铅锌烧结过程状态智能预测与优化控制策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅锌金属在国防、电子等众多工业领域有广泛的应用,铅锌烧结过程的稳定性及烧结块质量的好坏,对铅锌冶炼生产效率的高低有着举足轻重的影响。烧结过程状态反映了铅锌烧结生产状况,状态的稳定和优化有助于提高烧结块的质量和产量。针对铅锌烧结过程的非线性、不确定性特点,本文主要围绕过程状态智能集成建模与优化控制策略开展研究,取得的研究成果主要包括以下五个方面。
     (1)综合生产目标与过程状态参数的关系分析及优化控制结构
     铅锌烧结状态反映了烧结程度,影响到烧结块的质量和产量,并且烧结状态参数众多,对烧结过程综合生产目标的影响程度也不同。本文深入分析操作参数、过程状态参数和综合生产目标的关系,提出了状态集成预测、综合生产目标优化和过程状态参数优化的优化思想。由此确定状态优化控制目标,提出铅锌烧结过程状态智能集成优化控制结构,分析状态集成优化控制的工作原理,从而为铅锌烧结过程的优化控制提供一种新思路。
     (2)过程状态参数预测模型
     透气性和烧穿点位置直接影响到烧结块的质量和产量,是铅锌烧结过程控制的重要状态参数。为实现铅锌烧结过程的状态优化控制,不仅需要获得当前实时的状态指标参数,更重要的是获得未来状态的变化趋势。本文针对透气性的时变和不确定性,建立基于RBF神经网络的透气性预测模型,较准确地进行透气性的实时预测。由于烧穿点主要受到烧结料面烟气温度的影响,采用固定点和非固定点的实验方法,研究铅锌烧结机内烟气温度分布规律,采用神经网络建立烟气温度场分布模型,从而建立烧穿点灰色预测模型;考虑工况波动的影响,采用支持向量机建立烧穿点工艺参数预测模型;然后采用动态加权法对两个模型进行集成,建立烧穿点状态预测模型,从而进行烧穿点的实时预测。采用MATLAB7.0仿真软件,对模型进行验证。仿真结果表明,利用本文方法建立的烧穿点集成预测模型能够获得更高的的预测精度,其预测效果和性能优于单一预测模型。
     (3)基于遗传蚁群算法的状态优化设定
     为达到高产、优质的生产目标,必须对透气性和烧穿点进行优化控制,使得烧结生产稳定在最优的状态。基于工艺机理分析和控制需求,将过程状态参数和综合生产目标之间的关系,归纳为一个带有不等式约束状态参数指标的综合收益函数形式描述问题。首先采用罚函数法将将具有多约束条件的目标函数转换为无约束的罚函数形式;然后采用遗传算法对目标函数寻优,获得优化问题的次优解;接着采用蚁群算法进行二次优化,结果作为烧结状态的最优设定值。仿真结果验证了该优化算法的有效性。
     (4)基于自适应免疫禁忌搜索算法的状态优化控制
     基于铅锌烧结过程状态的预测和状态优化设定,根据状态优化控制目标,将烧结状态优化控制问题归纳为一个非线性多目标优化问题。针对铅锌烧结过程参数难检测、强非线性和时滞的特点,本文研究自适应免疫禁忌优化算法,用于求解获得一组过程操作参数,实现烧结过程的状态稳定优化控制。
     (5)集成优化控制应用研究
     基于状态智能集成优化控制器,提出一个状态智能集成优化控制系统递阶结构。结合某企业实际运行数据,对本文所提方法进行仿真验证。优化结果表明,由于对烧结状态采用了优化控制策略,能够使透气性状态和烧穿点状态降低波动,为实现铅锌烧结过程优化控制奠定了基础。
Lead and Zinc are widely used in many fields, such as military industry, electronic industry, etc. Stability of the lead-zinc sintering process (LZSP) and quality of sinter are essential to the LZSP. Since the state of sinter reflects the status of the LZSP, a stable and optimal state of sinter is of great help to increasing the quality and quantity (Q&Q) of agglomerate. Based on the features of strong nonlinearity and uncertainty, of the LZSP, this dissertation studies an intelligent integrated modeling and optimization control strategy for the LZSP, and produces achievements mainly in the following five aspects.
     (1) The analysis of the relationships between global production target and state parameters, and the structure of optimization and control for sintering process
     The state of the LZSP reflects the status of the LZSP and infects the Q&Q of sintering agglomerate. Note that the number of state parameters is large and they have different effects on the global production target, this dissertation makes an in-depth analysis on the relationships between the operation parameters, state parameters, and global production target, and determines the target for state optimization control. Then, the structure of the state intelligent integrated optimization and control is devised. Finally, the principle of state integrated optimization and controller is presented. This method provides a new idea for optimization and control of the LZSP.
     (2) Prediction models of the state parameters
     Since permeability and burn through point (BTP) directly affect the Q&Q of sintering agglomerate, they are the most important stste parameters in the LZSP. To carry out the optimization and control of the LZSP, we require not only the current state parameters but also their future changing trends. Based on the features of time-vary and uncertainty of the permeability, we establish a radial basis function (RBF) neural network model to accurately predict the permeability. The BTP is mainly affected by a surface temperature, an experiment method which combines fixed measurement points with non-fixed measurement points is used to investigate the distribution of gas temperature in the sintering machine. Based on the analysis results, we use a back propagation (BP) neural network to establish the model of the gas temperature distribution (GTD), and further build a grey model for the BTP. To consider the influence caused by the status fluctuations, we use the support vector machine to establish a technology parameter model for the BTP. Then, we integrate these two models into an integrated state prediction model of the BTP using dynamic weights. MATLAB 7.0 is used to verify the validity of the presented optimization method. The experimental results show that the prediction precision of the integrated model is higher than that of a single prediction model.
     (3) Genetic-ant-algorithm-based state optimization and setting
     In order to achieve the production target of high Q&Q, we need to optimize and control the permeability and BTP effectively, and stabilize the LZSP at an optimal state. Based on the analysis of machnism and control requirements, we express the relation between the state parameters and the production target as a synthetic profit function with inequality constrains. In order to solve this problem, the penalty function method is used to transform the muti-target-constrained optimization problem to an unconstrained optimization problem. Then, we use a genetic algorithm to perform coarse optimization, and an ant algorithm to carry out fine optimization. This gives us a suboptimal solution. The solution is then used as an optimal setting of the state. Simulation results show the validity of the method of the genetic-ant-algorithm-based state optimization and setting.
     (4) Self-adapt-immune-tabu-search-based state optimization and control
     Based on the prediction, optimization and setting of the state in the LZSP, and according to the target of state optimization and control, we formulate the problem of state optimization and control of the LZSP as a nonlinear and multi-objective optimization problem. To deal with the problems of unmeasurable parameters, nonlinearity and a time delay in the LZSP, we utilize a self-adapt immune tabu search optimization algorithm to optimize the target function, and to obtain a set of optimal operation parameters. This allows us to implement the state stabilization and optimal control.
     (5) Application investigation of integrated optimization and control
     Based on the controller of state intelligent integrated optimization, this dissertation presents a hierarchical configuration of state intelligent integrated optimization and control system. Simulation results show that the fluctuations of permeability and BTP are suppressed to a low level by the state optimization and control strategy. The system lays the foundation of implementing optimization and control of the LZSP.
引文
[1]蒋继穆.我国铅锌冶炼现状与持续发展.中国有色金属学报,2004,14(专辑1):52-62.
    [2]M. Schlegel, W. Marquardt. Detection and exploitation of the control switching structure in the solution of dynamic optimization problems. Journal of Process Control,2006,16 (3):275-290.
    [3]E. B. Kosmatopoulos. Adaptive control design based on adaptive optimization principles. IEEE Transactions on Automatic Control,2008,53 (11):2680-2685
    [4]D. Sbarbaro, A. Johansen. Analysis of Artificial Neural Networks for pattern-based adaptive control. IEEE Transaction on Neural Network,2006,17 (5):1184-1193.
    [5]B. Lin, B. Recke, J. K.H. Knudsen, S. B. Jorgensen. A systematic approach for soft sensor development. Computers and Chemical Engineering.2007,31 (5): 419-425.
    [6]Y. H. Kim, F. L. Lewis, D. M. Dawson. Intelligent optimal control of robotic manipulators using neural networks. Automatica,2000,36 (9):1355-1364.
    [7]M. Wu, J. H. She, M. Nakano. An expert control system using neural networks for the electrolytic process in Zinc hydrometallurgy. Engineering Applications of Artificial Intelligence.2001,14 (5):589-598.
    [8]S. P. Moustakidis, G A. Rovithakis, J. B. Theocharis. An adaptive neuro-fuzzy tracking control for multi-input nonlinear dynamic systems. Automatica,2008, 44 (3):851-856.
    [9]焦李成,刘静,钟伟才.协同进化计算与多智能体系统.北京:科学出版社,2006.
    [10]H. J. Pil, K. Euntai. Robust tracking control of an electrically driven robot: Adaptive fuzzy logic approach. IEEE Transactions on Fuzzy Systems,2006,14 (2):232-247.
    [11]李保国,宗光华.未知环境中移动机器人实时导航与避障的分层模糊控制.机器人,2005,27(6):481-485.
    [12]T. S. Chan Felix, K. C Au, P. L. Y Chan. A decision support system for production scheduling in an ion plating cell. Expert Systems with Applications, 2006,30 (4):727-738.
    [13]郝东,蒋昌俊,林琳.基于Petri网与GA算法的FMS调度优化.计算机学报,2005,28(2):201-208.
    [14]M. A. Awadallah, M. M. Morcos. Automatic diagnosis and location of open-switch fault in brushless DC motor drives using wavelets and neuro-fuzzy systems. IEEE Transactions on Energy Conversion,2006,21 (1):104-111.
    [15]李明华,屈彦明,周孟戈,等.基于多Agent及Petri网的变压器故障诊断系统.西安交通大学学报,2006,40(2):223-227.
    [16]J. H. Taylor, Sayda. An intelligent architecture for integrated control and asset management for industrial processe IEEE International Symposium on Intelligent Control and 13th Mediterranean Conference on Control and Automation (IEEE Cat. No.05CH37647),2005,2:1397-1404.
    [17]A. Grancharova, J. Kocijan, Tor A. Johansen. Explicit stochastic predictive control of combustion plants based on Gaussian process models. Automatica, 2008,44(1):1621-1631.
    [18]Y. C. Chuang, Y. L. Ke, C. S Chen, Y L. Chen. Rule-expert knowledge-based Petri net approach for distribution system temperature adaptive feeder reconfiguration. IEEE Transactions on Power Systems,2006,21 (3):1362-1370.
    [19]M. Wu, J. H. She, N. Micho. An expert control system using neural networks for the electrolytic process in Zinc hydrometallurgy. Engineering Applications of Artificial Intelligence.2001,14 (5):589-598.
    [20]Z. G Hou, M. M. Gupta, P. N. Nikiforuk, Tan M., Cheng L. A recurrent neural network for hierarchical control of interconnected dynamic systems. IEEE Transactions on Neural Network,2007,18 (2):466-481.
    [21]M. A. Rodriguez, M. C. Jarur. A genetic algorithm for searching spatial configurations. IEEE Transactions on Evolutionary Computation,2005,9 (3): 252-270.
    [22]S. S. Li, M. Wang, Z. J. Han. Hybrid algorithm of chaos optimisation and SLP for optimal power flow problems with multimodal characteristic. IEE Proceedings of Generation, Transmission and Distribution,2003,5 (15): 543-547.
    [23]G. B. Huang, P. Saratchandran, N. A. Sundararajan. generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks,2005,16 (1):57-67.
    [24]S. A. Kalogirou. Artificial intelligence for the modeling and control of combustion processes:a review. Progress in Energy and Combustion Science, 2003,29:515-566.
    [25]S. Sette, L. Boullart, L. V. Langenhove. Using genetic algorithms to design a control strategy of an industrial process. Control Engineering Practice,1998,6 (4):523-527.
    [26]C. H. Lim, Y. S. Yoon, J. H. Kim. Genetic algorithm in mix proportioning of high-performance concrete. Cement and Concrete Research,2004,34 (3): 409-420.
    [27]桂卫华,王雅琳,阳春华.基于改进模拟退火算法的锌电解过程分时供电优化控制.控制理论与应用,2001,18(1):127-130.
    [28]M. H. Hung, L. S. Shu, S. J. Ho, S. F. Hwang, S. Y. Ho. A Novel Intelligent Multiobjective Simulated Annealing Algorithm for Designing Robust PID Controllers. IEEE Transactions on Systems, Man and Cybernetics Part A,2008, 38 (2):319-330.
    [29]J. Chen, F. Pan, T. Cai, et al. Stability analysis of particle swarm optimization without Lipschitz constraint. Journal of Control Theory and Applications,2003, 1 (1):86-90.
    [30]B. Zhao, C. X. Guo, Y. J. Cao. A multiagent-based particle swarm optimization approach for optimal reactive power dispatch. IEEE Transactions on Power Systems,2005,20 (2):1070-1078.
    [31]王建国,张昊宇,明学星,李益国,吕震中.基于蚁群算法优化的再热汽温系统变参数预测PID控制.化工自动化及仪表,2008,35(3):19-22.
    [32]D. Merkle, M. Middendorf, H. Schmeck. Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation,2002,6 (4):333-346.
    [33]张著洪,黄席樾.一种新的免疫算法及其在多模态函数优化中的应用.控制理论与应用,2004,21(1):17-21.
    [34]Huang, S. J. Application of Immune-Based Optimization Method for Fault-Section Estimation in a Distribution System. IEEE Power Engineering Review,22 (4):79-79.
    [35]F. Patission. Study of moister transfer during the strand sintering process. Metal Transactions,1990,2 (21B):37-47.
    [36]G. S. Upadhyaya. Some issues in sintering science and technology. Materials Chemistry and Physics,2001,67 (1):1-5.
    [37]J. Kennedy, R. C. Eberhart. Swarm intelligence. San Mateo, CA:Morgan Kaufmann,2001.
    [38]陈晓方,桂卫华,蔡自兴,吴敏.过程控制中的智能集成建模方法.系统仿真学报,2001,13(增刊):8-11.
    [39]杜玉晓,吴敏,桂卫华,岑丽辉.铅锌烧结过程透气性的混沌遗传算法神经网络模型.过程控制科学技术与应用会议论文集.广州:华南理工大学出版社,2002:205-209.
    [40]唐朝晖,桂卫华,吴敏, 陈晓方.基于神经网络和灰色理论的密闭鼓风炉透气性预测模型.中国有色金属学报,2003,13(5):1306-1310.
    [41]李果,张广明,桂卫华,严刚峰.以透气性为中心的铅锌矿烧结混合料水分智能集成控制.中国制造业信息化,2005,34(4):121-123.
    [42]陈向贵.铅锌烧结过程透气性的智能集成建模与优化控制.昆明冶金高等专科学校学报,2007,23(1):5-11.
    [43]王亦文,桂卫华,王雅琳.基于最优组合算法的烧结终点集成预测模型.中国有色金属学报,2001,12(1):191-195.
    [44]刘玉长,桂卫华,周孑民.基于软测量技术的模糊烧结终点控制研究.烧结球团,2002,27(2):27-30.
    [45]S. L. Jamsa-Jounela. Current status and future trends in the automation of mineral and metal processing. Control Engineering Practice,2001,9 (9): 1021-1035.
    [46]J. R. Siemon, E. Kowalczyk, J. Tuppurainen. Estimation of burn-through point on a lead sinter plant. National Conference Publication.1986,84 (4):191-195.
    [47]K. Kawanaka, Y. Mori. A study of the changes in the permeability of the sintering bed in the imperial smelting process. In:J. E. Dutrizac, J. A. Gonzalez, D. M. Henke, et al, eds. Lead-Zinc 2000. Pittsburgh:TMS,2000.467-479.
    [48]杜玉晓,吴敏,桂卫华.铅锌烧结过程透气性状态及热状态优化控制.信息与控制.2004,33(4):490-494.
    [49]J. Terpak, L. Dorcak, I. Kostial, L. Pivka. Control of burn-through point for agglomeration belt. Metalurgija,2005,44 (4):281-284.
    [50]W. S. Cheng. Prediction system of burning through point (BTP) based on adaptive pattern clustering and feature map. Proceedings of the 2006 International Conference on Machine Learning and Cybernetics, Dalian,2006: 3089-3094.
    [51]李明河,孙雁飞.烧结终点模糊控制系统的研究.华中科技大学学报,2004,32(4):71-73.
    [52]P. Li; Z. C. Ji, J. D. Tan. Sintering finish point intelligent control. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM.2005,2: 1385-1388.
    [53]吴敏,徐辰华,王春生.基于模糊分类变系数的铅锌烧结过程综合透气性状态预测.华东理工大学学报(自然科学版),2006,32(7):825-828,871.
    [54]吴敏,徐辰华.基于烟气温度场分布的烧穿点智能集成预测方法.自动化学报,2007,33(12):1312-1319.
    [55]深川卓美.川崎制铁技报,1991,3:203-209.
    [56]徐仲新.新日铁在宝钢介绍计算机的应用.烧结球团,1989,14(5):70-72.
    [57]范晓慧,王海东,黄天正等.以透气性为中心的烧结过程状态控制专家系统.烧结球团,1998,23(2)13-15.
    [58]张明,刘春梅,马文骐.用菲波那契法及随机试验法进行参数选优.东北电力学院学报,2002,22(1):48-51.
    [59]王普凯,毕小平,李海军.基于随机方向法与车辆原地起步加速过程模拟的变速箱挡比优化模型.兵工学报,2005,26(3):290-293.
    [60]刘岭,杨海天.基于拉格朗日乘子法和群论的具有任意位移边界条件的旋转周期对称结构有限元分析.计算力学学报,2004,21(8):425-429.
    [61]O. Yeniay. Penalty function methods for constrained optimization with genetic algorithms. Mathematical and Computational Applications,2005,10 (1):45-56.
    [62]D. L. Zheng, Z. L. Zhao. Application of gray linear programming in sintering mixing calculation. Journal of University of Science and Technology Beijing, 2000,7 (4):273-276.
    [63]V. S., Summanwar, V. K. Jayaraman, B. D. Kulkarni, H. S. Kusumakar, K. Gupta and J. Rajesh. Solution of constrained optimization problems by multi-objective genetic algorithm. Computers and Chemical Engineering,2002, 26:1481-1492.
    [64]G. C. Liao, T. P. Tsao. Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting. IEEE Transactions on Evolutionary Computation,2006,10 (3):330-340.
    [65]任新宇,樊思齐,朱玉斌,时瑞军.基于广义既约梯度法的航空发动机性能寻优控制.推进技术,2006,27(6):536-541.
    [66]何光宇,卢强,陈雪青.一种求解非线性优化问题的可行方向法.清华大 学学报(自然科学版),2004,44(10):1310-1312.
    [67]贺来宾,杨霞,岳金彩,谭心舜. 基于SQP法的ECSS-化工之星优化功能的实现.计算机与应用化学,2004,21(5):753-757.
    [68]蔡轶珩.逐次逼近线性规划法-一种评定形状误差的新方法.北京工业大学学报,1999,25(3):102-107.
    [69]A. Azaron, C. Perkgoz, M. Sakawa. A genetic algorithm approach for the time-cost trade-off in PERT networks. Applied Mathematics and Computation, 2005,168 (2):1317-1339.
    [70]D. R. Lewin, A. Parag. A constrained genetic algorithm for decentralized control system structure selection and optimization. Automatica,2003,39 (10): 1801-1807.
    [71]G. S. Li, J. H. Wu, B. G. Huang, G. S. Ma. A time constrained scheduling method based on dynamic combination of genetic algorithm and ant algorithm. ICM 2007. Internatonal Conference on Microelectronics 29-31 Dec.2007:119-122.
    [72]刘利强,戴运桃,王丽华.蚁群算法参数优化.计算机工程,2008,34(11):208-210.
    [73]程志刚,陈德钊,吴晓华,张兵.进化规划-蚁群优化算法的构建并用于化工过程操作优化.化工学报,2005,56(12):2361-2366.
    [74]Marcos J. Arauuzo-Bravoa, Jose M. Cano-Izquierdoc, Eduardo Gomez-Sanchezd, Manuel J. Lopez-Nietoe, Yannis A. Dimitriadisd, Juan Lopez-Coronadoc. Automatization of a penicillin production process with soft sensors and an adaptive controller based on neuro fuzzy systems. Control Engineering Practice,2004,9 (12):1073-1090.
    [75]T. X. Mei, R. M. Goodall. LQG and GA solutions for active steering of railway vehicles. Proceedings of IEE International Conference on Control Theory and Applications,2000,147 (1):111-117.
    [76]A. Kalinli, N. Karaboga. Artificial immune algorithm for IIR filter design. Engineering Applications of Artificial Intelligence,2005,18 (8):963-972.
    [77]M. Zandieh, S. M. T. Fatemi Ghomi, S. M. Moattar Husseini. An immune algorithm approach to hybrid flow shops scheduling with sequence-depent setup times. Applied Mathematics and Compution,2006,180 (1):111-127.
    [78]汪定伟,王俊伟,王洪峰,张瑞友,郭哲.智能优化方法.北京:高等教育出版社,2007.
    [79]M. Ehrgott, X. Gandibleux. Multiobjective combinatorial optimization-theory, methodology and applications. European Journal of Operational Research,2007, 179 (3):709-722.
    [80]王文海,孙优贤.造纸企业的综合自动化与实现.控制工程,2004,11(1):5-13.
    [81]朱云龙,薛劲松,李满坡.基于知识的CIMS过程集成控制系统研究.计算机集成制造系统,1997,第6期,30-32.
    [82]方自真,荣本光,韩方煜.裂解C_4分离的过程集成优化控制.现代化工,1997,第10期,21-26.
    [83]崔德光,程朋,项天成.CIMS管理信息系统设计开发中的集成化建模方法.计算机集成制造系统,2000,6(6):37-40.
    [84]姚建初.面向CIPS的智能集成优化设计系统研究.计算机集成制造系统,2000,6(5):39-42.
    [85]Thoma Mc Avoy. Intelligent control applications in the process industries. Annual Reviews in Control,2002,26:75-86.
    [86]C. A. Hsuan, R. S. Chen. Intelligent control of exit temperature in a gas-fuel can-type combustor. Engineering Application of Artificial Intelligence,2002,15: 391-400.
    [87]M, Jarvensivu, K. Saari, S. L. Jamsa-Jounela. Intelligent control system of an industrial lime kiln process. Control Engineering Practice,2001,9:589-606.
    [88]陶明璋.工业控制过程系统中智能优化控制策略的研究.浙江大学学报,1996,30(6):683-690.
    [89]姚俊峰,梅炽,彭小奇,等.炼铜转炉优化操作智能决策支持系统的开发与研制.信息与控制,2002,31(2):176-179.
    [90]李新春,孙艳.综合人工智能优化矿业工程复杂大系统.系统工程学报,2002,17(4):379-384.
    [91]Emin Erkan Korkmaz, Gokturk Ucoluk. A controlled genetic programming approach for the deceptive domain. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2004,34 (4):1730-1742.
    [92]J. Liao, Er. M. Joo, J. Y. Lin. Fuzzy-neural-network-based quality prediction system for sintering process. Proceedings of the American control conference san diego, California June 1999,3221-3225.
    [93]Z. J. Wang, Q. D. Wu, T. Y. Chai. Optimal-setting control for complicated industrial processes and its application study. Control Engineering Practice, 2004,12:65-74.
    [94]D. L. Yu, T. K. Chang, D. W. Yu. A stable self-learning PID control for multivariable time varying systems. Control Engineering Practice,2007,15 (12): 1577-1587.
    [95]李少远,席裕庚,陈增强.智能控制的新进展.控制与决策,2000,15(1):1-5.
    [96]胡维莉,王翠翠,刘静.基于遗传算法的卡尔曼滤波器水下机器人信号处理方法.电脑知识与技术,2009,5(19):5222-5224.
    [97]陈艾琴,刘乾,朱大奇.基于BP神经网络的水下机器人推进器故障辨识算法.电脑知识与技术,2009,5(19):5214-5216.
    [98]周芳,朱齐丹,蔡成涛,赵国良.基于观测器的机械臂位置/力神经网络控制.华中科技大学学报(自然科学版),2009,37(7):79-82.
    [99]洪昭斌,陈力.基于高斯基模糊神经网络的漂浮基柔性空间机械臂自学习控制.工程力学,2009,26(6):172-177.
    [100]张立伟,温旭辉,郑琼林.异步电机用混合式模糊搜索效率优化控制研究.中国电机工程学报,2007,27(27):83-87.
    [101]刘贤兴,胡育文.永磁同步电机的神经网络逆动态解耦控制.中国电机工程学报,2007,27(27):72-76.
    [102]S. Cierpisz, A. Heyduk. A simulation study of coal blending control using a fuzzy logic ash monitor. Control Engineering Practice,2002,10 (4):449-456.
    [103]M. Chakraborty, M. K. Chandra. Multicriteria decision making for optimal blending for beneficiation of coal:a fuzzy programming approach. Omega,2005, 33 (5):413-418.
    [104]C. M. Liu, H. D. Sherali. A coal shipping and blending problem for an electric utility company. Omega,2000,28 (4):433-444.
    [105]《铜铅锌冶炼参考设计资料》编写组.铜铅锌冶炼参考设计资料.北京:冶金工业出版社,1979.129-133.
    [106]《铅锌冶金学》编委会.铅锌冶金学.北京:科学出版社,2003.
    [107]杜玉晓.铅锌烧结过程智能集成优化控制技术及其应用研究[D].长沙:中南大学,2004.
    [108]王桂增,王诗宓,等.高等过程控制.北京:清华大学出版社,2002.
    [109]K. Hamada, Y. Matoba. Systeme decontroled elacomposition chemiquede I'agglomere. Revue de metallurgie-CIT,1987,5 (2):409-419.
    [110]J. S. Hall, P. G. Cooper. Advisory computer control of zinc-lead sinter composition. Proceedings of the Ninth Australasian Chemical Engineering Conference.1981:395-402.
    [111]B. J. Wyborn, M. W. Bowden. Optimising moisture control for zinc-lead sintering. Australasian Institute of Mining and Metallurgy.1985,41:93-97.
    [112]J. R. Siemon, E. Kowalczyk, D. P. Fitzgibbons, W. Baguley. Peak bed temperature prediction on a lead/zinc sinter plant. Minerals Engineering.1991,4 (1):63-78.
    [113]N. D. Corte, J. L. Gerbe. Automation and Modelisation of the Process at the Usinor Dunkirk No.3 Sintering Plant. Proceedings of the 4th International Symposium on Agglomeration, Toronto, Canada,1985,787-804.
    [114]V. R. Radhakrishnan, Ram. K. Maruthy. Mathematical model for prediction control of the bell-less top charging system of a blast furnace. Journal of Process Control,2001,11:565-586.
    [115]I. Shigaki. Machine-learning approach for sintering process using a neural network. Planning and Control,1999,10 (8):727-734.
    [116]M. Wu, M. Nakano, J. H. She. A model-based expert control strategy using neural networks for the coal blending process in an iron and steel plant. Expert Systems with Applications,1999,16 (3):271-281.
    [117]R. J. Frank, N. Davey, S. P. Hunt. Time series prediction and neural networks. J of Intelligent and Robotic Systems:Theory and Applications,2001,31 (3): 91-103.
    [118]J. H. Zhang, A. G Xie, F. M. Shen. Multi-objective optimization and analysis model of sintering process based on BP neural network. Journal of Iron and Steel Research,2007,14 (2):1-5.
    [119]G. P. Zhang, M. Qi. Neural network forecasting for seasonal and trend time series. European J of Operational Research,2005,160 (2):501-514.
    [120]S. N. Moghaddas Tafreshi, G. Tavakoli Mehrjardi. The use of neural network to predict the behavior of small plastic pipes embedded in reinforces sand and surface settlement under repeated load. Engineering Applications of Artificial Intelligence,2008,21 (6):883-894.
    [121]G. Ding, S. S. Zhong. Time series prediction by parallel feedforward process neural network with time-varied input and output functions. Neural Network World,2005,15 (2):137-147.
    [122]许少华,何新贵,尚福华.基于基函数展开的双隐层过程神经元网络及其应 用.控制与决策,2004,19(1):36-39.
    [123]石岩,蒋兴良,苑吉河.基于RBF网络的覆冰绝缘子闪络电压预测模型.高电压技术,2009,35(3):591-596.
    [124]J. X. Peng, K. Li. G. W. Irwin. A Novel Continuous Forward Algorithm for RBF Neural Modelling. IEEE Transactions on Automatic Control,2007,52 (1): 117-122.
    [125]K. Li, J. X. Peng, E. W. Bai. Two-Stage Mixed Discrete-Continuous Identification of Radial Basis Function (RBF) Neural Models for Nonlinear Systems. IEEE Transactions on Circuits and Systems,2009,56 (13):630-643.
    [126]J. P. Holman. Experimental methods for engineers. The United States: McGraw-Hill.1994.
    [127]H. Jeffreys, B. S. Jeffreys. Methods of mathematical physics.3rd ed. Cambridge: Cambridge University Press,1988.
    [128]V. Vapnik. The nature of satistical learning theory. Springer Verlag,1995.
    [129]谭超.基于支持向量机的软测量技术及其应用.传感器技术,2005,24(8):77-79.
    [130]董辉,傅鹤林,冷伍明.支持向量机的时间序列回归与预测.系统仿真学报,2006,18(7):1785-1788.
    [131]D. X. Niu, W. L. Li, M. Cheng, X. H. Gu. Mid-term load forecasting based on dynamic least squares SVMS.2008 International Conference on Machine Learning and Cybernetics,2008,2 (12-15):800-804.
    [132]S. Xu, H. F. Zhao, J. Liu, X. Sun. Modeling and Forecasting of High-Technology Manufacturing Labor Productivity Based on Grey Support Vector Machines with Genetic Algorithms.2006 International Conference on Machine Learning and Cybernetics,2006:2419-2424.
    [133]李梦龙,刘军红,黎金明,等.基于支持向量机的炭黑工艺建模.应用基础与工程科学学报,2005,13(1):51-57.
    [134]常玉清,邹伟,王福利,毛志忠.基于支持向量机的软测量方法研究.控制与决策,2005,20(11):1307-1310.
    [135]J. A. K. Suykens, J. Vandewalle. Least squares support vector machines classifiers. Neural Network Letters,1999,19 (3):293-300.
    [136]M. T. Hagan, H. B. Demuth, M. H. Beale. Neural Network Design. Boston: PWS Publishing,1996.
    [137]J. L. Deng. Introduction to grey theory. Journal of Grey System,1989,1 (3): 1-24.
    [138]J. L. Deng. Control problems of grey systems. Systems & Control Letters,1982, 1 (5):288-294.
    [139]M. Z. Mao, E. C. Chirwa. Application of grey model GM (1,1) to vehicle fatality risk estimation. Technogolical Forcasting and Social Change,2006,73 (5):588-605.
    [140]C. C. Hsu, C. Y. Chen. Applications of improved grey prediction model for power demand forecasting. Energy Conversion and Management,2003,44 (14): 2241-2249.
    [141]L. C. Hsu, C. H. Wang. Forecasting the output of integrated circuit industry using a grey model improved by Bayesian analysis. Technogolical Forcasting and Social Change,2007,74 (6):843-853.
    [142]袁基炜,史忠科.一种基于灰色预测模型GM(1,1)的运动车辆跟踪方法.控制与决策,2006,21(3):300-304.
    [143]李俊峰,戴文战.GM(1,1)改进模型的研究及在上海市发电量建模中的应用系统程理论与实践,2005,3:140-144.
    [144]徐辰华,吴敏.基于质量产量预测模型的铅锌烧结过程智能集成优化控制算法.控制理论与应用,2008,25(4):688-692.
    [145]徐辰华,吴敏.基于神经网络的铅锌烧结过程质量产量预测模型.系统仿真学报,2009,21(4):1024-1028.
    [146]Min Wu, Chen-Hua Xu, Jin-Hua She and Ryuichi Yokoyama. Intelligent integrated optimization and control system for lead-zinc sintering process. Control Engineering Practice,2009,17 (2):280-290.
    [147]J. Chen. A predictive system for blast furnaces by integrating a neural network with qualitative analysis. Engineering Applications of Artifical Intelligence, 2001,14(1):77-85.
    [148]A. Azaron, C. Perkgoz, M. Sakawa. A genetic algorithm approach for the time-cost trade-off in PERT networks. Applied Mathematics and Computation, 2005,168 (2):1317-1339.
    [149]张文修,梁怡.遗传算法的数学基础.西安:西安交通大学出版社,2000.
    [150]姚俊峰,梅织,等.混沌遗传算法及其应用.系统工程,2001,19(1),70-74.
    [151]马忠丽,王科俊,莫宏伟.免疫遗传算法及其在电力系统EELD中的应用.哈尔滨工程大学学报,2006,27(3):408-412.
    [152]L. Jiao, L. Wang. A novel genetic algorithm based on immuneity. IEEE Transactions on System, Man and Cybernetics,2000,30 (5):552-561.
    [153]F. D. Croce, R. Tadei, G. Volta. A genetic algorithm for the job-shop problem. Computer and Operations Reaearch,1995,22 (1):15-24.
    [154]M. Gen, Y. Tsujimura, E. Kubota. Solving job-shop scheduling problem using genetic algorithms. Proceedings of the 16th International Conference on Computers and Industrial Engineering, Ashikaga, Japan:Ashikaga Institute of Technology,1994:576-579.
    [155]胡祥培,丁秋雷,李永先.蚁群算法研究评述.管理工程学报,2008,22(2):74-79.
    [156]王凌.智能优化算法及其应用.北京:清华大学出版社,2001.
    [157]M. Dorigo, V. Maniezzo, A. Colorni. Ant system:optimization by a colony of cooperating agents. IEEE Transactions on SMC, Part B,1996,26 (1):29-41.
    [158]寇英信,王琳,周中良.多目标攻击条件下的作战任务分配模型研究.系统仿真学报,2008,20(16):4408-4411.
    [159]华容.基于蚁群算法优化的盲信号分离.计算机应用与软件.2007,24(8):21-22,37.
    [160]B. Qi, J. Lu, Y. Long. An improved ant algorithm for network traffic control. WiCOM'08.4th International Conference on Wireless Communications, Networking and Mobile Computing,2008:1-4.
    [161]L. Schoofs, B. Naudts. Ant colonies are good at solving constraint satisfaction problems. Proceedings of the 2000 Congress on Evolutionary Computation, 2000,2(2):1190-1195.
    [162]Holland J H. Adaptationin Natureand Artificial Systems. AnnArbor:The University of Miehigan Press,1975.
    [163]周泓,张惠民.求解多目标作业排序问题的遗传算法.系统工程理论与实践,2001,第8期,1-8.
    [164]倪明放,盛昭瀚,徐南荣.多目标优化的交互式定界搜索法.《东南大学学报》(自然科学版),1993,23(1):137-141.
    [165]郭均鹏;李汶华.区间多目标线性规划的模糊求解方法.系统管理学报,2008,17(4):86-89.
    [166]何坚勇.最优化方法.北京:清华大学出版社,2007.
    [167]陈皓,崔杜武,严太山,李凌波.基于竞争指数的模拟退火排序选择算子.电子学报,2009,37(3):586-591.
    [168]龙志强,蔡楹,徐昕.基于分布估计算法的磁浮列车故障综合评判.控制与 决策,2009,24(4):551-556.
    [169]Q. He, L. Wang. A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied Mathematics and Computation,2007, 186(2):1407-1422.
    [170]Srinivas N, Deb K. Multiobjective function optimization using non-dominated sorting genetic algorithms. Evolutionary Computation.1995,2(3):221-248.
    [171]谢涛,陈火旺.多目标优化与决策问题的演化算法.中国工程科学,2002,14(2):59-68.
    [172]K. Deb, Multi-Objective Optimization using Evolutionary Algorithms. Chicester, UK:John Wiley & Sons,2001.
    [173]A. Kalinli, N. Karaboga. Artificial immune algorithm for IIR filter design. Engineering Applications of Artificial Intelligence,2005,18 (8):963-972.
    [174]M. Zandieh, S. M. T. Fatemi Ghomi, S. M. Moattar Husseini. An immune algorithm approach to hybrid flow shops scheduling with sequence-depent setup times. Applied Mathematics and Compution,2006,180 (1):111-127.
    [175]J. D. Farmer, N. H. Packard, A. S. Perelson. The immune system adaptation and machine learning. Physica,1986,22 (2):187-204.
    [176]Y. S. Dai, Y. Y. Li, L. Wei, J. L. Wang, D. L. Zheng. Adaptive immune-genetic algorithm for global optimization to multivariable function. Journal of Systems Engineering and Electronics,2007,18 (3):655-660.
    [177]C. Y. Lee, H. G. Kang. Cell planning with capacity expansion in mobile communications:a tabu search approach. IEEE Transactions on Vehicular Technology,2000,49 (5):1678-1691.
    [178]S. Carcangiu, A. Fanni, A. Montisci. Multiobjective tabu search algorithms for optimal design of electromagnetic devices. IEEE Transactions on Magnetics, 2008,44 (6):970-973.
    [179]M. Mori, O. Matsuzaki. A rule-based tabu search technique for power system decomposition. IEEE Power Engineering Society Summer Meeting,2000,4 (4): 1990-1995.
    [180]恽为民等.遗传算法的运行机理分析.控制理论与应用,1996,13(3):297-304.
    [181]龚光鲁,钱敏平.应用随机过程教程及在算法和智能计算中的随机模型.北京:清华大学出版社,2004,86-89.
    [182]D. L. Isaacson, R W. Madsen. Markov chain theory and application. John Wiley & Sons Inc.1976.
    [183]康立山,等.非数值并行算法-模拟退火算法.北京:科学出版社,1995.
    [184]王耀南,王辉,彭建春,等.复杂工业过程的综合集成智能控制.信息与控制,1999,28(4):298-304
    [185]卢荣德,陈宗海,王雷.复杂工业过程计算机建模、仿真与控制的综述.系统工程与电子技术.2002,24(1):52-57..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700