智能防雷控制系统的开发与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,随着水利部黄河委员会投入巨资为涵闸安装了计算机远程监控系统,使黄河水资源管理与水量调度更为科学,所以确保该系统平稳运行尤其重要。但由于涵闸所处物理位置的特殊性,地质、气象条件均比较严酷,所以雷暴和各种电磁脉冲侵害的概率相对比较大。涵闸远程监控系统在雷雨季节来临时极易遭到雷击事故,设备损坏严重,造成系统功能局部失效甚至瘫痪,经济损失较大。因此,研究有效防雷方法,保证设备及人身安全及系统平稳运行具有重要的意义。
     山东黄河引黄涵闸监控系统现有的防雷器ZYSPD20K,在2003年至2008年间经多次实验该种防雷器在电源感应雷电电压超过1.6kV时才能动作,而后端设备在低于该电压时就已经被击穿损坏,其防雷效果不高,是非智能被动的在线防雷系统,并且具有被动防雷系统滞后性的普遍致命缺点,所以安装此类防雷设备的涵闸监控系统在雷击天气下是非常不安全的。根据以上的综合分析,我们在设计控制系统时应采取主动防雷的设计思想,提高防雷效率。
     智能防雷技术采用主动防雷思想,通过使用各种检测手段并借鉴专家系统控制方法实现了防雷控制系统的预见性、主动性、及时性等功能。本文在分析防雷系统特性的基础上,运用专家系统控制方法实现雷电保护的智能控制。采用数据统计和专家思想的方法通过正向推理得到该系统的规则集;采用大气相对湿度和雷达回波强度的统计特性分析实现数据检测;依据济南地区近年的气象资料,得到了大气相对湿度和雷达回波强度之间存在着一元线性关系,采用大气相对湿度反推得到雷达回波强度,而雷达回波强度反应了雷暴气象时雷电的强度,为雷电预测提供了统计依据。雷暴天气另一个直接因素是大气电场强度,在平原地区一般发生负地闪,电场强度的增强有一定的时间累积,根据电场强度的高低设定报警级别,为主动防雷提供了现实依据。此外,通过雷声信号采集、预处理、特征提取,利用BP神经网络识别雷声信号,判别雷暴气象的可能性。最后,利用闪电光信号的相关性分析,并计算闪电光信号的相关系数,同时设定相关系数阈值判定雷暴天气的可能性。还就闪电图像纹理特征分析应用于防雷控制进行了初步探讨。
     根据大气相对湿度和雷暴天气的统计关系、雷电电场强度的时间积累性、雷声声音识别和闪电图像处理的原理,我们制定了相应的模糊控制规则,实现了一般雷暴天气的逻辑控制及特殊雷暴天气的单独控制。该系统根据特殊要求进行闸室动力线和信号线的自动投切,并具有手机短信或者电话进行远程控制及系统监控的功能。
     采用ABB公司的AC500 PLC作为现场工作站,上位机采用威论触摸屏MT6070IH。采用EB8000软件平台开发了已经用于实际涵闸的实用系统。实际运行表明,该系统安全、可靠,有效实现了涵闸的防雷保护。
Now , The Yellow River commission invested heavily in installing remote computer monitoring system for culvert and sluice , and makes the Yellow River water resources management and water dispatching more scientific, so it is particularly important to insure the system running smoothly .but the culvert and sluice‘s physical location is so particular , for example , geology and meteorological conditions are relatively harsh , thunderstorm and various electromagnetic pulse violations of probability is relatively frequent and intensity bigger . So the remote monitoring system in thunderstorms season encounter the lightning accident easily , that the equipment badly damaged , system function degradation and paralysis , economic loss bigger .Therefore , effective lightning protection, to ensure that equipment and the personal safety and system running smoothly, has the vital significance.
     In the Shandong Yellow River culvert and sluice , the exiting lightning protection device of Monitoring system is ZYSPD20K,by many times experiment, the lightning protection device began to act when the power source induction-lightning voltage is more than 1.6 kV, but the end equipment had been damaged in below the breakdown voltage . so the lightning protection effect is not high, not intelligent passive online lightning-proof system, and it has common fatal weakness of the passive lightning-proof system in hysteresis, so it is not safe to install such lightning protection equipment in the culvert and sluice monitoring system in the lightning weather . The initiative lightning protection design thought should be taken when we design the lightning protection device ,and improve the efficiency of control system through the above analysis.
     Intelligent lightning protection technology realizes the function of forcasting, initiative and timeliness by using the idea of initiative lightning protection , a variety of detection methods, expert system control theory for reference. In this paper , the idea of the expert system control theory is used to achieve intelligent control according to analyze the characteristics of lightning protection systems. The forward inference is used to obtain the rules set of the system through statistics and expert thinking; Through using the statistical characteristics of relative humidity of atmospheric and the radar echo intensity, we analyze and realize the data detectiony. Basing on meteorological conditions in Jinan, there is a linear relationship between the relative humidity of atmospheric and the radar echo intensity is found, so by detecting atmosphere relative humidity for backstepping radar echo intensity, and radar echo intensity just is reaction when the thunderstorm lightning intensity will happen, that provide the statistical basis for lightning-forcasting . Another factor is the electric field strength toward The thunderstorm atmospheric directly. Generally, in the plain areas occurs the negative CG lightning, and the electric field intensity have some time to accumulate, basing on the electric intensity reaches different intensity to set the alarm level, to provide a realistic basis for initiative thinking. In addition, the recognition of Thunder is analysed through collecting the signals, pretreatment, feature extraction, and through the BP neural network identification to judge the weather whether in the thunderstorm state and verify the characteristic information. Finally, the possibility of thunderstorms is judged through the use of lightning-related optical signal analysis, the calculation of the correlation coefficient of lightning optical signal, and the correlation coefficient threshold Settings. the Lightning Image Texture Analysis used in lightning protection control preliminary is studied .
     According to the statistical relationship of the relative humidity of atmospheric and the thunderstorm, the time accumulating of thunder electric intensity, thunder voice recognition and the principle of lightning image, we establish the corresponding fuzzy control rules, not only realize the general tthunderstorm logic control, and also realize the special thunderstorm in separate control. The control system realize the chamber power lines and signal lines’s auto-switching according to the special requirements, and also through SMS or phone to realize the remote control and system monitoring function.
     In this paper , ABB AC500 PLC is used as On-site workstation , weinview screen MT6070IH as the upper computer . Using EB8000 as software platform develops a Practical system which is already used in culvert and sluice. The Practical application shows that the system is safe, reliable and had already realized the lightning protection effectively.
引文
[1]都百万,王保强.雷电监测方法的研究[J].成都信息工程学院学报, 2007 (22):73-78
    [2]张佐星,季群.弱电设备的防雷保护[J],湖北电力,2009,33(4):75-76.
    [3]张义军,周秀骥.雷电的研究与回顾[J].应用气象学报. 2006, 17(6): 829-834.
    [4]林铍德,支树林,罗树如.雷电落点和强度临近预报方法初探[J].气象与减灾研究, 2007, 30(4):57–60.
    [5] Zhang Yijun , Meng Qing , Krehbiel Paul , etal. Spatiotemporal characteristics of positive cloud to ground lightning discharges and bidirectional leader of the lightning. Science in China (Serier D) ,2006,49(2) : 212-224.
    [6]张朝辉,陈海东,丁东湖,陈菁菁.水泥企业仪表和控制系统的雷击原因分析和防雷措施[J],水泥,2009(9):45-47.
    [7]梁钟清,金龙,孔远法.低纬度地区局地暴雨的神经网络预报方法[J].热带气象学报.2009,25(4):458-463.
    [8]贺元珍,电力系统中弱电设备的防雷保护[J],大众用电,2009(8):21-22.
    [9]卜成发.浅谈DCS系统的防雷措施[J],自动化技术与应用,2009, 28(6):100-101.
    [10]姚加明.电气控制设备的防雷保护[J].低压电器,2009(2):49-50.
    [11]罗涛,李红梅,孙潇潇.十三陵蓄能电厂通信系统防雷技术改造[J].华北电力技术,2009(5):29-32.
    [12]虞昊.现代防雷技术基础(第二版)[M].北京:清华大学出版社, 2005.
    [13]张小青.建筑防雷与接地技术[M].北京:中国电力出版社, 2003.
    [14]刘沙.控制系统防雷浅谈[J].石油化工自动化,2008(3)81-83.
    [15]马刚,郑绍勋,田金华,等.抽水蓄能电站综合防雷设计探讨[J].气象与环境科学,2008 (3):90-93.
    [16]张永刚,肖稳安,李虹,等.气象信息系统雷电防护常见问题的解决方法[J].气象与环境科学,2007,30(2):83-85.
    [17]林丽.浅谈雷电防护工程设计的环境因素[J].中国雷电与防护,2007(1):37-39.
    [18]赵健.浅谈铁路驼峰控制系统的雷电保护[J].安防科技,2008 (6):42-43.
    [19]戴进飞,杨福志.现代防雷技术的工程设计要点[J].中国住宅设施,2009(8):48-49.
    [20] Dupilka M L, Reuter GW. Forecasting Tornadic Thunderstorm Potential in Alberta Using Environmental SoundingData. Part I: Wind Shear and Buoyancy[J]. Wea. Forecasting, 2006, 21(3): 325-335.
    [21]王树林,袁志宏,专家系统设计原理[M],科学出版社,北京,1991.
    [22] Zhao H ,Guiver L, Neelakantan R. A nonlinear industrial model predictive controller using integrated PLS and neural net state space model[C]//proceedings of the 14th IFAC WorldCongress Beijing, China, 1999:13-18.
    [23]牛林,叶燎原,李明得.基于T-S模糊模型的多变量预测控制[J].自动化与仪表,2009,(8):34-37.
    [24]冯培恩,谨主,专家系统[M],.机械工业出版社,北京,1993.
    [25]武波,马玉祥,专家系统[M],北京理工大学出版社,北京, 2001.
    [26]陆忠艳,蔡福,刘文明,等.辽宁乡镇天气预报中风和相对湿度及云量的空间差值[J].气象与环境学报,2009,25(4):54-57.
    [27]董保举,刘劲松,高月忠.基于风廓线雷达资料的暴雨天气过程分析[J].气象科技,2009,37(4):411-414.
    [28] Mansell E R , MacGorman D R , Ziegler C L , et al. Simulated three - dimensional branched lightning in a numerical thunderstorm model . J . Geophys. Res. , 2002 , 107(D9) : 4075 , doi : 10. 1029 / 2000JD000244.
    [29]秦琰琰,李柏,张沛源.降水的反射率因子与大气相对湿度的关系研究[J].大气科学,2002,30(2): 351-359.
    [30]徐枝芳,徐玉貌,葛文忠.雷达和卫星资料在中尺度模式中的初步应用[J].气象科学,2002,22(2): 167-173.
    [31]陈静,薛继善,颜宏.物理过程参数化方案中尺度暴雨数值模拟影响的研究[J].气象学报,2003,61(2): 213-217.
    [32]王峰云,王燕雄,陶祖钰.多普勒天气雷达的中尺度风场探测技术研究[J].热带气象学报,2003(8),19(3): 291-298.
    [33]陈列,寿邵文.应用单多普勒雷达资料反演风场作暴雨中尺度分析[J].南京气象学报,2003,26(3): 358-363.
    [34] Rust W D, Weiss S A, MacGorman D R, et al. Lightning, Electric Field, and Radar Observations of the STEPS 25 June 2000 Multicell Storm [J]. 13th International Conference on Atmospheric Electricity, August 13-17, 2007, Beijing, China: ps 5-6.
    [35] Joan Montanyà, Serge Soula, Nicolau Pineda, et al. Study of the total lightning activity in a hailstorm[R]. 13th International Conference on Atmospheric Electricity, August 13-17, 2007, Beijing, China: os5-4.
    [36] Johansen TA.Fuzay model based control: stability robustness and performance issues[J].IEEE Transactions on Fuzzy Systems,1994,2:221-234.
    [37]孟青,葛润生,朱晓燕. SAFIR闪电监测和预警系统[J].气象科技, 2002 ,30 (3) :135-138.
    [38] Wei Zhang, Branicky MS, Phillips SM.Stability of networked control systems [J]. IEEE Control Systems Magaine, 2001,21(1):84-99.
    [39] Walsh G C, Hong Ye. Scheduling of networked control systems[J].IEEE Control SystemsMagazine ,2001,21(1):57-65.
    [40] Angeli C , Chatzinikolaou A . An expert system approach to fault diagnosis in hydraulic systems[J].Expert System,1995,12(4):323-329.
    [41] Sarimveis H, Bafas G.Fuzzy model predictive control of nonlinear processes using genetic algorithms[J], Fuzzy Sets and Systems, 2003, 139(1):59-80.
    [42]刘黎平,葛润生,张沛源.双线偏振多普勒天气雷达遥测降水强度[J].大气科学,2006,26(5): 709-720.
    [43]周志敏,电子信息系统防雷接地技术[M],人民邮电出版社,北京,2004.
    [44]区健昌,电子设备的电磁兼容性设计[M],电子工业出版社,北京,2003.
    [45]孙凌,周筠珺,杨静.雷暴预警预报的研究进展[J].高原山地气象研究,2009,29(2):75-80
    [46]托亚,梁海河,马淑芬,祝福康.永雷达资料改进MM5初始场的初步试验研究[J].南京气象学报,2003,26(5): 661-667.
    [47]袁曾任.人工神经网络及应用[M].北京:清华大学出版社,1999
    [48]张立明.人工神经网络的模型及应用[M].上海:复旦大学出版社,1994
    [49]韩萍.仓储物害虫声音的模式识别[J].计算机工程,2003 ,29(22):151-152.
    [50]柴烨,张有光.基于小波分析的雷声信号特征提取[J].计算机技术与应用,2007(5):118-120.
    [51]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [52]刘毅,张彩明,赵玉华,等.基于多尺度小波包分析的肺音特征提取与分类[J].计算机学报,2006,29(5):769-777.
    [53]辛沂.车辆声音的识别技术[J].鞍山科技大学学报,2004,27(2):132-135.
    [54]张宇波.基于信号处理的声音模式识别过程及方法研究[J].计算机仿真,2004,21(9):134-137.
    [55]李宏松,苏建民,黄英来.基于声音信号的特征提取方法的研究[J].信息技术,2006(1):91-94.
    [56]陈洪滨,吕达仁.从空间探测闪电的综述[J].气象学报, Vol. 59, No.3 Jun.,2001.
    [57]袁萍,郄秀书,吕世华,陈冠英,张广庶.一次强云对地闪电首次回击过程的光谱分析[J]光谱学与光谱分析.Vol1 26 ,No14 ,
    [58]周莉,郑建林,颜綄.基于小波多尺度和熵在图像字符特征提取方法的改进[J].电子技术应用,2004,30(7):6-8.
    [59] Christian H J , Blakeslee R J , Goodman S J. The detection of lightning from geostationary orbit. J Geophys Res.1989, 94 (D11) : 13329~13337
    [60] Fedosseeve Serghei Samruay Sangkasaad. National lightning location network-an alternative approach, IEEE Electromagnetic Compatibility. Vol.2, pp. 965-968, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700