给水工程综合防灾规划空间决策支持系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地介绍了给水工程综合防灾规划编制的要求和主要内容,并详细研究了相关的研究方法和模型。在此基础上又结合GIS技术和决策支持技术开发了给水工程综合防灾规划空间决策支持系统CDPP SDSS,同时结合烟台经济技术开发区的数据进行了实例演示。
     本文的研究主要包括以下5个方面:
     (1)综合目前在城市灾害预测、防灾减灾管理以及规划等多方面的研究成果,确立了城市综合防灾规划的目的、地位和主要包含的内容,并进一步针对给水工程提出了编制综合防灾规划的技术路线,明确了综合防灾规划应该包含的灾害识别、灾害风险分析、设防标准和防灾建议以及规划方案制定等几方面的内容。
     (2)在灾害识别的基础上,针对烟台开发区给水工程所面对的主要灾害,即地震、地质和洪水灾害分别进行了灾害风险分析。对于地震灾害,介绍了通过地震危险性分析、地震易损性分析和地震损失分析构成的定量分析地震风险的方法;对于地质和洪水灾害则采用了模糊综合评判的方法,通过建立灾害风险评价指标以及相应指标的隶属函数来半定量地分析地质和洪水风险。
     (3)针对地震灾害介绍了给水工程抗震设防标准的优化选择模型。该模型首先计算由地震损失和设防投入之和构成的期望总损失,然后分别对各个烈度作为设防烈度的期望总损失进行比较,取极小值对应的地震烈度作为设防水准,并据此提出相应的设防要求。
     (4)提出了给水工程规划决策分析模型WDSM。该模型首先利用层次分析法对城市土地综合灾害危险性进行评价并用综合灾害指数来表达,同时还要分析主导灾害类型,在此基础上利用ArcView9.2的空间叠置分析求得可以用作管网规划的备用线路的综合灾害指数和主导灾害类型;然后根据线路综合灾害指数的大小利用ArcView9.2网络分析模块中的连通性分析功能,结合一些布局约束条件对备用线路自动进行筛选,得到规划建议布局;最后则是针对主导灾害类型和设防标准的要求提出相应的防灾建议,并与规划建议布局图相关联,从而形成最终的给水工程规划建议方案,为规划者提供决策支持。
     (5)详细介绍了GIS技术、DSS技术以及SDSS技术发展和特点,着重分析了SDSS技术在空间问题分析方面的应用优势,在此基础上将SDSS与给水工程综合防灾规划相结合,利用ArcView9.2的GIS平台,以Oracle9i的后台数据库为基础,内嵌针对给水工程规划内容的专业分析模型,采用VB.NET语言和AO技术研发了给水工程综合防灾规划空间决策支持系统CDPP SDSS,并对系统的设计和功能进行了详细的说明,最后又通过烟台开发区的实际数据对CDPP SDSS进行了演示。
     论文的创新点主要为:
     1)首次针对城市综合防灾规划的具体问题进行了研究,明确了城市综合防灾规划应该包含的主要内容,并通过给水工程综合防灾规划详细分析了规划编制过程中的各个环节及相应的方法。
     2)首次提出了给水工程综合防灾规划决策分析模型WDSM,该模型主要利用层次分析法以及GIS的空间叠置和网络分析方法,能够从防灾的角度自动生成规划建议方案,从而实现辅助决策支持的功能。
     3)首次将SDSS技术应用到了综合防灾规划领域,并自主研发了给水工程综合防灾规划空间决策支持系统CDPP SDSS。
The purpose of the thesis is to illustrate the main contents of comprehensive disaster prevention plan for water supply system and to examine the approaches involved in compiling plan. Moreover, the Spatial Decision Support System for Comprehensive Disaster Prevention Plan (CDPP_SDSS) developed on the basis of GIS and DSS is introduced in details and demonstrated with the data of Yantai Economy & Technology Development Area (YTETDA).
     The main work of this study includes five parts as follows:
     1) The objectives and primary contents of comprehensive disaster prevention plan (CDPP) and the relationship between CDPP and other urban plans are firstly discussed based on present researches on urban disaster predictions, disaster mitigation management and disaster prevention plans. Then aiming at water supply system, particular specification is further made about technical routine of compiling CDPP and major parts of CDPP such as identifying principal disasters, analyzing disaster risks, ascertaining fortified criteria and making blue print.
     2) The analysis of disaster risks are executed in allusion to three important natural disasters, namely earthquake, geological disasters and flood, resulting from disaster identification for water supply system in YTETDA. During the whole process, a quantitative approach for seismic risk analysis, which involves seismic hazard analysis, seismic vulnerability analysis and lost estimation, is concretely explained. Meanwhile, a semi-quantitative method, called fuzzy comprehensive assessment method, for flood and geological disasters is also illuminated in which more emphases are placed on the establishment of evaluation indexes and subjection functions.
     3) An optimized approach to anti-seismic fortified criteria for water supply system is introduced in this dissertation. In this method, sums of direct seismic loss and defense cost, called expected total loss, under different seismic defense intensities are calculated and then compared. The seismic intensity corresponding to the least expected total loss can be regarded as the optimal defense intensity and requirements of construction can also be suggested.
     4) In order to get more efficient aided decision-making support, a decision support analysis model for CDPP for water supply system, named WDSM, is proposed based on the previous study in this paper. Firstly, the synthesized disaster hazard in every plot is evaluated in WDSM based on the results of disaster risk analyses and analytic hiberarchy process (AHP) and expressed by synthesized disaster index LDI. During the calculation of LDI, the primary disaster of each plot can also be identified as well. Secondly, synthesized disaster index RDI and major disaster of each route possibly for water pipe plan are further obtained by using spatial superposition analysis of Arcview9.2. Based on RDI, the selection of route for plan is made on the condition of layout restrictions and net connectivity analysis of GIS to contribute the advised layout of water pipes. Finally, the aided blue print of CDPP for water supply system will be achieved with the combination of advised layout and defense requirements and suggestions which are from major disaster analysis and demands of defense criteria.
     5) The study proposed a spatial decision support system framework for CDPP after the specific introduction of the development and characteristics of GIS, DSS and SDSS, and the full explanation of advantage of combining SDSS and CDPP for water supply system. This system was developed on Arcview9.2 and Oracle 9i with VB programming language and AO technology. In this thesis, the general design of the system and the concrete design of structures and functions of each modules embedded in CDPP_SDSS are narrated and demonstrated with the real data of YTETDA.
     Comparing with related researches in this field, the three main innovations of this study are: 1) to firstly clarify the specific contents of CDPP and illustrate the technical routine of compiling CDPP through the example of CDPP for water supply system; 2) to propose the decision support analysis model for CDPP for water supply system-WDSM, which can automatically present an advised blue print for water pipe plan from the view of disaster prevention and mitigation by using AHP method and spatial superposition analysis and net connectivity analysis of GIS; 3) to firstly apply SDSS technology to the field of comprehensive disaster prevention and independently develop the spatial decision support system for CDPP for water supply system-CDPP_SDSS.
引文
[1]万艳华.《城市防灾学》[M],中国建筑工业出版社,2003.
    [2]于卫红,生命线工程抗震防灾规划研究[J].山东建筑.2003,No.2:33-35.
    [3]童林旭,城市生命线系统的防灾减灾问题[J].城市发展研究.2000,No.3:8-12.
    [4]金磊,城市生命线系统防灾备灾能力亟待提高[J].中国建筑学报.2005,No.4:4-6.
    [5]苗崇刚,杜玮.1997中国大陆地震灾害述评[J].自然灾害学报,1998,Vol.7,No.3:99-103.
    [6]姜彤,王润.1997年全球自然灾害回顾与分析[J].自然灾害学报,1998,Vol.7,No.3:1-5.
    [7]康宁,突发性灾害对城市生命线系统的危害及对策[J].软科学.1991,No.1:12-19.
    [8]王家耀,周海燕,关于地理信息系统与决策支持系统的探讨[J].测绘科学.2003,Vol.28,No.1:1-4.
    [9]张秀彦,基于GIS的城市防震减灾动态管理信息系统研究[D].石家庄:河北理工大学.2005.
    [10]国家地震局,国家统计局.中国大陆地震灾害损失评估汇编[M].北京:地震出版社,1996.
    [11]罗祖德,徐长乐.《灾害科学》[M].浙江教育出版社,2000.
    [12]金磊.《城市灾害学原理》[M].气象出版社,1997.
    [13]叶义华,许梦国,叶义成.《城市防灾工程》[M].冶金工业出版社,1999.
    [14]高文学.中国自然灾害史(总论)[M].北京:地震出版社,1997.
    [15]杨达源,闾国年.《自然灾害学》[M].测绘出版社,1993.
    [16]蒋维,金磊.《中国城市综合减灾对策》[M],中国建筑工业出版社,1992.
    [17]周锡元.从工程抗震到多灾种综合防御——唐山地震30年以来的思考[A].城市与工程安全减灾研究与进展论文集[C].2006.
    [18]Duke C M and Moran D F.Guidelines for evaluating oflifeline engineering[A].Proe..Of the U.S.National Conference on Earthquake Engineering[C],1975,367-376.
    [19]Kinteginan A.D.Structural response to stationary excitation[J].Earthquake Mechanics,ASCE.1980,Vol.106,No.6:1195-1213.
    [20]Anton Walter F.Seismic Design of Pumping Plants[J].Journal of the Technical Councils of ASCE:Proceedings of the ASCE.1981,Vol.107,No.1:1-12.
    [21]Equchi R.T.,Werner Stuart D.,Earthquake Hazard Mitigation of Utility Lifeline System[J].Earthquake Engineering Research.1986,2203-2213.
    [22]Zhu H.Geological environment of seismic hazards and lifeline earthquake engineering[J].American Society of Mechanical Engineers,Pressure Vessels and Piping Division.1989,Vol.162:205-211.
    [23]Gere James M.,Shah Haresh C.,Tangshan Rebuilds After Mammoth Earthquake[J].Civil Engineering.Vol.50,No.12:47-52.
    [24]Bertero Vitelmo V.,Lessons Learned from the 1985 Mexico Earthquake[M].Reducing Earthquake Hazards:Lessons Learned from the 1985 Mexico Earthquake.1989.
    [25]Billings H.J.,Singh S.Damage assessment of lifeline facilities and disaster preparedness:a training exercise[J].American Society of Mechanical Engineers,Pressure Vessels and Piping Division.1989,Vol.162:63-69.
    [26]Krimgold Frederick,Gelman Ousei,Working group conclusions on lifelines and disaster response and mitigation[C].Reducing Earthquake Hazards:Lessons Learned from the 1985 Mexico Earthquake.1989,202-204.
    [27]Hopkins D.C.,Lumsden J.L.,Norton J.A.,Lifelines in earthquakes-a case study based on Wellington[J].Bulletin of the New Zealand National Society for Earthquake Engineering.1993,Vol.26,No.2:208-211.
    [28]山田善一,家村浩和,野田茂,等.反复分割法による震災后の上水供给系の时变信赖性解析[J].土木学会论文集,1982,Vol.326,No.1:1-13.
    [29]#12
    [30]#12
    [31]#12
    [32]#12
    [33]Wang Leon R.L.,Ishibashi Isao,Wang Joyce C.C.,Inventory and seismic loss estimation of Portland water/sewer systems.GIS application to buried pipelines[C].Proe 3 US Conf Lifeline Earthquake.1991,490-499.
    [34]Leon R.L.Wang,Earthquake Damage Estimation and Rehabilitation Prioritization of Buried Lifelines[J].Post-Earthquake Rehabilitation and Reconstruction.1996,97-111.
    [35]Bivins William S.,Seismic vulnerability and impact of disruption of lifelines in the conterminous United States.An overview[A].NIST Special Publication.No.843,1992,159-164.
    [36]Blaekloek James R.Earthquake hazard investigative procedures for Central United States Waterworks[J].Lifeline Earthquake Engineering in the Central and Eastern US.1992,No.TCLEE5:1-15.
    [37]Alouehe Erez N.,Bowman Adnrew L.,Holistic approach for assessing the vulnerability of buried pipelines to earthquake loads[J],Natural Hazards Review.2006,Vol.7,No.2:12-18.
    [38]Jorgenson Erie J.,Lifeline services seismic disruption assessment[J].Technical Council on Lifeline Earthquake Engineering Monograph.1999,No.16:814-821.
    [39]S,Menoni,F.Pergalani,M.P.Boni and V.Petrini,Lifelines earthquake vulnerability assessment:a systemic approach[J].Soil Dynamics and Earthquake Engineering.2002,Vol.22,No.12:1199-1208.
    [40]Torres Vera,Marco Antonio.A lifeline vulnerability study in Barcelona,Spain[J].Reliability Engineering and System Safety.2003,Vol.80,No.2:205-210.
    [41]Chang Stephanie E.,Seligson Hope A.,Evaluating disaster mitigations:Evaluating Mitigation of Urban Infrastructure Systems:Application to the Los Angeles Department of Water and Power[C].Technical Council on Lifeline Earthquake Engineering Monograph,2003,No.25:474-483.
    [42] M. F. Shinozuka, Lifeline seismic disaster mitigation: research and implementation [J]. Regional Development Dialogue. 1994, Vol.12, No.2: 195-205.
    [43] Taylor Craiq, Mittler Eliott. Overcoming barriers: Lifeline seismic improvement programs [J]. Technical Council on Lifeline Earthquake Engineering Monograph. 1998, No.13: 298-312.
    [44] Alesch Daniel J, Nagy Robert, Taylor Craiq, Seeking criteria for the natural hazard mitigation investment decision[C]. Technical Council on Lifeline Earthquake Engineering Monograph, No.21, Acceptable Risk Processes, Lifelines and Natural Hazards. 2002, 160-184.
    [45] Beavers J.E. Advancing Mitigation Technologies and Disaster Response for Lifeline Systems[C]. Proceedings of the Sixth U.S. Conference and Workshop on Lifeline Earthquake Engineering. 2003, No.25: 1073-1087.
    [46] Chang Stephanie E. Evaluating disaster mitigations: Methodology for urban infrastructure systems[J]. Natural Hazards Review, 2003, Vol.4, No.4: 186-196.
    [47] Miles, Scott B. Modeling community recovery from earthquakes[J]. Earthquake Spectra. 2006, Vol,22, No.2: 439-458.
    [48] Cornell C.A. Engineering seismic risk analysis[J]. BSSA: 1968, 58: 1583-1606.
    [49] Mehmet Bora Baturay. Uncertainties and bias in ground motion estimates from ground response analyses[D]. US.Los Angeles: University of California, 2002.
    [50] Tuna Onur. Seismic risk assessment in southwestern British Columbia[D]. Columbia.British: The University of British Columbia, 2001.
    [51] Seed Raymond B., Marachi N.Dean., Lifeline Risk Analysis: The Mokelumne Aqueduct Study[J]. ASCE. 1986,28-43.
    [52] Pitilakis Kyriazis, Alexoudi Maria, etc., Earthquake risk assessment of lifelines[J]. Bulletin of Earthquake Engineering. 2006, Vol.4, No.4:365-390.
    [53] Clark James A., Lee Chih-Hung, Seismic/geological risks as factors in prioritizing gas pipeline system replacement[C]. Proc 3 US Conf Lifeline Earthquake, 1991, 206-215.
    [54] Chang Stephanie E., Shinozuka Masanobu, Moore James E.II, Probabilistic earthquake scenarios: Extending risk analysis methodologies to spatially distributed systems[J]. Earthquake Spectra, 2000, Vol.16, No.3: 557-572.
    [55] Campbell Kenneth W., Reliability In Lifeline Earthquake Engineering[C]. Journal of the Technical Councils of ASCE: Proceedings of the ASCE. 1979, Vol.105, No.2: 259-270.
    [56] A.Sevtap Selcuk, M.Semih Yucemen, Reliability of lifeline networks under seismic hazard[J]. Reliability Engineering & System Safety. 1999, Vol.65, No.3: 213-227.
    [57] Lambert James H., Srada Priya, Risk analysis of disaster planning by superposition of infrastructure and societal networks[C]. Risk-Based Decisionmaking in Water Resources X: Proceedings of the Tenth Conference. 2002, 1-11.
    [58] Hoshiya Masaru, Yamamoto Kinya, Redundancy index of lifelines systems[J]. Journal of Engineering Mechanics. 2002, Vol.128 No.9: 961-968.
    [59]Hoshiya Masaru,Yamamoto Kinya,Ohno Haruo,Redundancy index of lifelines for mitigation measures against seismic risk[J].Probabilistic Engineering Mechanics.2004,Vol.19,No.3:205-210.
    [60]刘恢先.唐山大地震震害(三)[M].北京:地震出版社,1985.
    [61]赵成刚,冯启民,等.生命线地震工程[M].北京:地震出版社,1994.
    [62]HU Yu-xian.On the 50 year's development of earthquake engineering in China[J].Building Structure.1999,10:22-25.
    [63]XIE Li-li,MA Yu-hong.The development process of the modern earthquake resistant design theory[J].Recent Developments in World Seismology.2003,Vol.298,No.10:1-8.
    [64]苏幼坡,苏经字,苏春生,刘瑞兴等.城市生命线系统震后恢复的基础理论与实践[M].北京:地震出版社,2002
    [65]王飞,蒋建群,城市地震灾害综合易损性分析方法探讨[J].地震研究.2005,Vol.28,No.1:96-101.
    [66]张鲁冰,张同,颜伟,燃气管道抗震措施[J].中国建筑学报.1999,Vol.13,No.4:35-37.
    [67]张鲁冰,张同,颜伟,燃气输配管道抗震措施初探[J].城市煤气.1999,Vol.288,No.2:12-14.
    [68]撖凤玲,郭星全,雷建设,生命线工程震害对策的网络分析及实例[J].华南地震.1998,Vol.18,No.4:78-82.
    [69]赵仕万,东京城市生命线工程的震害对策(上)[J].中州建筑.2000,No.3:27-30.
    [70]孙尧,生命线工程震害损失评估及抗震减灾对策研究[D].重庆:重庆大学.2004.
    [71]汤爱平,陆钦年,埋地生命线管道系统智能监测的初步研究[J].世界地震工程.200l,Vol.17,No.1:106-111.
    [72]武洁,试论城市供水管道抗震加固[J].山西建筑.2001,Vol.27,No.6:118-119.
    [73]王长群,城市供水生命线工程抗震设防分类探讨[J].特种结构.2002,Vol.19,No.4:9-11.
    [74]符圣聪,林平,江静贝.重要工程的地震作用取值[J].工程抗震,2003,No.1:34-36.
    [75]姚保华,谢礼立,火思杰,研究地震情况下生命线系统相互作用的综合方法[J].2004,Vol.26,No.2:193-202.
    [76]尤建新,陈桂香,陈强,城市生命线系统的非工程防灾减灾[J].自然灾害学报.2006,Vol.15,No.5:194-198.
    [77]柳春光,张安玉,供水管网地震功能的失效分析[J].工程力学.2007,Vol.24,No.3:142-147.
    [78]黄崇福.自然灾害风险分析的基本原理[J].自然灾害学报,1999,Vol.8,No.2:21-30.
    [79]黄崇福.自然灾害风险分析的信息矩阵方法[J].自然灾害学报,2006,Vol.15,No.1:1-10.
    [80]任鲁川.区域自然灾害风险分析研究进展[J].地球科学进展,1999,Vol.14,No.3:242-246.
    [81]金菊良,魏一鸣,付强,丁晶.改进的层次分析法及其在自然灾害风险识别中的应用[J].自然灾害学报,2002,Vol.11.No.2:20-24.
    [82]姚清林,黄崇福.地震灾害风险因素和风险评估指标的模糊算法[J].自然灾害学报,2001,Vol.11,No.2:51-58.
    [83]和飞,缪升.地震灾害风险分析及管理初探[J].地震研究,2002,Vol.25,No.4:374-378.
    [84]吕红山.基于地震动参数的灾害风险分析[D].北京:中国地震局地球物理研究所,2004.
    [85]朱良峰,殷坤龙,张良,李闽.GIS支持下的地质灾害风险分析[J].长江科学院院报,2002,Vol.19, No.3:42-45.
    [86]朱良峰,殷坤龙,张良,李闽.地质灾害风险分析与GIS技术应用研究[J].地理学与国土研究,2002,Vol.18.No.4:10-13.
    [87]姚清林.评价地质因素对地震灾害风险影响的一个模糊集方法[J].地震地质,2003,Vol.25,No.2:245-260.
    [88]谢全敏,边翔,夏全友.滑坡灾害风险评价的系统分析[J].岩土力学,2005,Vol.26,No.1:71-74.
    [89]丁继新,杨志法,尚彦军,等.区域泥石流灾害的定量风险分析[J].岩土力学,2006,Vol.27,No.7:1071-1075.
    [90]谭宗琨.气象灾害风险评价和减灾对策分析[J].广西气象,1998,Vol.19,No.1:38-41.
    [91]魏一鸣,范英,金菊良.洪水灾害风险分析的系统理论[J].管理科学学报,200l,Vol.4,No.2:7-12.
    [92]田国珍,刘新立,王平,等.中国洪水灾害风险区划及其成因分析[J].灾害学,2006,Vol.21,No.2:1-6.
    [93]郭恩栋,冯启民,城市供水系统抗震可靠性分析及对策研究[J].1996,Vol.16,No.3:104-113.
    [94]韩阳,城市地下管网系统的地震可靠性研究[D].大连:大连理工大学.2002.
    [95]陈伶俐,李杰,城市供水管网系统抗震功能可靠度分析[J].工程力学.2004,Vol.21,No.4:45-50.
    [96]李杰,卫书麟,城市供水管网抗震功能可靠度分析[J].防灾减灾工程学报.2005,Vol.25,No.4:353-358.
    [97]李杰,刘威,大型城市管网抗震可靠性分析与优化[J].地震工程与工程振动.2006,Vol.26,No.3:172-175.
    [98]李梁峰,储油罐模糊抗震可靠度及其震害预测[D].厦门:华侨大学.2004.
    [99]符圣聪,地震时埋设管道可靠度的实用算法[J].特种结构.2004,Vol.21,No.1:36-40.
    [100]Tierney,Kathleen J.Organizational features of U.S.lifeline systems and their relevance for disaster management[J].NIST Special Publication.1992,N 840:423-436
    [101]Mehta Kishor C.,Kiesling Ernst W.,Mitigation of windstorm disasters[C].Proceedings of the Conference on Natural Disaster Reduction.1996,205-206.
    [102]Fausto Guzzetti,Alberto Carrara,Mauro Cardinali and Paola Reichenbach,Landslide hazard evaluation:a review of current techniques and their application in a multi-scale study,Central Italy[J].Geomorphology.1999,Vol.31,No.4:181-216.
    [103]Menoni S.,Chains of damages and failures in a metropolitan environment:Some observations on the Kobe earthquake in 1995[J].Journal of Hazardous Materials.2001,Vol.86,No.3:101-119.
    [104]Jone Nicholas P.,Dalrymple Robert A.,Management of civil infrastructure systems in multi-hazard environments:Coastal hazards and systems[J].Solutions to Coastal Disasters.2002,336-348.
    [105]Grigg Nell S.,Water utility security:Multiple hazards and multiple barriers[J].Journal of Infrastructure Systems.2003,Vol.9,No.2:81-88.
    [106]Taylor Craiq,Werner Stuart D.,Toward system performance standards for infrastructure systems impacted by natural hazards[C].Earth and Space 2006-Proceedings of the 10th Biennial International Conference on Engineering,Construction,and Operations in Challenging Environments,2006, 102-109.
    [107]Jang Suk Hwan,Choi Tae Yong,etc.,Comprehensive Planning of Water Distribution Pipe Equipment in Seoul Metropolitan City[C].Proceedings of the ASCE International Conference on Pipeline Engineering and Construction:New Pipeline Technologies,Security,and Safety,Vol.1.2003,57-67.
    [108]陈宏毅,论城市生命线工程系统的防(火)灾可靠度分析[J].重庆建筑大学学报.1998,Vol.20,No.1:92-96.
    [109]朱力平,城市常规火灾灭火能力定量估算初探[A].中法消防论坛论文.2000,33-36.
    [110]王栋军,我们面对的城市消防供水和市政消火栓问题[J].水上消防.2007,No.2:11-13.
    [111]吕谋,裘巧俊,李乃虎,鞠保轩,浅谈城市供水系统安全性[J].青岛建筑工程学院学报.2005,Vol.26,No.1:1-4.
    [112]刘涛,邵东国,等,基于层次分析法的供水风险综合评价模型[J].武汉大学学报(工学版).2006,Vol.39.No.4:25-28.
    [113]张维,周锡元,高小旺,城市综合防灾示范研究[J].1999,Vol.15,No.1:1-7.
    [114]罗翔,城市消防规划及消防给水规划[J].城市规划.1997,No.6:54-56.
    [115]郭章林,刘俊娥,等,城市煤气工程抗震防灾规划[J].2001,Vol.18,No.1:43-46.
    [116]叶民权,乌鲁木齐生命线系统减灾规划分析[J].城市与减灾.2001,No.1:9-12.
    [117]翟永梅,沈祖炎,李文艺,等,上海市煤气系统和供水系统抗震防灾对策研究[J].地震研究.2001,Vol.24.No.3:267-271.
    [118]苗秀荣,城市给水管网系统的优化设计研究[D].太原:太原理工大学.2004.
    [119]金磊,北京城市综合减灾规划设计研究的理念与思考[J].建设信息.2005,No.8:12-15.
    [120]刘仁勋,罗大军,江安镇供水工程抗震防灾专题规划[J].科技信息.2005,11-14.
    [121]陶贵清,城市地下给水管网优化设计研究[D].沈阳:辽宁工程技术大学.2005.
    [122]王钰,杭州城市地下管线综合管理研究[D].杭州:浙江大学.2006.
    [123]刘应明,规划建设与管理探讨[J].中国建筑学报.2007,No.1:60-63.
    [124]奚江琳,黄平,张奕,城市防灾减灾的生命线系统规划初探[J].现代城市研究.2007,No.5:76-81.
    [125]牛燕利,基于GIS的城市供水管网动态震害预测[D].北京:北京工业大学.2004.
    [126]关晓涛,基于MapObjcots与C#语言供水管网地理信息系统框架的设计与实现[D].北京:北京工业大学.2004.
    [127]范春波,城市综合地下管网信息系统的数据建库与远程数据维护[D].武汉:武汉大学.2004.
    [128]史义维,城市供水管网地理信息系统(GIS)模型设计与研究[D].武汉:武汉理工大学.2005.
    [129]刘曦灿,济南市综合地下管网信息系统的建立与应用[D].济南:山东科技大学.2006.
    [130]都淑萍,毕明新,基于组件式GIS的供水管网管理系统的设计[J].科技信息.2006,No.7:53-54.
    [131]Liu Qian,Spatial decision support system for abandoned coal mine reclamation[D].Indiana,USA:Indiana State University,2000.
    [132]Miller,A rangeland watershed management spatial decision support system:Design,implementation,and sensitivity analysis[D].Arizona,USA:The University of Arizona,2004.
    [133]Russell Karen,A knowledge-based spatial decision support system(SDSS) for coastal zone oil spill response in Anaktalak Bay,Labrador[D].Canada:Memorial University of Newfoundland,2004.
    [134]Duan Yanxin,A spatial decision support system for economic analysis of sediment control on rangeland watersheds[D],The University of Arizona.2005.
    [135]Naill M.H.Al-Momani.Improving crisis management capability in response to earthquake catastrophe using information technology:Sensitivity analysis for earthquake secnarios[D].US.Columbia D.C:The George Washington University,2002.
    [136]Sajjad Ahmad,An Intelligent Decision Support System for Flood Management:A Spatial System Dynamic Approach[D].London:The University of Western Ontario,2002.
    [137]Sara Jean Paulson,A Spatial Decision Support System Design for Flood Risk Monitoring in East Africa[D].USA:South Dakota State University,2002.
    [138]Trail David M.,Blom Ronald G.,Zlotnicki Victor.Satellite remote sensing of earthquake,volcano,flood,landslide and coastal inundation hazards[J].ISPRS Journal of Photogrammetry and Remote Sensing.2005,Vol.59,No.4:185-198
    [139]Shinozuka Masanobu.Real-Time damage localization by means of MEMS sensors and use of wireless data transmission[C].Proceedings of SPIE-The International Society for Optical Engineering,2006,Vol.6178.
    [140]卢钦伟,城市综合管线网络信息系统例谈[J].中州建筑.2005,No.6:71-72.
    [141]左社强,陈德兴,等,野战给水保障空间决策支持系统研究[J].工兵装备研究.2005,Vol.24,No.4:49-51.
    [142]陈炜航,地下管网图形信息管理系统研究与设计[D].兰州:西北工业大学.2006.
    [143]扈震,王勇,基于GIS的城市规划空间辅助决策平台[J].地球科学-中国地质大学学报.2006,Vol.31.No.5:699-704.
    [144]高杰,冯启民,史承伟,等,基于AreView9.0的城市震害预测及应急对策信息系统研究[J].世界地震工程.2006,Vol.22.No.3:32-39.
    [145]高杰,冯启民,张海东,城市群体建筑物震害模拟方法研究[J].震灾防御技术.2007,Vol.2,No.2:193-200.
    [146]GAO Jie,GAO Huiying,MA Haoran,Wu Yi,Research on Emergency Response System for Urban Earthquake[C].Advances in Studies on Risk Analysis and Crisis Response.2007,Vol.2:489-494.
    [147]高杰,莫善军,仝永德,基于GIS的铁路及辅助设施管理系统研究[C].第七届ArcGIS暨ERDAS 中国用户大会论文集.2006.
    [148]顾红艳,从DSS的发展重新认识决策支持系统[J].沈阳工程学院学报(社会科学版).2006,Vol.2,No.3:330-332.
    [149]曹晓静,张航,决策支持系统的发展及其关键技术分析[J].计算机技术与发展.2006,Vol.16,No.11:94-96.
    [150]高洪森,决策支持系统(DSS)理论方法案例[M].北京:清华大学出版社,2005.
    [151]兰壮丽,赵勇,基于神经网络的智能DSS研究[J].西安科技学院学报.2004,Vol.24,No.2:207-210.
    [152]龚敏霞,张书亮,闾国年,智能化空间决策支持模型库及其支持下GIS与应用分析模型的集成研 究[J].地球信息科学.2006,Vol.12,No.1:34-42
    [153]张苏,语义网法在空间决策支持中的应用与研究[J].科技咨询.2006,No.82:234-235.
    [154]常晋义,张渊智,空间决策支持系统及其应用[J].遥感技术与应用.1996,Vol.11,No.1:33-39.
    [155]陈文伟,等,决策支持系统及其开发[M],北京:清华大学出版社,1994.
    [156]蒋恒恒,基于GIS的城市规划SDSS系统[D],四川:成都理工大学硕士论文,2006.
    [157]胡政,孙昭明,灾害风险评估与保险[M],北京:地震出版社,1996.
    [158]郭恩栋,高惠瑛,等,“九五”重点项目课题研究报告生命线工程震害损失快速评估及计算机软件研制[R],哈尔滨:中国地震局工程力学研究所,2000.
    [159]冯启民,生命线工程系统震害预测[R],地震科学应用技术文集,1990.
    [160]冯启民,郭恩栋,等,城市生命线网络系统(埋地管线)管段地震易损性分析方法研究[R],哈尔滨:中国地震局工程力学研究所,1995.
    [161]冯启民,熊占路,大同矿务局供述系统震害预测[R],哈尔滨:中国地震局工程力学研究所,1991.
    [162]黄昭庆,陈桂仙,黄贯虹,黄伟建,殊江三角洲生命线工程震害总体经济间接损失分析[J].华南地震.1995,Vol.15,No.3:66-72.
    [163]赵直,尹之潜,震后企业停产减产损失估计方法的研究[J].地震工程与工程振动.2001,Vol.21,No.1:152-154.
    [164]沈思明,刘鹏,等,城市地质灾害风险模糊综合评价研究报告[R],杭州:浙江大学,2005.
    [165]刘兰芳,和曙光,洪水灾害易损性模糊评价—以湖南省衡阳市为例[J].衡阳师范学院学报,2006,Vol.27,No.3:123-128.
    [166]高小旺,李荷,等,供水系统抗震设防标准的研究[J].建筑科学,1999,Vol.15,No.4:10-15.
    [167]高小旺,李荷,等,工程抗震设防标准若干问题的探讨[J].土木工程学报,1997,Vol.30,No.6:43-49.
    [168]李建波,供水管道输水管材的比较[J].山西水利科技,2005,No.3:69-73.
    [169]王弈,基于AHP法的住宅小区规划设计方案评价方法研究[D].杭州:浙江大学,2004.
    [170]朱坚鹏,基于AHP住宅区公共服务设施评价体系研究[D].杭州:浙江大学,2005.
    [171]张新,居住区规划设计方案综合评价方法的研究[D].南京:南京工业大学,2004.
    [172]夏书丹,城市建设用地地震危害性综合评价方法研究[D].北京:北京工业大学,2005.
    [173]庄丽,城市居住区抗震防灾规划研究[D],青岛:青岛海洋大学,2007.
    [174]陈天恩,城市震害模拟空间分析方法[D],青岛:中国海洋大学,2006.
    [175]王素珍,城市道路交通网震害模拟与应急恢复空间决策支持系统研究[D],青岛:中国海洋大学,2006.
    [176]高杰,城市地震灾害预测及其信息管理系统通用程序研究[D],青岛:中国海洋大学,2005
    [177]Dan Hotka,et al,Oracle8i WEB开发指南[M],北京:清华大学出版社,2006.
    [178]Eyal Aronoff,Kevin Loney,Noorali Sonawalla.Oracle 9i Performance Tuning Tips & Techniques[M],北京:清华大学出版社,2006.
    [179]张宏军,黄志同,DSS中模型的三维层次表示法[J].计算机工程与应用,1999,Vol.35,No.4:36-38
    [180]董军,杨善林,傅为中,决策支持系统中的知识库系统的增量式开发[J].山西大学学报(自然科 学版),2004,Vol.27,No.1:23-26.
    [181]林立,马玉祥,刘彦明,智能决策支持系统的一种学习推理机[J].计算机工程与设计,2003,Vol.24,No.11:24-26.
    [182]殷平,丁秋林,推理技术在决策支持系统中的应用[J].计算机应用,2004,Vol.24,No.7:142-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700