螺旋槽管强化传热特性的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的迅速发展,能源供应日益紧张,能源价格也在不断攀升。节能成为当务之急,世界各国都在寻找新能源和节能新途径。强化传热技术,由于能使各种换热设备的效率提高、重量和体积减小,一直受到科技界和工业界的重视。高效强化传热管的研究一直是传热领域最活跃和最有生命力的重要研究课题。螺旋槽管是其中的一个重要分支,螺旋槽管结构简单,成本低廉,用途广泛,结垢少且易清洗,其强化效果明显,因而倍受人们青睐。
     本文分析了螺旋槽管的强化传热机理,研究了三种槽截面分别为三角形、矩形和半圆形的螺旋槽换热管内的湍流流动和换热过程。利用Gambit软件建立三维模型并划分网格,运行Fluent软件进行了流动和换热的数值模拟,得出了管内温度场、压力场和速度场的分布。
     将三种螺旋槽管与光滑管的换热能力和流动压降进行了比较。在雷诺数在3981~35828范围内,三角形槽螺旋槽管的换热能力比光滑管提高了24%~50%,矩形槽螺旋槽管的换热能力提高了34%~61%,半圆形槽螺旋槽管的换热能力提高了31%~54%。但是三角形槽螺旋槽管的阻力系数比光滑管增加了113%~307%,矩形槽螺旋槽管阻力系数增加了116%~342%,半圆形槽螺旋槽管阻力系数增加了97%~283%。三种螺旋槽管的换热能力都得到了提高,但是其流动阻力也增大了,说明螺旋槽管的强化换热是以增大阻力为代价。通过采用Webb综合性能评价PEC-1指标对比得出,矩形槽和半圆形槽螺旋槽管的综合换热性能优于三角形槽螺旋槽管。
With the rapid development of modern industry, energy is in short apply and the price is rising day by day. Energy-saving becomes the urgent matter and people all over the world are looking for new energy sources and searching for new ways to save energy. Technologies of heat transfer enhancement, which can improve the efficiency of heat exchanger and reduce the weight and volume of heat exchange equipments, are always attracted by scientists and engineers. The research on high-effective special shape tube for enhanced heat transfer is the most active and important research subject in heat transfer field. Spiral groove tube is one of the most important one, because of its simple frame, cheap cost, wide application, low scaling and is easy to clean , high strengthen effect, lots of peoples show favor towards it.
     In this paper, the strengthening heat transfer mechanism in spiral groove tube was analyzed. Turbulent flow and heat transfer process in three kinds of spiral groove tube heat exchangers with the cross-section of triangle, rectangle and semicircle were discussed. The 3D models were built and meshed by the software of Gambit, the numerical simulation of flow and heat transfer in these tubes were carried out by applying the Fluent software, from which we got the distribution of temperature field, stress field and the velocity field.
     Compared the Heat transfer ability and pressure drop in three spiral groove tubes and smooth tube, during the Reynolds number range of 3981~35828, the heat exchange capacity in triangle spiral groove tube was improved by 24%~50% than that in smooth tube, and the heat exchange capacity in spiral groove tubes with the cross-section of rectangle and semicircle was respectively improved by 31%~54% and 34%~61%. However, the resistance coefficient in triangular spiral groove tube increased by 113%~307% than that of smooth tube, the resistance coefficient in rectangular spiral groove tube increased by 116%~342% than that of smooth tube, and 97%~283% increased in semicycle spiral groove tube than that of smooth tube in same Reynolds number. Though the heat transfer ability in three kinds of spiral groove tube have improved obviously, the resistance coefficient are also increased. So the heat transfer enchancement is at the cost of increasing the resistance. Through the comparison of the comprehensive performance evaluation PEC-1 index, it can be seen that the spiral groove tube with the cross-section of rectangular and semicircle is better than the triangular section spiral groove tube at comprehensive heat transfer performance.
引文
[1]崔海亭,彭培英.强化传热新技术及其应用.北京:化学工业出版社, 2006: 1-2
    [2]林宗虎.强化传热及其工程应用.北京:机械工业出版社, 1987: 3-5
    [3] Bufferworth.D. New Twists in Heat Exchangers. The Chemical Engineer,1992, 10(9): 23- 27
    [4] Bruce Tilton, Robert Sigal, Umesh Ratnam. Designing and Rating Process Heat Exchangers. Chemical Processing. 1998,61(4):65-76
    [5] Gabriel Aurioles. Comply with ASME Code during early Design Stages. Engineering Progress, 1998,94 (6):45-50
    [6]黄素逸.强化传热技术进展[A].中国石油和化工勘察设计协会热工设计专业委员会、全国化工热工设计技术中心站2004年年会论文汇编[C]. 2004
    [7]杜新华.螺旋槽管高效率冷油器的开发[D]. 2008
    [8]黄素逸.强化传热技术进展[A].中国石油和化工勘察设计协会热工设计专业委员会、全国化工热工设计技术中心站2004年年会论文汇编[C]. 2004
    [9]过增元,对流换热的物理机制及其控制:速度场与热流场的协同[J];科学通报;2000年19期
    [10]周士强.强化换热在换热器中的应用.黑龙江:石油化工, 1998,9(2): 31-33
    [11]钱松文,朱冬生,李庆领.管式换热器强化传热技术.北京:化学工业出版社, 2003
    [12]李安军,邢桂菊,周丽雯等.换热器强化传热技术的研究进展[J].冶金能源, 2008, 27 (1) 5
    [13]董超,黄恒,李瑞阳. EHD强化沸腾换热研究的进展于现状(I)——机理和理论研究.上海理工大学学报, 2002, 22(4): 308-314
    [14] Mukherjee Rajiv. Effectively Design Shell-and-Tube Heat Exchangers. Chemical Engineering Progress,1998,94(2):21-37
    [15] Bergles AE.Heat Transfer Enhancement-the Encouragement and Accommodation of High Heat Fluxes. Journal of Heat Transfer,1997,119(2):18
    [16]程林,田茂诚,张冠敏.流体诱导振动复合强化传热的实验研究.工程热物理学报, 2002, 23(4): 485-487
    [17]过增元,黄素逸等.场协同原理及强化传热新技术.北京:中国电力出版社, 2004
    [18]姚仲鹏,王新国.车辆冷却传热.北京:北京理工大学出版社, 2001
    [19]朱冬生,钱颂文.强化传热技术及其设计应用.化工装备技术, 2000, 21(6): 1-9
    [20]陆应声,陈慕玲,潘宁忠等.强化传热元件与换热特性研究.化工进展, 1998, 17(1):16-18
    [21]陈听宽.对流受热面传热强化研究进展.工业锅炉, 2004, (2): 1-7
    [22] Cui H T, Yuan X G, Yao Z P. Experimental investigation of heat transfer and pressure drop characteristics of w-tipe spirally fluid tubes. Experimental Heat Transfer, 2003, 16,(3): 159-169
    [23]周明霞.国内外换热器技术进展.压力容器, 1995, (1): 19-23
    [24]张平亮.新型高效换热器的技术进展及其应用,压力容器, 1997, (2): 146-152
    [25]于恩林,赖明道,吴坚等.内螺旋槽卷焊管的研究.钢铁,1998,33(12):35-38
    [26] YU Enlin,LAI Mingdao,WU Jian.Heat Transfer Efficiency in Double-Wall Brazed Tubing.The Tube&Pipe Journal,1998,9(1):42-44
    [27]孟晓峰,高西城,康达昌.内螺纹管拉拔芯棒的设计方法,锻压技术,1999,(3): 57-60
    [28]刘吉普,文美纯.螺纹槽换热管的滚轧加工及力学性能的研究.机械工程师, 2000,(11):45-46
    [29]赵信,王瑞君,姚仲鹏.螺旋型表面强化管现状与进展.石油化工设备,2001,(3):38-41
    [30]吉富英明,大场一马,有马芳雄.螺纹管的传热与压力损失.火力原子力发电, 1976, 27 (2): 171-182
    [31] Ravigururajan T S,Rabas T J. Turbulent flow in integrally enhanced tubes, Part 1: comprehensive review and database development [J]. Heat Transfer Engineering, 1996, 17 (2):19-29
    [32] Ravigururajan T S,Rabas T J. Turbulent flow in integrally enhanced tubes, Part 2: analysis and performance comparison[J]. Heat Transfer Engineering, 1996,17 (2):30-40
    [33]崔海亭.高效异型强化管的研究现状及发展方向.石油机械, 1999,27(7):48-50
    [34] Acearya S, Dutta S. Periodically Developd Flow and Heat Transfer in A Ribbed Duct. Journal of Heat Mass Transfer, 1993, 36(8): 2069-2082
    [35]李尔国,俞树荣,何世权.管壳式换热器新型强化传热技术.石油化工设备, 1999, (6): 42-45
    [36] Moffat R J. Describing the uncertainties in experimental result. Exp. Thermal Fluid Sci, 1998, (5): 3-17
    [37] Zimparov V D, Vulchanow N L, Delvo L B. Heat transfer and friction characteristics of spirally corrugated tubes for power plant condensers. 1. Experimental investigation and performance evaluation. International Journal of Heat Transfer, 1991,34(5): 3-17
    [38]程俊国,冯俊,靳明聪等.螺旋管的传热及流阻性能.重庆大学学报,1980,8(3):81-94
    [39]李向明,叶国兴,邓颂久.高效换热元件——螺旋槽管的研究及应用.化学工学报, 1982,33(4):359-367
    [40]高莉萍,王励端.高效换热器发展动态及其应用.石油化工设备技术,1995,16(3):8-14
    [41]崔海亭.旋流管及旋流管式换热器研究.[D].2000: 1-15
    [42]崔海亭,袁修干.螺旋槽管综合性能的研究.石油化工设备技术,2001,22(5): 6-8
    [43]崔海亭,姚仲鹏.螺旋槽纹管研究及应用.石油化工设备,2001,30(2):34-36
    [44]金安,帅志明.凝结条件下水平螺旋槽管强化传热试验研究.东南大学学报,1993, 23(5): 126-1409
    [45]吴慧英,帅志明,周强泰.凝结换热器采用螺旋槽管的强化传热研究.化学工学报, 1997, 48(5): 626 -630
    [46]张勇,董凡,刘曼青.螺纹管应力分析.热能动力工程,1990,5(2):25-29
    [47]夏雅君,张朝民.螺纹管管内流动和传热的数值模拟.上海电力学院学报,1991, 7(4):20-29
    [48]张军.螺旋槽纹管管内流动和换热的数值模拟. [D].1996:1-10
    [49]喻晓峰.单头螺旋槽纹管管内流动和换热的实验及数值仿真模拟研究. [D]. 2003:20-36
    [50]贾瑞宣.螺旋槽管强化传热研究. [D]. 2003:20-33
    [51]崔海亭,龚立武.高效能管壳式热交换器的技术进展及应用.河北工业科技,1999,(3): 27-31
    [52]王丽芝.螺旋槽管强化传热研究与应用[D];山东大学;2005年
    [53]史美中,王中铮,热交换器原理与设计,第二版,东南大学出版社, 1998。
    [54]王纬武.流体流动与传热.北京:化学工业出版社, 2002:103-104
    [55]彭洁.螺旋槽管换热过程的三维数值模拟[D]. 2006
    [56]吴金星,韩东方,曹海亮等.高效换热器及其节能应用.北京:化学工业出版社, 2009: 23-25
    [57]张建平.螺纹管在换热器中应用分析.河南化工,1998,(11):23-25
    [58]崔凯.异形管传热与流动的数值模拟研究[D]. 2005
    [59] Chen C-J.Jaw S-Y. Fundamentals of turbulence modeling. Washington DC: Taylor & Francis.1998.xi:91-92. 119.69.71.63.64
    [60] Launder B E. Spalding D B. The numerical computation of turbulent flows. Comput Methods Appl Mecb Eng. 1974. 3:269-289
    [61]侯琳洁.波纹管强化传热的数值模拟研究. [D]. 2007
    [62]李丽霞.插入扰流元件换热器换热特性数值模拟研究.[D].2009
    [63] Rodi W. Turbulence models and their application in hydraulics. 2nded. Netherlands, IAHR , 1984.9-46
    [64] Gessner F B, Emery A F. The numerical prediction of developing turbulent flow inrectangular ducts. ASME J Fluids Engineering. 1981,101:445~455
    [65] Rodi W. Experience with two-layer models combining the model with a one-equation model near the wall. 1991,8
    [66] Chen H C , Patel V C. Near wall turbulence models for complex flows including separation .AIAAJ 1988. 26:641~648
    [67] Lien F S, Leschziner M A . Assessment of turbulence transport models including non-linear RNG eddy-viscosity formulation and second moment closure for flow over a backward-facing step. Comput Fulids, 1994.23(8):983~1004
    [68]罗大海,诸葛茜.流体力学简明教程.北京:高等教育出版社1986:102-106
    [69]钱颂文.管壳式换热器设计原理.广州:华南理工大学出版社1990:121-125
    [70]陈茂波,王明胜,王建方.螺旋槽管的强化传热及在锅炉空预器上的应用.煤炭技术,2001,20(1):15-18
    [71]艾卫国,杨大鸿.单头螺旋槽管结构参数试验优化设计研究.热力发电,2004,(7):25
    [72]李进良,李承曦,胡仁喜.精通Fluent6.3流场分析.[M].北京:化学工业出版社,2009
    [73]王瑞金,张凯,王刚. Fluent技术基础与应用实例.北京:清华大学出版社2010:2-3
    [74]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001
    [75]吴双应,李友荣.强化传热性能的(火用)经济指标评价[J].石油化工设备,1998,27:13~18
    [76]秦江涛.金属泡沫填充式电子器件散热器换热特性实验研究. [D]. 2010
    [77]徐国想,邓先和,许兴友,王智金.换热器传热强化性能评价方法分析.[J].淮海工学院学报(自然科学版),2005,14(2):42~44
    [78] Webb, R. L. Performance Evaluation Criteria for Use of Enhanced Heattransfer Surfaces in Heat Exchanger Design. International Journal of Heat and Mass Transfer. v24 n 4 Apr ,1981, p715-726

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700