,1994:3691-3701.
    [5]Hiroshi Yamamura,Noriaki Utsunomiya,Toshiyuki Mori,Tooru Atake,Electical conductivity in the system ZrO_2-Y_2O_3-Sc_2O_3,Solid State Ionics.107,1998:185-189.
    [6]T.H.ETSELL and S.N.FLENGAS.THE ELECTRICAL PROPERTIES OF SOLID OXIDE ELECTROLYTES.Chemical Reviews.70(3),1970:339-376.
    [7]李英,博士学位论文,清华大学,1999。
    [8]哈根穆勒(P.Hagenmuller)著,陈立泉译,固体电解质:一般原理、特征、材料和应用,北京科技出版社,12,1984。
    [9]关振铎,张中太,焦金生,无机材料物理性能,清华大学出版社,1992。
    [10][美]W·D·金格瑞等著,清华大学无机非金属材料教研组译,庄炳群校,陶瓷导论,中国建筑工业出版社,1982。
    [11]史美伦,同体电解质,科学技术文献出版社重庆分社,7,1982。
    [12]李英,龚江宏,谢裕生等,Y_2O_3稳定ZrO_2材料的电导活化能,无机材料学报,7,2002。
    [13]F.A.Kroger,H.J.Vink,Solid State Physics,vol.3,Ed.By F.Seitz et al.,AP(1956):307-435.
    [14]曾燮榕,ZrO_2基超微粉体和快离子导体的制备与性能研究,西北工业大学博士论文,1993。
    [15]陈家林,万吉高等,氧传感器用ZrO_2-Y_2O_3固体电解质电导性能的研究,贵金属,22(1),2001。
    [16]唐子龙,固体氧化物燃料电池的研究,清华大学博士论文,1997。
    [17]M.Filal,C.Petot,M.Mokchah,C.Chateau,J.L.Carpentier,Ionic conductivity of yttrium-doped zirconia and the "composite effect",Solid State Ionics.80, 1995:27-35.
    [18]苏免曾,固体化学导论[M],北京:北京大学出版社,1987。
    [19]C.M.MARI,G.DOTELLI,how to forecast the electrical behaviour of ionic conductor composites? J.Mater.Sci.36,2001:1141-1147.
    [20]M.MORI,T.ABE,H.ITOH,O.YAMAMOTO,et al,Solid state ionics,74(1994):157.
    [21]L.M.NAVARRO,P.RECIO,J.R.JURADO,et al.,J.Mater.Sci,30,1995:1949.
    [22]A.J.FEIGHERY,J.T.S.IRVINE,Solid State Ionics,121,1999,:209.
    [23]A.YUZAKI,A.KISHIMOTO,ibid,116,1999:47.
    [24]Y.JI,J.LIU,Z.LU,X.ZHAO,T.HE,et al,ibid,126,1999:277.
    [25]Mackradt W C,Woodrow P M,Theoretical estimates of point defect energies in cubic zirconia,J.Am.Ceram.Soc.,69,1986:277-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700