重金属Cr(Ⅵ)迁移模型及健康风险动态评价预警研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬盐及铬铁合金生产过程产生的大量含铬废渣历年堆存量达600万吨,其中的Cr(Ⅵ)通过迁移严重污染环境,危及人体健康。本文以某典型铬渣堆场为研究对象,调查Cr(Ⅵ)的污染现状,研究其迁移规律、暴露途径、暴露水平及健康风险特征,全面系统评价铬渣、土壤、蔬菜和地下水中Cr(Ⅵ)的健康风险,建立Cr(Ⅵ)在“铬渣-土壤-地下水”系统中的整体迁移模型,从时间和空间维度拓展人类健康风险评价基础理论,从规划和决策层面构建基于GIS的区域Cr(Ⅵ)污染动态健康风险评价预警综合管理平台。主要研究结果如下:
     (1)揭示了铬渣中Cr(Ⅵ)溶解释放的动力学机理,建立了模拟酸雨条件下铬渣中Cr(Ⅵ)的动态淋溶仿真模型,定量预测大气降水作用下Cr(Ⅵ)对土壤的污染强度,为防止铬渣对土壤和地下水造成污染提供科学依据。铬渣中Cr(Ⅵ)溶解释放规律服从Fick扩散定律,神经网络模型对酸雨淋溶铬渣释放Cr(Ⅵ)仿真结果效果较好,绝对平均误差率<1.40%。遗传算法优化后的指数衰减模型模拟结果较好,最大均方根误差优化率达76%。
     (2)研究了Cr(Ⅵ)在土壤中的迁移机理和污染规律,结合铬渣淋溶仿真模型建立了定量描述土壤中Cr(Ⅵ)迁移特性的数学模型,为土壤和地下水铬污染防治提供理论与技术支持。土壤对Cr(Ⅵ)的吸附是吸热反应、自发过程,符合拟二级动力学吸附模型和Freundlich等温吸附模型,吸附量随pH值降低而增大。利用土柱动态模拟试验测定了水动力参数和迁移参数(弥散系数、吸附分配系数、迟滞因子等),利用HYDRUS模型对土壤中Cr(Ⅵ)迁移模拟效果良好,相关系数达0.9986。
     (3)综合考虑酸雨淋溶、对流、弥散、吸附解吸及源汇项等条件,首次构建了定量描述Cr(Ⅵ)在“铬渣-土壤-地下水”系统中的整体迁移动力学数学模型,实现历史与未来污染的定量估计和有效预测,为我国铬渣、土壤和地下水的科学管理提供理论依据。结合实验所测地下水渗透系数、Cr(Ⅵ)吸附分配系数、迟滞因子等参数,针对研究区水文地质状况建立的地下水迁移模型的计算水头与实测水头差小于3米,地下水中Cr(Ⅵ)浓度的实测与模拟值均方误差为0.4303,所建模型基本可靠。结果显示铬渣的无害化处理对地下水环境质量具有明显改善作用。
     (4)提出了从时间和空间维度拓展健康风险评价理论的方法,应用迁移模型实现暴露剂量的动态预测,应用GIS技术扩大风险评价的地域尺度,实现基于暴露群体、土地利用类型、蔬菜种类和暴露途径的不同历史时期定量风险评价。结果表明:重风险主要分布于工业区,居住区风险最轻;铬渣堆场的致癌风险高达0.0204~0.0341,超出最高允许阀值数倍;蔬菜有将土壤中的高毒性Cr(Ⅵ)转化为低毒性Cr(Ⅲ)的能力,蔬菜中总铬平均含量超出阀值3倍多,白菜对铬的富集能力和健康风险在几种常见蔬菜中最高;直接土壤暴露的三个途径中,口腔摄入风险最大;地下水对成人和儿童的健康风险分别大于最高允许风险值70和150余倍。可见Cr(Ⅵ)具有很高毒性,对人类健康危害严重,特别是儿童这一脆弱群体。
     (5)构建了基于GIS的Cr(Ⅵ)污染动态健康风险评价预警综合管理平台,通过数据库管理和软件开发技术实现了铬渣淋溶、土壤和地下水迁移模型间的无缝耦合,以及健康风险的动态评价与预警,有效提高了环境管理的信息化程度。利用GIS的数据管理、空间分析与ArcEngine组件开发技术,以C/S(客户/服务器)为基本结构,ArcSDE为空间数据库引擎,通过对MATLAB与.NET的集成编程、遗传算法的实现、AutoCAD宏开发与Modflow的集成、模型间数据转换工具的开发等技术,将Cr(Ⅵ)在“铬渣-土壤-地下水”系统中的整体迁移模型与经时空拓展后的健康风险评价理论方法集成,构建了Cr(Ⅵ)污染动态健康风险评价预警综合管理平台,使人类活动与生态、人体健康等重大环境问题的研究纳入一个完整的大系统,有利于更好的揭示原因、本质和规律。为环境风险作出准确的评价和预测,使环境管理中重大问题的决策更具科学性。
Large quantities of chromium-containing slag that were generated in chromium production over the years amounted to 6 million tons. Cr(Ⅵ) in the slag transported into and polluted the environment, which greatly endanged human health. In this research, a typical factory in Hunan Province was taken as study object. Systemic studies were carried out to found out the characters of Cr(Ⅵ) in the slags, including transportation, exposure route, exposure level, and associated health risks. Site specific health risks of Cr(Ⅵ) in slag, soil, groundwater and different specieses of vegetables were researched in detail. A transport model for Cr(Ⅵ) in the "slag-soil-groundwater" system was built. The health risk assessment theory was extended in both spatial and temporal dimension. An environmental risk management flat was established based on GIS, transport model, and extended health risk assessment theory. The main results were as follows:
     (1) Release rules of Cr(Ⅵ) leaching from slags under simulated acid rain were researched and dynamically simulated. Results indicated that the balance of Cr(Ⅵ) in the leachate obeyed the Fick's law. The artificial neutral network model was efficient to similate the releasing behavior (mean error<1.40%). In addition, the genetic algorithm was also efficient to optimize the linear regression model (maxmium RMSE=76%).
     (2) The transport mechanism and pollution laws of Cr(Ⅵ) in soil were researched. The adsorption process was found to be endothermic and spontaneous in nature.Results were discussed and indicated the best fit was obtained with the Freundlich isotherm model. The results also showed that the kinetics of adsorption were best described by a second-order expression rather than a first-order model. The soil conductivity, fluid dynamic dispersivity, adsorption distribution coefficient and retardation factor of Cr(Ⅵ) in soil were also estimated. The correlation coefficient between the measured and simulated results was 0.9986.
     (3) Considering the conditions of acid rain, convection, dispersion, adsorption, desorption, sources and sinks, a transport model for Cr(Ⅵ) in the "slag-soil-groundwater" system was researched. The permeability coefficient, distribution coefficient, retardation factor and other hydraulic parameters were estimated in laboratory. The differences of measured and simulated groundwater head values were all less than 3 m. The mean square error of measured and simulated Cr(Ⅵ) concentrations was 0.4303. Therefore, the model was basically reliable.
     (4) The health risk theory was extended by the transport model and GIS technology. Potential health risks were assessed based on different kinds of site-specific exposure parameters, vegetables, exposure pathways, individuals and the cultivation habits of homegrown vegetables. Most high hazard quotients were located in the industrial areas and attributed to soil ingestion and Chinese cabbage. Results also showed that the population in the study area was at risk, especially in the industrial site.
     (5) A GIS-based, regional and dynamic environmental risk assessment/early-warning management platform was established. With the use of GIS technologies, including spatial data management, spatial analysis and component development, the basic structure of C/S (Client/Server), the spatial database engine of ArcSDE, the integrated programming of MATLAB, genetic algorithms and.NET, the integration of AutoCAD macro development and Modflow software, and the data conversion tools for models were all used or developed for the platform. The migration model of Cr(Ⅵ) in the "slag-soil-groundwater" system and the spatial-temporal extended health risk assessment method were both integrated in the platform. The platform put human activities, ecological and environmental issues, and human health into a large system, which made it more efficient and scientific to solve problems in environmental risk assessment, prediction, management, and decision-making.
引文
[1]仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策.农业环境保护,2001,20(4):270-272
    [2]武正华,张宇峰,王晓蓉.土壤重金属污染植物修复及基因技术的应用.农业环境保护,2002,21(1):84-86
    [3]曲日.土壤污染该如何处理.民防苑,2007,03:29-30.
    [4]尹国勋,李振山.地下水污染与防治-焦作市实证研究.北京:中国环境科学出版社,2005:1-3
    [5]古昌红,单振秀,丁社光.铬盐生产基地对水体污染的研究.矿业安全与环保,2006,33(4):18-20
    [6]石磊,赵由才,牛冬杰.铬渣的无害化处理和综合利用.中国资源综合利用,2004,10:5-8
    [7]汤克勇.铬的污染源及其危害.皮革科学与工程,1997,7(1):33-37
    [8]廖敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响.环境科学学报,1999(19):81-86
    [9]韩怀芬.铬渣水泥固化及固化体浸出毒性的研究.环境污染治理技术与设备,2002,3(7):9-12
    [10]梁爱琴.铬渣的治理与综合利用.中国资源综合利用,2003,1:15-18
    [11]石磊.铬渣的治理与利用.中国资源综合利用,2004,10:5-8
    [12]陈传红.21世纪初期中国环境保护与生态环境建设科技发展战略研究.北京:中国环境科学出版社,2001
    [13]王威,刘东华,蒋悟生.铬污染地区环境对植物生长的影响.农业环境保护,2002,21(3):257-259
    [14]黄顺红.铬渣堆场铬污染特征及其铬污染土壤微生物修复研究:[博士学位论文].长沙:中南大学,2009
    [15]王里奥,裴廷权,钟山.典型铬渣简易掩埋场铬渣及土壤铬污染特征和处置分析.环境工程学报,2008,2(7):994-999
    [16]曲东,罗建峰.青海海北化工厂铬渣堆积场土壤铬污染状况研究.西北农业学报,2006,15(6):244-247
    [17]张辉,马东升.南京某合金厂土壤铬污染研究.中国环境科学,1997,17(1):80-82
    [18]汤克勇.铬的污染及其危害.皮革科学与工程,1997,7(1):33-37
    [19]WHO. Chromium in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva:World Health Organization,2003
    [20]胡望均.常见有毒化学品环境事故应急处理技术与监测方法.北京:中国环境科学出版社,1993:75-77
    [21]Petrilli FL, De FS. Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium. Applied and Environmental Microbiology,1977,33: 805-809
    [22]Lee PS, Gibb HJ, Pinsky PF. Lung cancer among workers in chromium chemical production. American Journal of Industrial Medicine,2000,38: 115-126
    [23]纪柱.铬的健康、安全、环境指南.铬盐工业,2003,2:1-41
    [24]韩英魁.环保治理,刻不容缓.铬盐工业,2002,2:22-30
    [25]史黎蔽.铬化合物的健康效应.中国环境卫生,2003,6(1-3):125-129
    [26]喻志科,言娟.长沙铬盐厂急需关停,红网http://xwgl.rednet. com.cn/show. asp?id=324924
    [27]Graf T, Therrien R. Variable-density groundwater flow and solute transport in porous media containing nonuniform discrete fractures. Advances in Water Resources,2005(28):1351-1367
    [28]赵常兵,赵霞则,陈海霞.溶质运移理论的发展.水利科技与经济,2006,8
    [29]Grift BV, Griffioen J. Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals. Journal of Contaminant Hydrology,2008(96):48-68
    [30]Shu LC and Hao ZC. Numerical simulation of groundwater dynamics for Songhuajiang River valley in China. Journal of Hydrodynamics, Ser. B,2004, 16(3):332-335
    [31]Zhang QF, Wang YM, Xu YF. Seepage analysis of landfill foundations in Shanghai Laogang landfill phase Ⅳ. Journal of Hydrodynamics,2006,18(5): 613-619
    [32]隋红建,饶纪龙.土壤溶质运移的数学模拟研究-现状及展望.土壤学进展,1992,20(5):1-7
    [33]Rao S, Mathur S. Modeling heavy metal (Cadmium) up take by soil-plant root system. Journal of Irrigation and Drainage Engineering,1994,120(1):89-96
    [34]Nedunuri KV, Govindaraju RS,Erikson LE. Modeling of heavy metal movement in vegetated, unsaturated soils with emphasis on geochemistry. In: the 10th annual conference on hazrdous waste research.1995:57-66
    [35]Kedziorek MAM, Dupuy A, Bourg ACM. Leaching of Cd and Pb from a polluted soil during the percolation of EDTA:laboratory column experiments modeled with a non-equilibrium solubilization step. Environmental Science & Technology,1998,32:1609-1614
    [36]Nofziger DL, Rajender K, Sivaram K. CHEMFLO one dimensional water and chemical movement in unsaturated soils.1989 [cited; Available from: http://www.epa.gov/ada/csmos/models/chemflo.html
    [37]Nofziger DL, Wu JQ, Robot S. CHEM FLO-2000 Interactive software for simulating water and chemical movement in unsaturated soils.2003 [cited; Available from:http://www.epa.gov//ada//csmos//models//chemflo2000.html
    [38]Zeng H, Alarcon VJ, William K. A web-based simulation system for transport and retention of dissolved contaminants in soil. Computers and Electronics in Agriculture,2002,33 (1):105-120
    [39]Gour-T syh Yeh, Cheng JR.2DFATMIC User manual of two-dimensional subsurface flow, Fate and transport of microbes and chemicals model.1997 [cited; Available from:http://www.epa.gov//ada//csmos//models//2dfatmic.html
    [40]Semunek J, Sejna M, van Genuchten MT. Simulating water flow and solute transport in two dimensional variably saturated media. In:International ground water center. Golden Colorado.1999
    [41]Selim HM, Amacher MC, Iskander IK. Modeling the transport of heavy metals in soil Hanover, NH Monogragh:U. S. Army Cold Regions Research and Engineering Laboratory.1990:90-92
    [42]Selim HM, Sparks DL, Ebooks Corporation. Heavy metals release in soils. USA:Lewis Publishers,2001
    [43]Semunek J, Sejna M,van Genuchten M T. HYDRUS-1D for windows.2005 [cited; Available from:http://www.pc-progress.com
    [44]Pace MN. Geochemical and hydrological reactivity of heavy metals in soils. Vadose Zone Journal,2004,3(2):733
    [45]Simunek J, van Genuchten MT, Sejna M. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal,2008,7(2):587
    [46]Chen MJ, Keller A, Lu ZM. Stochastic analysis of transient three-phase flow in heterogeneous porous media. Stochastic Environmental Research and Risk Assessment,2009,23(1):93-109
    [47]Keller A, Abbaspour KC, Schulin R. Assessment of uncertainty and risk in modeling regional heavy-metal accumulation in agricultural soils. Journal of Environmental Quality,2002,31(1):175-187
    [48]Keller A, von Steiger B, van der Zee S, et al. A stochastic empirical model for regional heavy-metal balances in agroecosystems. Journal of Environmental Quality,2001,30(6):1976-1989
    [49]Keller A, Schulin R. Modelling regional-scale mass balances of phosphorus, cadmium and zinc fluxes on arable and dairy farms. European Journal of Agronomy,2003,20(1-2):181-198.
    [50]Tiktak A, Alkemade JRM, Van Grinsven JJM, et al. Modelling cadmium accumulation at a regional scale in the Netherlands. Nutrient cycling in Agroecosystems,1998,50(1):209-222
    [51]隋红建,吴璇,崔岩山.土壤重金属迁移模拟研究的现状与展望.农业工程学报,2006,22(6):197-200
    [52]隋红建,饶纪龙.土壤离子吸持机理模型及应用.土壤学进展,1995,23(1):27-31
    [53]陈煌,郑袁明,陈同斌.面向应用的土壤重金属信息系统(SHM IS)-以北京市为例.地理研究,2003,22(3):272-280
    [54]莫争.典型重金属Cu,Pb,Zn,Cr,Cd在土壤环境中的迁移转化:[硕士学位论文].北京:中国科学院,2001
    [55]Guclu K, Apak R. Modeling of Copper(Ⅱ), Cadmium(Ⅱ), and Lead(Ⅱ) Adsorption on Red Mud from Metal-EDTA Mixture Solutions. Journal of Colloid and Interface Science,2000(228):238-252
    [56]Nestle N, Baumann T, Wunderlich A. MRI observation of heavy metal transport in aquifer matrices down to sub-mg quantities. Magnetic Resonance Imaging,2003(21):345-349
    [57]范英宏, 林春野, 何孟常, 周豫湘等.利用DGT高分辨率研究沉积物孔隙水中重金属的浓度和释放通量.环境科学,2007(28):2750-2757
    [58]Luhrmann L, Noseck, Tix C. Model of contaminant transport in porous media in the presence of colloids applied to actinide migration in column experiments. Water Resources Research,1998(34):421-6
    [59]Baumann T, Muller S, Niessner R. Migration of dissolved heavy metal compounds and PCP in the presence of colloids through a heterogeneous calcareous gravel and a homogeneous quartz sand-pilot scale experiments. Water Research,2002 (36):1213-1223
    [60]Wolthoorn A, Temminghoff EJM, Weng L. Colloid formation in groundwater: effect of phosphate, manganese, silicate and dissolved organic matter on the dynamic heterogeneous oxidation of ferrous iron. Applied Geochemistry, 2004(19):611-622
    [61]张鑫.安微铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究:[博士学位论文].合肥工业大学,2006
    [62]Gu B, Schmitt J, Chen Z, et al. Adsorption and desorption of natural organic matter on iron oxide:mechanisms and models. Environmental Science & Technology,1994(28):38-46
    [63]Spark KM, Wells JD, Johnson BB. The interaction of a humic acid with heavy metals. Australian Journal of Soil Research,1997(35):89-101
    [64]Eick MJ, Peak JD,Brady WD. The effect of oxyanions on the oxalate-promoted dissolution of goethite. Soil Science Society of America Journal,1999 63: 1133-1141
    [65]Christl I, Kretzschmar R. Interaction of copper and fulvic acid at the hematite-water interface. Geochimica et Cosmochimica Acta,2001,65: 3435-3442
    [66]Coles CA,Yong RN. Humic acid preparation, properties and interactions with metals lead and cadmium. Engineering Geology,2006 85:26-32
    [67]Wang S, Mulligan CN. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Chemosphere,2009,74:274-279
    [68]Chai LY, Yang ZH, Wang YY, et al. Potential-pH diagram for "Leucobacter sp. Ch-1-Cr-H2O" system. Journal of Hazardous Materials,2008,157:518-523
    [69]Molla D, Stefan W. Soil and groundwater pollution of an urban catchment by trace metals:case study of the Addis Ababa region, central Ethiopia. Environmental Geology,2006,51:421-431
    [70]Postma D. Concentration of Mn and separation from Fe in sediments-I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe (Ⅱ) at 10℃. Geochimica et Cosmochimica Acta,198549:1023-1033
    [71]Christensen TH, Kjeldsen P, Albrechtsen H, et al. Attenuation of landfill leachate pollutants in groundwater. Critical Reviews in Environmental Science and Technology,1994,24(2):119-202
    [72]Thornton SF, Tellam JH, Lerner DN. Attenuation of landfill leachate by UK Tri-assic Sandstone aquifer materials:1.Fate of inorganic pollutants in laboratory columns. Journal of Contaminant Hydrology,2000,43:327-354
    [73]Thornton SF, Tellam JH, Lerner DN. Experimental and modelling approaches for the ssessment of chemical impacts of leachate migration from landfills:A case study of a site on the Triassic sandstone aquifer in the UK East Midlands. Geotechnical and Geotechnical Engineering,2005,23:811-829
    [74]Vesper DJ, White WB. Metal transport to karst springs during storm flow:an example from Fort Campbell, Kentucky/Tennessee, USA. Journal of Hydrology,2003,276:20-36
    [75]Winde F, van der W, Jacobus I. The significance of groundwater-stream interactions and fluctuating stream chemistry on water borne uranium contamination of streams-a case study from a gold mining site in South Africa. Journal of Hydrology,2004,287:178-196
    [76]Schroder TJ, van Riemsdijk WH. Monitoring and modelling of the solid-solution partitioning of metals and As in a river floodplain redox sequence. Applied Geochemistry,2008,23:2350-2363
    [77]Wilhelmus HM, Duijnisveld SA, Thilo S, et al. Quantifying the Infl uence of Uncertainty and Variability on Groundwater Risk Assessment for Trace Elements. Vadose Zone Journal,2007,6:668-678
    [78]Streck T, and Richter J. Heavy metal displacement in a sandy soil at the field scale:Ⅱ. Modeling. J. Environmental Quality,1997,26:56-62
    [79]薛禹群,戴水汉,谢春红.地下水资源评价理论与方法研究.北京:地质出版社,1982:420-425
    [80]薛禹群.地下水动力学原理.北京:地质出版社,1986:38-41
    [81]朱峰,薛禹群,吴吉春.越流含水层系统地下水有毒元素污染数值模拟-以太原盆地地下水汞污染为例.环境科学,1999(20):55-58
    [82]冯绍元,王亚平,齐志明.排水条件下饱和土壤中镉运移实验及其数值模拟.水利学报,2004(10):89-94
    [83]Bear J. Dynamics of Fluids in Porous Media. New York:Elsevier,1972
    [84]Lee J, de Windt L. Present state and future directions of modeling of geochemistry in hydrogeological systems. Journal of Contaminant Hydrology, 2001,47:256-282
    [85]van der Grift B, Griffioen J. Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals. Journal of Contaminant Hydrology,2008(96):48-68
    [86]陈彦,吴吉春.含水层渗透系数空间变异性对地下水数值模拟的影响.水科学进展,2005,16:483-487
    [87]Tsang CF非均质介质中地下水流动与溶质运移模拟-问题与挑战.中国地质大学学报,2000,25:443-450
    [88]杨金忠,伍靖,蔡树英.宏观水力传导度及弥散度的确定方法.水科学进展,200213(2):179-183
    [89]郑彤,陈春云.环境系统数学模型.北京:化学工业出版社,2003
    [90]段详宝,朱亮.地下水污染运移数值模拟及最优估计.水动力研究与进展,1996,11(5):513~519
    [91]杨金忠,叶自桐,蔡树英.区域地下水溶质运移随机理论的研究与进展.水科学进展,1998,9(1):85-97
    [92]Buszewski, B, Kowalkowski T. A new model of heavy metal transport in the soil using nonlinear artificial neural networks. Environmental Engineering Science,2006,23:589-595
    [93]Thomas B. Hofstetter SH, Konrad H. Time-dependent life-cycle assessment of slag landfills with the help of scenario analysis:the example of Cd and Cu. Journal of Cleaner Production,2005,13:301-320
    [94]Winfried S. GIS, geostatistics, metadata banking, and tree-based models for data analysis and mapping in environmental monitoring and epidemiology. International Journal of Medical Microbiology,2006,296:23-36
    [95]Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environmental Pollution,2000,107:263-283
    [96]李晶晶,彭恩泽.综述铬在土壤和植物中的赋存形式及迁移规律.工业安全与环保,2005,31(3):31-33
    [97]夏家淇.土壤环境质量标准详解.北京:中国环境科学出版社,1996:45-48
    [98]任爱玲,郭斌,刘三学,周保华.含铬污液在土壤中迁移规律的研究.城市环境与城市生态,2000,13(2):54-56
    [99]李桂菊.铬在植物及土壤中的迁移与转化.中国皮革,2004,33(5):30-34
    [100]陈英旭,骆永明,朱永官.土壤中铬的化学行为研究.土壤学报,1994,31(1):77-85
    [101]傅臣家.再生水灌溉条件下土壤-地下水系统六价铬迁移转化规律研究:[博士学位论文].北京:中国农业大学,2007
    [102]Khan AA, Muthukrishnan M,Guha BK. Sorption and transport modeling of hexavalent chromium on soil media. Journal of Hazardous Materials,2009, 73:11-21
    [103]高洪阁,李白英,陈丽惠.铬在土壤和地下水中的相互迁移规律及地下水中铬的去除方法.环境研究,2002 1:30-32
    [104]赵万有,郑玉兰,关连澧.铬渣对地下水、土壤、蔬菜污染机制研究.环境保护科学,199420(1):30-32
    [105]李志萍,陈肖刚,沈照理.污染河流中Cr(Ⅵ)对浅层地下水的影响研究.环境科学学报,2006,26(1):100-104
    [106]宋国慧,史春安.铬在包气带的垂直污染机理研究.西安工程学院学报,2001,23(2):56-58
    [107]郭媛媛.铬在地下含水层中的迁移转化特征:[硕士学位论文].吉林:吉林大学,2008
    [108]位菁.淋滤作用下铬渣中Cr(Ⅵ)在地下水中迁移的反应-输运模拟研究-以湖北某无机盐厂为例:[硕士学位论文].武汉:中国地质大学,2008
    [109]Shen HY. Modeling of multicomponent transport in groundwater and its application to chromium system[博士学位论文]Connecticut:University of Connecticut,1996
    [110]李丽娜.上海市多介质环境中持久性毒害污染物的健康风险评价:[博士学位论文].上海:华东师范大学,2007
    [111]牛冬杰,聂永丰.小型废电池填埋焚烧处置的健康风险分析.上海环境科学,2002,21(9):545-581
    [112]段小丽,张楷,钱岩.人体暴露评价的发展和最新动态.In:中国毒理学会管理毒理学专业委员会学术研讨会暨换届大会.北京:中国毒理学会管理毒理学专业委员会.2009
    [113]Patrizia H, Francesca M, Sabrina A, et al. A molecular epidemiological approach to health risk assessment of urban air pollution. Toxicology Letters, 2004,149(1-3):261-267
    [114]Diggle G. Science and judgment in Risk Assessment. Occupational and Environmental Medicine,1995,52:784.
    [115]胡二邦,姚仁太,任智强.环境风险评价浅论.辐射防护通讯,2004,24(1):20-26
    [116]孟宪林,周定,黄君礼.环境风险评价的实践与发展.四川环境,2001,20(3):1-4
    [117]胡应成.环境风险评价的技术方法.中山大学学报论从,2003,23(1):99-104
    [118]杨晓松.环境风险评价的不确定性及其度量.国外金属矿选矿,1996:53-56
    [119]曾光明,钟政林,曾北危.环境风险评价中的不确定性问题.中国环境科学,1998,18(3):252-255
    [120]彭金定,吴静文,梁国民.长沙县职业铅污染和城镇铅污染抽样调查.实用预防医学,2001,8(4):291-292
    [121]肖风劲,欧阳华,程淑兰等.中国森林健康生态风险评价.应用生态学报,2004,15(2):349-353
    [122]仇付国.城市污水再生利用健康风险评价理论与方法研究:[博士学位论文].西安:西安建筑科技大学,2004
    [123]李静.重金属和氟的土壤环境质量评价及健康基准的研究:[博士学位论文].杭州:浙江大学,2006
    [124]李梅.不完备信息下的河流健康风险预估模型研究:[博士学位论文].西安:西安理工大学,2007
    [125]Chai LY, Wang ZX, Wang YY, et al. Ingestion risks of metals in groundwater based on TIN model and dose-response assessment-A case study in the Xiangjiang watershed, central-south China. Science of the Total Environment, 2010,408(16):3118-3124
    [126]Wang ZX, Chai LY, Wang YY, et al. Potential health risk of arsenic and cadmium in groundwater near Xiangjiang River, China:a case study for risk assessment and management of toxic substances. Environmental Monitoring and Assessment,2010,175:167-173
    [127]Wang ZX, Chai LY, Yang ZH, et al. Identifying sources and assessing potential risk of heavy metals in soils from direct exposure to children in a mine impacted city, Changsha, China. Journal of Environmental Quality,2010, 39(6):1616-1623
    [128]王宗爽,段小丽,刘平等.环境健康风险评价中我国居民暴露参数探讨.环境科学研究,200922(10):1164-1170
    [129]陈述彭.地球信息科学与区域持续发展.北京:测绘出版社,1995:2-8
    [130]魏加华,王光谦,李慈君等.GIS在地下水研究中的应用进展.水文地质工程地质,2003:3-20
    [131]Goodchild MF, Parks BO, Steyaert LT. Environmental modeling with GIS. New York:Oxford University Press,1993
    [132]唐立松,张佳宝,程心俊等.GIS与土壤溶质运移模型结合研究进展.干旱区地理,2002,25(2):177-182
    [133]赵军,贾艳红.国外GIS在地下水管理与研究中的应用和启示.地下水,2005,5(22):23-26
    [134]Wong CSC, Li XD, Thornton I. Urban environmental geochemistry of trace metals. Environmental Pollution,2006,1421-16
    [135]Giupponi C, Vladimirova I. Ag-PIE:A GIS-based screening model for assessing agricultural pressures and impacts on water quality on a European scale. Science of the Total Environment,2005,2(2):1-9
    [136]Ricardo B, Marco V, Guido M, et al. Coupling SoilFug Model and GIS for predicting pesticide pollution of surface water at watershed level. Environmental Science & Technologh,2000(34):4425-4433
    [137]Zamorano M, Molero E, Hurtado A, et al. Evaluation of a municipal landfill site in Southern Spain with GIS-aided methodology. Journal of Hazardous Materials,2008,160:473-481
    [138]Miehae P. GIS technology of ground-water assessments. Tecbnieal Papers-ACSM-ASPRS Annual Conveniion, Cartography and GIS/LIS,1991, 243-252
    [139]Zhang H, Hann CT, Nofziger DL. Hydrologic modeling with GIS:An overview. Applied Engineering in Agriculture,1990,6(4):453-458
    [140]Liao H, Tim US. Interactive water quality modeling within GIS Environment. Computers, Environment and Urban Systems,1994,18:343-363
    [141]魏文秋,于建营.地理信息系统在水文学和水资源管理中的运用.水科学进展,1997,8(3):296-300
    [142]彭盛华,赵俊琳.GIS技术在水资源和水环境领域中的应用.水科学进展,2001,12(2):264-269
    [143]王博.基于神经网络/ArcGIS Engine的辽河水环境质量评价与信息系统研究:[硕士学位论文].西安:长安大学,2009
    [144]盛灿文,柴立元.铬渣的湿法解毒研究现状及发展前景.工业安全与环保,2006,32(2):1-3.
    [145]Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for chromium. Atlanta, GA:Dept of Health and Human Services, Public Health Service,2000:1-100
    [146]State Environmental Protection Administration of China and National Development Reform Commission (SEPACNDRC). The scheme for pollution treatment of the chromium residue:Beijing, China,2005
    [147]Chai LY, Yang ZH, Wang YY, et al. Potential-pH diagram for "Leucobacter sp. Ch-1-Cr-H2O" system. Journal of Hazardous Materials,2008,157(2-3): 518-523
    [148]Wang YY, Yang ZH, Chai LY, et al. Diffusion of hexavalent chromium in chromium-containing slag as affected by microbial detoxification. Journal Hazard Materials,2009,169:1173-1180
    [149]国家统计局.2010,[cited; Available from:http://www.stats.gov.cn/was40/g jtjj_outline.jsp
    [150]陈春羽,彭莉,王定勇.模拟酸雨对铬渣中Cr6+的淋出影响.西南大学学报(自然科学版),2008,30(1):104-108
    [151]Cote P, Bridle TR, Benedek A. Hazardous and industrial solid waste testing and disposal. Philadelphia:American Society for Testing and Materials,1986
    [152]Barna R, Moszkowicz P, Gervais C. Leaching assessment of road materials containing primary lead and zinc slags. Waste Manage,2004,24:945-950
    [153]van der Sloot HA, Heasman L, Quevauviller P. Harmonisation of Leaching/ Extraction Tests. Amsterdam:Elsevier Science,1997
    [154]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.北京:中国环境科学出版社,1998
    [155]葛哲学,孙志强.神经网络理论与MATLAB R2007实现.北京:电子工业出版社,2007
    [156]Lee Tsung-Lin. Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan. Engineering Applications of Artificial Intelligence,2008,21:63-72
    [157]魏连伟.基于人工智能技术的地下水系统参数识别研究:[博士学位论文].天津:天津大学,2003
    [158]许中坚,刘广深.模拟酸雨对红壤结构体及其胶结物影响的实验研究.水土保持学报,2002,16(3):9-13
    [159]肖利萍.煤矸石淋溶液对地下水系统污染规律的研究:[博士学位论文].辽宁工程技术大学,2007
    [160]王海峰,薛纪渝.工业固体废弃物中污染物质重金属淋溶释放模式研究.环境科学,1994,15(1):79-87
    [161]Nriagu JO. Nature,1988,33:134-139
    [162]Mattuck R, Nikolaos P. Chromiummobility in freshwater wetlands. Journal of Contaminant Hydrology,1996,23:213-232
    [163]Nivas B, David A, Shiau B, et al. Surfactant enhanced remediation of subsurface chromium contamination. Water Research,1996,30(3):511-520
    [164]Julita MP, Hursthouse A, Hanna PK. The interaction of heavy metals with urban soils:sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brown field deposit. Environmental International,2005,31:513-521
    [165]Ole H. Leachate from land disposal of coal fly ash. Water Resources Research, 1990,8:429-449
    [166]Moghaddam A, Mulligan C. Leaching of heavy metals from chromated copper arsenate (CCA) treated wood after disposal. Water Resources Research,2008,28:628-637
    [167]Christensen T, Kjeldsen HP, Bjerg P, et al. Biogeochemistry of landfill leachate plumes. Applied Geochemistry,2001,16(7-8):659-718
    [168]Riyad JA, Edward HS. Heavy metal contaminants removal by soil washing. Journal of Hazardous Materials,1999,70:71-86
    [169]中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978
    [170]徐明岗.土壤离子吸附,1.离子吸附的类型及研究方法.土壤肥料,1997,5:3-7
    [171]Hameed BH, Ahmad AA, Aziz N. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chemical Engineering,2007, 133(1/3):195-203
    [172]Mohan D, Singh KP, Singh VP. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. Journal of Hazardous Materials,2006,135(1/3): 280-295
    [173]刘桂秋,冯雄汉,谭文峰.几种土壤铁锰结核对Cr(Ⅲ)的氧化动力学特性.华中农业大学学报,2002,21(5):450-454
    [174]Mckay G, Blair S, Gardner R. Adsorption of dyes on chitin. I. Equlibriumstudies. Journal of Applied Polymer Science,1982,27:3043
    [175]Subhashini G, Pant K. Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed. Chemical Engineering Journal, 2003,98:165-173
    [176]Altundogan HS, Altundogan S, Tumen F, et al. Arsenic removal from aqueous solutions by adsorption on red mud. Waste Management,2000,20(8): 761-767
    [177]Alvarez R, Evans LA, Milham PJ, et al. Effects of humicmaterial on the precipitation of calcium phosphate. Geoderma,2004,118:245-260
    [178]Sparks DL. Environmental Soil Chemistry. San Diego:Academic Press,1995
    [179]Simunek MJ, van Genuchten T, Sejna M. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. California:University of California Riverside,2005
    [180]刘兆昌.地下水系统的污染与控制.北京:中国环境科学出版社,1991
    [181]王洪涛.多孔介质污染物迁移动力学.北京:高等教育出版社,2008
    [182]杨天行,傅泽周,刘金山等.地下水流向井的非稳定运动的原理及计算方法.北京:地质出版社,1980
    [183]孙讷正.地下水污染-数学模型和数值方法.北京:地质出版社,1989
    [184]金光炎,汪家权,郑三元.地下水计算参数的测定与估计.水科学进展,1997,8(1):19-20
    [185]中华人民共和国水利部.水利水电工程水文计算规范SL278-2002.北京:中国水利水电出版社,2002
    [186]任爱玲.含铬污液在土壤中迁移规律的研究.城市环境与城市生态,2000,2(13):154-157
    [187]古昌红,单振秀,王瑞琪.铬渣对土壤污染的研究.矿业安全与环保,2005,32(6):18-20
    [188]Fendorf SE. Surface reactions of chromium in soils and waters. Geoderma, 1995,67:55-71
    [189]Adriano DC. Trace Elements in the Terrestrial Environment. New York: Springer-Verlag,1986
    [190]Smith AH. Hexavalent chromium, yellow water, and cancer-A convoluted saga. Epidemiology,2008,19:24-26
    [191]Ruby MV, Schoof R, Brattin W. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science & Technology,1999,33:3697-3705
    [192]Zhu YG, Williams PN, Meharg AA. Exposure to inorganic arsenic from rice: A global health issue? Environmental Pollution,2008,154:169-171
    [193]Ministry of Health. Yearbook of Chinese Health Statistics. Beijing:People's Health Press,2007.
    [194]USEPA. User's Guide.2010 [cited; Available from:http://ww w.epa.gov/ reg3hwmd/risk/human/rb-concentration_table/usersguide.htm
    [195]Ministry of Environmental Protection of the People's Republic of China (Ministry of Environmental Protection). The Technical Specification for soil Environmental monitoring (HJ/T 166-2004).2004 [cited; Available from: http://www.mep.gov.cn/pv_obj_cache/pv_obj_id_C5B40157F2296EA55F92 DFDF745FDF68DB130300/filename/5406.pdf
    [196]Langrrd S. One hundred years of chromium and cancer:A review of epidemiological evidence and selected case reports. American Journal of Industrial Medicine,1990,17:189-214
    [197]Costa M. Toxicity and carcinogenicity of Cr (Ⅵ) in animal models and humans. Critical Reviews in Toxicology,1997,27:431-442
    [198]Chen Z, Zhu YG, Liu WJ, et al. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytologist,2005,165:91-97
    [199]Ministry of Labour and Social Security of the People's Republic of China (MLSS). Circular on prevention and control of early retirement of enterprise employees (in Chinese) No.8.1999 [cited; Available from:http://trs.molss. gov.cn/was40/search
    [200]Cheng YY, Nathanail PC. Generic assessment criteria for human health risk assessment of potentially contaminated land in China. Science of the Total Environment,2009,408:324-339
    [201]Pang LH, Brauw A, Rozelle S. Working until dropping:employment behavior of the elderly in rural China:Williams College,2004
    [202]National Bureau of Statistics of China (NBSC). Infant mortality rate and life expectancy at birth.2011 [cited; Available from:http://www.stats.gov.cn/ tjsj/qtsj/gjsj/2009/t20100408_402632860.htm
    [203]National Bureau of Statistics of China (NBSC). Air quality of major rrban in China.2006 [cited; Available from:http://www.stats.gov.cn/tjsj/qtsj/hj tjzl/ hjtjsj2006/t2 0071210_402453023.htm
    [204]Trowbridge PR, Burmaster DE. A parametric distribution for the fraction of outdoor soil in indoor dust. Journal of Soil Contamination,1997,6:161-168
    [205]USEPA. Integrated Risk Information System (IRIS).2010 [cited; Available from:http://www.epa.gov/ncea/iris/index.html
    [206]USEPA. Region 9, Preliminary Remediation Goals.2000 [cited; Available from:http://www.epa.gov/region09/waste/sfund/prg/
    [207]Datta SP, Young SD. Predicting metal uptake and risk to the human food chain from leaf vegetables grown on soils amended by long-term application of sewage sludge. Water, Air,& Soil Pollution,2005,163:119-136
    [208]Jan FA, Ishaq M, Khan S. A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). Journal of Hazardous Materials,2010,179:612-621
    [209]Wang X, Sato T, Xing B. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Science of the Total Environment,2005,350:28-37
    [210]Zayed AM, Terry N. Chromium in the environment:factors affecting biological remediation. Plant and Soil,2003,249:139-156
    [211]Kumar P, Dushenkov V, Motto H. Phytoextraction:the use of plants to remove heavy metals from soils. Environmental Science & Technology,1995, 29:1232-1238
    [212]Santos SE, Lauria DC,Porto da Silveira CL. Assessment of daily intake of trace elements due to consumption of foodstuffs by adult inhabitants of Rio de Janeiro city. Science of the Total Environment,2004,327:69-79
    [213]Zayed Z, Lytle CM,Qian JH. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta,1998,206:293-299
    [214]Hough RL, Breward N, Young SD. Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environmental Health Perspectives,2004,112:215-220
    [215]Khan S, Cao Q, Zheng YM. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution,2008,152:686-692
    [216]Biego GH, Joyeux M, Hartemann P. Daily intake of essential minerals and metallic micropollutants from foods in France. Science of the Total Environment,1998,217:27-36
    [217]Food and Nutrition Board. Dietary Reference Intakes, Recommended Dietary Allowances. Washington, DC:National Academy Press,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700