用户名: 密码: 验证码:
Racl、NF-κB、IL-1β在DVT形成中表达变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旧的]
     1.采用基因芯片检测大鼠DVT模型股静脉壁组织中差异表达的基因,查阅Ncbi PubMed和GeneCard数据库分析基因功能,研究静脉壁中Rac1、IL-1β等基因的mRNA表达变化与DVT形成的关系。
     2.采用彩色多普勒超声动态监测兔DVT模型的静脉血栓形成状态以便更准确采集静脉血液样本,并应用PCR筛查差异表达基因,研究兔血细胞中Rac1、 IL-1β等基因的mRNA表达变化与DVT形成之间的关系。
     3.采用Ncbi BLAST比较大鼠、兔、人Rac1、IL-1β等基因的mRNA序列相似度,推测Rac1、IL-1β等基因在人DVT形成中可能具有重要作用;
     4.采用RCR筛查Rac1、IL-1β等基因在DVT患者血细胞中的mRNA表达变化,运用real-time PCR确定Rac1等差异表达的基因,研究人血细胞中Rac1、IL-1β等基因的mRNA表达变化与DVT形成的关系;
     [材料方法]
     第一部分:大鼠DVT模型股静脉壁组织基因芯片检测,筛选差异表达基因
     将67只SD大鼠随机分为对照组(10只)和模型组(57只),对模型组采用蚊式钳钳夹双侧股静脉联合石膏制动双下肢构建大鼠DVT模型。选取不同时间点(造模后2.5h和25h)处死大鼠,解剖双侧股静脉观测:血栓的发生率、严重程度,进一步将模型组分为:血栓形成前组10只(造模后2.5h取材)、血栓形成组和血栓不形成组(共45只,造模后25h取材,依据单侧或双侧股静脉中是否有血栓形成分组)。获取股静脉壁组织,采用Affymetrix Rat230A cDNA基因芯片检测差异表达的基因;采用倍数变化分析法(Fold Change, FC)筛选出显著差异表达的基因;查阅最新Ncbi PubMed和GeneCard数据库,筛选出Rac1、 IL-1β等可能与血栓形成、活性氧(ROS)生成高度相关的基因;
     第二部分:PCR筛查Rac1等基因在兔DVT模型血细胞中的表达化
     将18只日本大耳兔随即分为假手术组(5只)和模型组(13只),采用结扎双侧股总静脉、股深静脉构建兔DVT模型。在不同的时间点(造模前Od、造模后1d、造模后2d、造模后3d、造模后8d),采用彩色多普勒超声准确监测双侧股总静脉、股深静脉、股浅静脉血栓形成状态,并采集血液样本,采用PCR检测静脉血细胞中Rac1、IL-1β等基因mRNA的表达变化。
     第三部分:Rac1、IL-1β等基因在大鼠、兔与人之间的同源性分析
     查阅Ncbi Gene和GeneCard数据库确定大鼠、兔的Rac1、IL-1β等基因的mRNA序列,通过BLAST与人类相应基因进行序列比较,同源性分析Rac1等基因在大鼠、兔和人之间的mRNA序列相似度;推测Rac1、IL-1β等基因在DVT形成中可能具有重要作用;
     第四部分:PCR及real-time PCR检测DVT患者血细胞中Racl等基因的mRNA表达变化
     参考《静脉血栓栓塞症预防的NICE指南》(2012年)和《美国胸科医师协会抗栓与血栓预防临床实践指南—深静脉血栓形成的诊断》(2012年第9版)制定本研究的DVT诊断标准:DVT的综合诊断=危险因素评估(基础危险因素+专科危险因素)+主要临床表现+下肢深静脉彩色多普勒超声检查(附录2)。纳入研究对象排除其它高危因素(怀孕、糖尿病、肿瘤、免疫系统疾病等)后,于2010年3月-2012年3月共纳入研究对象58例,正常对照组(20例,为健康志愿者)、血栓未形成组(20例,为下肢长骨骨折或脊柱骨折7d内行手术后无形成血栓的患者)、血栓形成组(18例,为DVT形成患者)。三组均采集清晨空腹静脉血液样本,血栓未形成组于手术后第1d采集,血栓形成组于确诊后第1d采集。采用PCR筛查Rac1、IL-1β等基因在DVT患者血细胞中的1mRNA表达变化;进一步采用real-time PCR确定差异表达的基因;并查Ncbi PubMed和GeneCard数据库分析Rac1、NF-κB1、IL-1β之间的相互调控关系,及其对内皮细胞、白细胞、血小板功能的影响。
     [结果]
     1.大鼠DVT股静脉内皮基因芯片检测结果:造模后2.5小时,大鼠股静脉壁组织中Rac1、Rac2、NF-κB1、IL-1β的荧光强度明显增加,血栓形成前组明显高于对照组;造模后25小时,继续显著增加,血栓形成组高于对照组、血栓形成前组和血栓不形成组,而对照组与血栓不形成组间没有差异;
     2.彩色多普勒监测兔DVT模型股总静脉、股深静脉、股浅静脉血流信号结果:造模后1d,50%以上的静脉开始形成血栓;造模后2d,80%以上的静脉无血流信号,血栓形成达高峰;造模后3d,开始有部分静脉出现断续血流信号,血栓开始发生机化;造模后8d,50%以上的静脉出现断续血流信号,大部分静脉开始机化再通;
     3.PCR筛查兔DVT模型血细胞中差异表达基因的结果:模型组Rac1、NF-κB2、 IL-1β的mRNA表达水平,在造模后1d开始明显上调,并持续维持到造模后2d、3d、8d,均明显高于造模前(0d)及假手术组各个时间点(0d、1d、2d、3d、8d)(P<0.05);在造模后1d、2d、3d、8d之间的差异没有统计学意义(P>0.05);而Rac2mRNA的表达在两组各个时间点间的差异均没有统计学意义(P>0.05)
     4.大鼠、兔、人Rac1等基因mRNA序列的BLAST结果:大鼠Rac1、Rac2、 NF-κB1、NF-κB2、IL-1β基因与人类相应基因序列的相似度分别为80%、78%、96%、92%、78%;兔Rac1、Rac2、NF-κB2、IL-1β基因与人类相应基因序列的相似度分别为72%、93%、99%、68%。
     5.DVT患者血细胞中的PCR筛查及real-time PCR检测结果:PCR筛查发现Rac2、Rac3、NF-κB2mRNA的表达在三组之间的差异没有统计学意义(P>0.05);real-time PCR检测结果与PCR筛查结果一致,均发现Rac1、 NF-κB1、IL-1βmRNA的表达在血栓形成组中明显高于血栓未形成组和对照组(P<0.05),而血栓未形成组和正常对照组之间的差异没有统计学意义(P>0.05)。
     [结论]
     1.大鼠DVT模型股静脉内皮中Rac1、NF-κB1和IL-1β的mRNA表达上调可能与DVT的形成密切相关;
     2.彩色多普勒超声可准确动态监测兔DVT模型深静脉血栓形成状态;
     3.兔血细胞中Rac1、NF-κB2和IL-1βmRNA表达上调可能与DVT形成密切相关;
     4.人血细胞中Rac1、NF-κB1和IL-1βmRNA表达上调可能与DVT形成高度相关;
Expression of Racl, NF-κB and IL-1β in deep venous thrombosis ABSTRACT
     [Objective]
     1. Applying gene chip to screen the differential expressed genes in femoral vein wall tissue of rats DVT model, and searching the Ncbi gene and GeneCard database to explore relationship between Racl, NF-κB1, IL-1β mRNA expression change gene and DVT.
     2. Using color doppler ultrasound to dynamic monitor thrombosis state of rabbit DVT model, accuratly collecting blood samples, and adopting PCR to screen these genes expression in blood of rabbits DVT model, and exploring the relationship between differential expression genes and DVT.
     3. Through homology analyzing these gene sequences similarity between rats/rabbits and human and consulting literatures, then speculating that these genes may play an important role DVT;
     4. Applying RCR to detetct these genes expression in DVT patient blood cell, furthermore, make use of real-time RCR to identify these genes expression, so as to explore relationship between these genes mRNA expresseion DVT.
     [Materials and Methods]
     Part1:Screening the differential epressed genes in femoral vein wall tissue of rats DVT model by gene chip
     The67rats were randomly divided into control group (non-modeling, n=10) and model group (n=57). Rat DVT model was established by combination with clamping both femoral veins and fixing with cast in model group. The incidence and serious degree of thrombus were observed by dissecting rat femoral vein in different time points (2.5hours and25hours after modeling). Model group were further divided into pre-thrombogenesis group (harvested venous tissue at2.5hours after modeling), thrombogenesis group and non-thrombogenesis group (harvested venous tissue at25hours after modeling, and grouped according to whether thrombosis). Acquiring the femoral vein wall tissue and extracting total RNA. Applying the Genechip Rat Genome2302.0to detect genes expression and using FC (Fold Change) to analyse the differential expression genes from experimental data. Searching the Ncbi gene and GeneCard database so as to find out Racl, NF-κB1and IL-1β closely related to ROS (Reactive Oxygen Species) production.
     Part2:Detecting these genes expression in blood of rabbits DVT model by PCR
     The involved18rabbits were randomly divided into sham group (non-modeling, n=5) and model group (n=13). Rabbit DVT model was established by ligaturing bilateral common femoral vein and deep femoral vein. Applying color doppler ultrasound to accurately monitor the thrombosis status of common femoral vein, deep femoral vein and superficial femoral vein, and collecting the blood sample. Adoptting the PCR technology to detecte expression changes of these genes in blood sample, including Racl, IL-1β and so on. Part3:Homology analysis of these gene between rats/rabbits and human
     Consulting Ncbi gene and GeneCard database to acertain these gene sequences of rats and rabbits, through homology analyzing these gene sequences similarity between rats/rabbits and human and consulting literatures.
     Part4:Adoptting PCR and real-time PCR to detecte theses genes expression changes in blood sample of DVT patients
     Reference "venous thromboembolism prevention NICE guide"(2012) and Diagnosis of DVT:Antithrombotic Therapy and Prevention of Thrombosis,9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (2012,9th version)", formulate the DVT diagnosis standard of this study:DVT comprehensive diagnosis=dangerous factor assessment (foundation risk factors+specialized subject risk factors)+major clinical manifestations+color doppler ultrasound (appendix2). Ruling out other risk factors (pregnancy, diabetes, cancer, immune system disease, and so on), included58research objects were normal control group (20cases, healthy volunteers), non-thrombogenesis group (20cases for lower limb fractures, long bone or spine fracture undergo operation within7day, and without thrombosis after surgery), thrombosis group (18cases DVT patients), during march2010to march2012. Fasting vein blood samples of three groups were collected in early morning. Non-thrombogenesis group was1day after surgery. Thrombosis group was1day after diagnosis. These genes expression changes (including Rac1, NF-κB1, IL-1β, etc) were screened by PCR. The differential expression genes were identified by the real-time. Futhermore, the mutual regulation relationship among Rac1, NF-κB1and IL-1β, and the function influnence on endothelial cell, leucocyte cell and platelet, were analyzed by Ncibi PuMed and GeneCard, so as to explore these genes role in regulating DVT.
     [Results]
     1. The test results of gene chip in rats DVT model femoral venous wall found that: The expressions of Rac1, Rac2, NF-κB1and IL-1(3in rat femoral venous wall tissue were significantly up-regulated at2.5hours after modeling (pre-thrombogenesis group was higher than control group), and continued up-regulating at25hours after modeling (thrombogenesis group was higher than the pre-thrombogenesis group, non-thrombogenesis group and control group). But the difference in three groups was not detected.
     2. The results of adopting color doppler to monitor blood flow signal of common femoral vein, deep femoral vein and superficial femoral vein in rabbit DVT model found that:more than50%of vein have thrombosis at Id after modeling; more than80%of the vein have no blood flow signal at2d after modeling, indicated that venous thrombosis reached peak; Part of the vein began to appear intermittently flow signals at3d after modeling, seggested that venous thrombosis started to organizing; More than50%of the vein appeared intermittently flow signals at8d after modeling, suggest that most of the venous thrombosis emerged organization and recanalization.
     3. The results of applying PCR to screen differential expression gene in blood samples of rabbit DVT model found that:the mRNA expressions of Rac1, NF-κB2, and IL-1β were significantly up-regulated at1d after modeling and continues to maintain2d,3d,8d after modeling, were higher than Od before modeling of model group and different time points (0d、1d、2d、3d、8d) of sham group (P<0.05); The difference at different time points (1d、2d、3d、8d after modeling) was not deteceted (P>0.05); The Rac2mRNA expressions difference at different time points of two group was not deteceted (P>0.05).
     4. The BLAST results of Rac1etc gene sequences between rats/rabbits and human found that:Rac1, Rac2, NF-κB1, NF-κB2and IL-1β gene sequences similarity between rats and human respectively were80%,78%,96%,92%and78%; Rac1, Rac2, NF-κB2and IL-1(3gene sequences similarity between rabbits and human respectively were72%、93%、99%、68%.
     5. The test results of PCR in blood samples of DVT patients found that:The difference of the mRNA expressions of Rac2, Rac3and NF-κB2was not detected in three groups (P>0.05); The results of real-time PCR and PCR showed that the mRNA expressions of Rac1, NF-κB1and IL-1β in thrombogenesis group was significantly higher than the non-thrombogenesis group and control group (P<0.05), and the difference was not detected between nonthrombogenesis group and control group (P>0.05)
     [Conclusion]
     1. Upregulated expression of Rac1, NF-κB1and IL-1β in rats DVT modle femoral vein wall tissue closely related to DVT.
     2. The color doppler ultrasound can accurate dynamic monitoring thrombosis state of the rabbit DVT model;
     3. Upregulated expression of Rac1、NF-κB2and IL-1β in rabbits DVT modle blood closely crosponded with the progress of thrombosis, and might be played regulated role in DVT.
     4. Upregulated expression of Rac1、NF-κB1and IL-1β in blood sample of DVT patienet closely related to DVT.
引文
[1]Services US Department of Health and Human. The Surgeon General's Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism 2008. Available at: http://wwwsurgeongeneralgov/topics/deepvein.2009.
    [2]邱贵兴,戴尅戎,杨庆铭,等.预防骨科大手术后深静脉血栓形成的专家建议-深静脉血栓形成预防座谈会纪要[J].中华骨科杂志.2005,25(10):636-640.
    [3]Piovella F, Wang CJ, Lu H, et al. Deep-vein thrombosis rates after major orthopedic surgery in Asia. An epidemiological study based on postoperative screening with centrally adjudicated bilateral venography [J]. J Thromb Haemost.2005,3(12):2664-2670.
    [4]Cha SI, Lee SY, Kim CH, et al. Venous thromboembolism in Korean patients undergoing major orthopedic surgery:a prospective observational study using computed tomographic (CT) pulmonary angiography and indirect CT venography [J]. J Korean Med Sci. 2010,25(1):28-34.
    [5]Byun SS, Kim JH, Kim YJ, et al. Evaluation of deep vein thrombosis with multidetector row CT after orthopedic arthroplasty:a prospective study for comparison with Doppler sonography [J]. Korean J Radiol.2008,9(1):59-66.
    [6]付妍,王大为.血栓栓塞性疾病的急诊治疗和预防[J].中国临床医生.2006,34(8):51-53.
    [7]Cohen AT,Agnelli G,Anderson FA, et al. Venous thromboembolism (VTE) in Europe. The number of VTE events and associated morbidity and mortality [J]. Thromb Haemost. 2007,98(4):756-764.
    [8]Al Sayegh F, Almahmeed W, Al Humood S, et al. Global Risk Profile Verification in Patients with Venous Thromboembolism (GRIP VTE) in 5 Gulf countries [J]. Clin Appl Thromb Hemost.2009,15(3):289-296.
    [9]Bounameaux H, Perrier A, Righini M. Diagnosis of venous thromboembolism:an update [J]. Vasc Med.2010,15(5):399-406.
    [10]Key NS, Kasthuri RS. Current treatment of venous thromboembolism [J]. Arterioscler Thromb Vasc Biol.2010,30(3)372-375.
    [11]Kumar DR, Hanlin E, Glurich I, et al. Virchow's contribution to the understanding of thrombosis and cellular biology [J]. Clin Med Res.2010,8(3-4):168-172.
    [12]Kyrle PA, Eichinger S. Is Virchow's triad complete? [J]. Blood.2009,114(6):1138-1139.
    [13]Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution [J]. Arterioscler Thromb Vasc Biol.2008,28(3):387-391.
    [14]Esmon CT. Basic mechanisms and pathogenesis of venous thrombosis [J]. Blood Rev. 2009,23(5):225-229.
    [15]Lopez JA, Chen J. Pathophysiology of venous thrombosis [J]. Thromb Res.2009,123 (Suppl 4):S30-S34.
    [16]Re G, Lanzarini C, Vaona I, et al. Systemically circulating oxidative species in human deep venous thrombosis [J]. Eur J Emerg Med.1998,5(1):9-12.
    [17]Mackman N. Triggers, targets and treatments for thrombosis [J]. Nature. 2008,451(7181):914-918.
    [18]Chakrabarti S,Rizvi M,Pathak D, et al. Hypoxia influences CD40-CD40L mediated inflammation in endothelial and monocytic cells [J]. Immunol Lett.2009,122(2):170-184.
    [19]Durackova Z. Some current insights into oxidative stress [J]. Physiol Res. 2010,59(4):459-469.
    [20]Madamanchi NR, Hakim ZS, Runge MS. Oxidative stress in atherogenesis and arterial thrombosis:the disconnect between cellular studies and clinical outcomes [J]. J Thromb Haemost.2005,3(2):254-267.
    [21]Victor VM, Rocha M,Sola E, et al. Oxidative stress, endothelial dysfunction and atherosclerosis [J]. Curr Pharm Des.2009,15(26):2988-3002.
    [22]Saeed SA, Connor JD, Imran, et al. Inhibitors of phosphatidylinositide 3-kinase:effects on reactive oxygen species and platelet aggregation [J]. Pharmacol Rep.2007,59(2):238-243.
    [23]Gao GX, Dong HJ, Gu HT, et al. PI3-kinase mediates thrombin-induced platelet aggregation through mDial pathway[J]. Zhonghua Xue Ye Xue Za Zhi. 2010,31(3):176-180.
    [24]Jensen BO, Selheim F, Doskeland SO, et al. Protein kinase A mediates inhibition of the thrombin-induced platelet shape change by nitric oxide [J]. Blood.2004,104(9):2775-2782.
    [25]Leopold JA, Loscalzo J. Oxidative risk for atherothrombotic cardiovascular disease [J]. Free Radic Biol Med.2009,47(12):1673-1706.
    [26]Ferro E, Goitre L, Retta SF, et al. The Interplay between ROS and Ras GTPases: Physiological and Pathological Implications [J]. J Signal Transduct.2012:365769.
    [27]Moldovan L, Mythreye K, Goldschmidt-Clermont PJ, et al. Reactive oxygen species in vascular endothelial cell motility. Roles of NAD(P)H oxidase and Racl [J]. Cardiovasc Res.2006,71(2):236-246.
    [28]Bokoch GM, Diebold BA. Current molecular models for NADPH oxidase regulation by Rac GTPase [J]. Blood.2002,100(8):2692-2696.
    [29]Hordijk PL. Regulation of NADPH oxidases:the role of Rac proteins [J]. Circ Res. 2006,98(4):453-462.
    [30]Sawada N, Li Y, Liao JK. Novel aspects of the roles of Rac1 GTPase in the cardiovascular system [J]. Curr Opin Pharmacol.2010,10(2):116-121.
    [31]Hamalukic M,Huelsenbeck J.Schad A, et al. Rac1-regulated endothelial radiation response stimulates extravasation and metastasis that can be blocked by HMG-CoA reductase inhibitors [J]. PLoS One.2011,6(10):e26413.
    [32]Lin CH, Cheng HW, Ma HP, et al. Thrombin induces NF-kappaB activation and IL-8/CXCL8 expression in lung epithelial cells by a Racl-dependent PI3K/Akt pathway [J]. J Biol Chem.2011,286(12):10483-10494.
    [33]Chen XL, Zhang Q, Zhao R, et al. Rac1 and superoxide are required for the expression of cell adhesion molecules induced by tumor necrosis factor-alpha in endothelial cells [J]. J Pharmacol Exp Ther.2003,305(2):573-580.
    [34]Nishimura S, Manabe I, Nagasaki M, et al. In vivo imaging visualizes discoid platelet aggregations without endothelium disruption and implicates contribution of inflammatory cytokine and integrin signaling [J]. Blood.2012,119(8):e45-56.
    [35]Pleines I, Elvers M, Strehl A, et al. Racl is essential for phospholipase C-gamma2 activation in platelets [J]. Pflugers Arch.2009,457(5):1173-1185.
    [36]McCarty OJ, Larson MK, Auger JM, et al. Racl is essential for platelet lamellipodia formation and aggregate stability under flow [J]. J Biol Chem.2005,280(47):39474-39484.
    [37]中华人民共和国科学技术部关于善待实验动物的指导性意见.2006-09-30.
    [38]Zhang CQ, Huang H, Zhao Z, et al. Gene expression profile related to inflammation in rat model of traumatic deep vein thrombosis [J]. Chin J Traumatol.2007,10(4):206-212.
    [39]Li Wen HJ-h, Li Xing-guo. Effect of cathepsin L/G on venous vascular wall in traumatic deep vein thrombosis rat models [J]. Journal of Clinical Rehabilitative Tissue Engineering Research 2011,15(24):4525-4529.
    [40]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method [J]. Methods.2001,25(4):402-408.
    [41]Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method [J]. Nat Protoc.2008,3(6):1101-1108.
    [42]Chang S, Chen W, Yang J. Another formula for calculating the gene change rate in real-time RT-PCR [J]. Mol Biol Rep.2009,36(8):2165-2168.
    [43]Dutta TK, Venugopal V. Venous thromboembolism:the intricacies [J]. J Postgrad Med. 2009,55(1):55-64.
    [44]van Gils JM, Zwaginga JJ, Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases [J]. J Leukoc Biol.2009,85(2):195-204.
    [45]Afshar-Kharghan V, Thiagarajan P. Leukocyte adhesion and thrombosis [J]. Curr Opin Hematol.2006,13(1):34-39.
    [46]Seizer P, Gawaz M, May AE. Platelet-monocyte interactions-a dangerous liaison linking thrombosis, inflammation and atherosclerosis [J]. Curr Med Chem. 2008,15(20):1976-1980.
    [47]Morel O, Morel N, Freyssinet JM, et al. Platelet microparticles and vascular cells interactions:a checkpoint between the haemostatic and thrombotic responses [J]. Platelets. 2008,19(1):9-23.
    [48]Dignat-George F, Boulanger CM. The many faces of endothelial microparticles [J]. Arterioscler Thromb Vasc Biol.2011,31(1):27-33.
    [49]van Hinsbergh VW. Endothelium--role in regulation of coagulation and inflammation [J]. Semin Immunopathol.2012,34(1):93-106.
    [50]Furie B,Furie BC. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation [J]. Trends Mol Med.2004,10(4):171-178.
    [51]Wojciak-Stothard B, Tsang LY, Haworth SG. Rac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary artery endothelial cells [J]. Am J Physiol Lung Cell Mol Physiol.2005,288(4):L749-760.
    [52]Arthur WT, Noren NK, Burridge K. Regulation of Rho family GTPases by cell-cell and cell-matrix adhesion [J]. Biol Res.2002,35(2):239-246.
    [53]Auton M, Zhu C, Cruz MA. The mechanism of VWF-mediated platelet GPIbalpha binding [J]. Biophys J.2010,99(4):1192-1201.
    [54]Lenting PJ, Pegon JN, Groot E, et al. Regulation of von Willebrand factor-platelet interactions [J]. Thromb Haemost.2010,104(3):449-455.
    [55]Reininger AJ. Function of von Willebrand factor in haemostasis and thrombosis [J]. Haemophilia.2008,14(5):11-26.
    [56]Rizvi M, Pathak D, Freedman JE, et al. CD40-CD40 ligand interactions in oxidative stress, inflammation and vascular disease [J]. Trends Mol Med.2008,14(12):530-538.
    [57]Pamukcu B, Lip GY, Snezhitskiy V, et al. The CD40-CD40L system in cardiovascular disease [J]. Ann Med.2011,43(5):331-340.
    [58]Begonja AJ, Teichmann L, Geiger J, et al. Platelet regulation by NO/cGMP signaling and NAD(P)H oxidase-generated ROS [J]. Blood Cells Mol Dis.2006,36(2):166-170.
    [59]Yokoyama S, Ikeda H, Haramaki N, et al. Platelet P-selectin plays an important role in arterial thrombogenesis by forming large stable platelet-leukocyte aggregates [J]. J Am Coll Cardiol.2005,45(8):1280-1286.
    [60]Fernandes LS, Conde ID, Wayne Smith C, et al. Platelet-monocyte complex formation: effect of blocking PSGL-1 alone, and in combination with alphaIIbbeta3 and alphaMbeta2, in coronary stenting [J]. Thromb Res.2003,111(3):171-177.
    [61]Vanichakarn P, Blair P,Wu C, et al. Neutrophil CD40 enhances platelet-mediated inflammation [J]. Thromb Res.2008,122(3):346-358.
    [62]Marquardt L, Anders C, Buggle F, et al. Leukocyte-platelet aggregates in acute and subacute ischemic stroke [J]. Cerebrovasc Dis.2009,28(3):276-282.
    [63]Chakroun T, Abdelkefi S, Bouslama M, et al. Platelet-leukocyte aggregates as a marker for platelet activation in platelet concentrates [J]. Transfus Clin Biol.2008,15(4):148-153.
    [64]Martins Pda C, Zwaginga JJ. Leukocyte-platelet aggregates:new particles reflecting and effecting cardiovascular disease [J]. Thromb Haemost.2005,94(6):1120-1121.
    [65]Woodfin A, Voisin MB, Nourshargh S. Recent developments and complexities in neutrophil transmigration [J]. Curr Opin Hematol.2010,17(1):9-17.
    [66]Antoniades C, Bakogiannis C, Tousoulis D, et al. The CD40/CD40 ligand system:linking inflammation with atherothrombosis [J]. J Am Coll Cardiol.2009,54(8):669-677.
    [67]Laudanna C, Alon R. Right on the spot. Chemokine triggering of integrin-mediated arrest of rolling leukocytes [J]. Thromb Haemost.2006,95(1):5-11.
    [68]Zarbock A, Ley K. Mechanisms and consequences of neutrophil interaction with the endothelium [J]. Am J Pathol.2008,172(1):1-7.
    [69]Zarbock A,Muller H,Kuwano Y, et al. PSGL-1-dependent myeloid leukocyte activation [J]. J Leukoc Biol.2009,86(5):1119-1124.
    [70]Hyduk SJ, Cybulsky MI. Role of alpha4betal integrins in chemokine-induced monocyte arrest under conditions of shear stress [J]. Microcirculation.2009,16(1):17-30.
    [71]Rose DM, Alon R, Ginsberg MH. Integrin modulation and signaling in leukocyte adhesion and migration [J]. Immunol Rev.2007,218:126-134.
    [72]Huveneers S, Danen EH. Adhesion signaling-crosstalk between integrins, Src and Rho [J]. J Cell Sci.2009,122(Pt 8):1059-1069.
    [73]Huo Y, Xia L. P-selectin glycoprotein ligand-1 plays a crucial role in the selective recruitment of leukocytes into the atherosclerotic arterial wall [J]. Trends Cardiovasc Med. 2009,19(4):140-145.
    [74]范照冬.缬沙坦对兔动脉粥样硬化斑块中核因子-kB和单核细胞趋化因子-1的影响[J].中医学报.2009,24(05):31-32.
    [75]苏东东.氯沙坦对球囊成形术后血管内膜增生影响的实验研究[J].华南国防医学杂志.2009,23(01):21-23,27.
    [76]Vega FM, Ridley AJ. Rho GTPases in cancer cell biology [J]. FEBS Lett. 2008,582(14):2093-2101.
    [77]Tybulewicz VL, Henderson RB. Rho family GTPases and their regulators in lymphocytes [J]. Nat Rev Immunol.2009,9(9):630-644.
    [78]Vega FM, Ridley AJ. SnapShot:Rho family GTPases [J]. Cell.2007,129(7):1430.
    [79]Bos JL, Rehmann H,Wittinghofer A. GEFs and GAPs:critical elements in the control of small G proteins [J]. Cell.2007,129(5):865-877.
    [80]Mulloy JC, Cancelas JA, Filippi MD, et al. Rho GTPases in hematopoiesis and hemopathies [J]. Blood.2010,115(5):936-947.
    [81]Garcia-Mata R, Boulter E, Burridge K. The 'invisible hand':regulation of RHO GTPases by RHOGDIs [J]. Nat Rev Mol Cell Biol.2011,12(8):493-504.
    [82]Rathinam R, Berrier A, Alahari SK. Role of Rho GTPases and their regulators in cancer progression [J]. Front Biosci.2011,17:2561-2571.
    [83]Tang Y, Olufemi L, Wang MT, et al. Role of Rho GTPases in breast cancer [J]. Front Biosci.2008,13:759-776.
    [84]Antoine-Bertrand J,Villemure JF,Lamarche-Vane N. Implication of rho GTPases in neurodegenerative diseases [J]. Curr Drug Targets.2011,12(8):1202-1215.
    [85]Heasman SJ, Ridley AJ. Mammalian Rho GTPases:new insights into their functions from in vivo studies [J]. Nat Rev Mol Cell Biol.2008,9(9):690-701.
    [86]Hall A,Nobes CD. Rho GTPases:molecular switches that control the organization and dynamics of the actin cytoskeleton [J]. Philos Trans R Soc Lond B Biol Sci. 2000,355(1399):965-970.
    [87]Yang FC, Atkinson SJ, Gu Y, et al. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization [J]. Proc Natl Acad Sci U S A. 2001,98(10):5614-5618.
    [88]Nagase M, Ayuzawa N, Kawarazaki W, et al. Oxidative stress causes mineralocorticoid receptor activation in rat cardiomyocytes:role of small GTPase Rac1 [J]. Hypertension. 2012,59(2):500-506.
    [89]Iwashima F, Yoshimoto T, Minami I, et al. Aldosterone induces superoxide generation via Rac1 activation in endothelial cells [J]. Endocrinology.2008,149(3):1009-1014.
    [90]Sun M, Huang X, Yan Y, et al. Rac1 is a possible link between obesity and oxidative stress in Chinese overweight adolescents [J]. Obesity (Silver Spring).2012.
    [91]Thamilselvan V, Menon M, Thamilselvan S. Selective Racl inhibition protects renal tubular epithelial cells from oxalate-induced NADPH oxidase-mediated oxidative cell injury [J]. Urol Res.2011.
    [92]Haruta M, Bush RA, Kjellstrom S, et al. Depleting Racl in mouse rod photoreceptors protects them from photo-oxidative stress without affecting their structure or function [J]. Proc Natl Acad Sci U S A.2009,106(23):9397-9402.
    [93]Syed I, Kyathanahalli CN, Jayaram B, et al. Increased phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic ZDF rat and human islets:role of Racl-JNK1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet [J]. Diabetes. 2011,60(11):2843-2852.
    [94]Du J, Liu J, Smith BJ, et al. Role of Racl-dependent NADPH oxidase in the growth of pancreatic cancer [J]. Cancer Gene Ther.2011,18(2):135-143.
    [95]Diebold I, Petry A, Djordjevic T, et al. Reciprocal regulation of Racl and PAK-1 by HIF-lalpha:a positive-feedback loop promoting pulmonary vascular remodeling [J]. Antioxid Redox Signal.2010,13(4):399-412.
    [96]Wang Y, Lebowitz D, Sun C, et al. Identifying the relative contributions of Racl and Rac2 to osteoclastogenesis [J]. J Bone Miner Res.2008,23(2):260-270.
    [97]韩雅玲,闫承慧,康建,等.Rac1蛋白活化加速缺氧诱导的人血管内皮细胞衰老[J].2006,58(3):207-216.
    [98]韩秀敏,朱鲜阳.RAC1活化介导缺氧的人脐静脉内皮细胞凋亡[J].中国组织工程研究与临床康复.2009,13(12):3853-3856.
    [99]Selvakumar B, Hess DT, Goldschmidt-Clermont PJ, et al. Co-regulation of constitutive nitric oxide synthases and NADPH oxidase by the small GTPase Rac [J]. FEBS Lett. 2008,582(15):2195-2202.
    [100]Beckers CM, van Hinsbergh VW, van Nieuw Amerongen GP. Driving Rho GTPase activity in endothelial cells regulates barrier integrity [J]. Thromb Haemost. 2010,103(1):40-55.
    [101]Hatanaka K, Simons M, Murakami M. Phosphorylation of VE-cadherin controls endothelial phenotypes via p120-catenin coupling and Racl activation [J]. Am J Physiol Heart Circ Physiol.2011,300(1):H162-172.
    [102]Spindler V, Schlegel N, Waschke J. Role of GTPases in control of microvascular permeability [J]. Cardiovasc Res.2010,87(2):243-253.
    [103]Alevriadou BR. CAMs and Rho small GTPases:gatekeepers for leukocyte transendothelial migration. Focus on "VCAM-1-mediated Rac signaling controls endothelial cell-cell contacts and leukocyte transmigration" [J]. Am J Physiol Cell Physiol. 2003,285(2):C250-252.
    [104]Lai Y, Shen Y, Liu XH, et al. Interleukin-8 induces the endothelial cell migration through the activation of phosphoinositide 3-kinase-Racl/RhoA pathway [J]. Int J Biol Sci. 2011,7(6):782-791.
    [105]毛斌,赖怡,曾烨.PI3K对IL-8/Racl信号通路介导的内皮细胞迁移的影响[J].国际生物医学工程杂志.2010,33(03):134-137,151.
    [106]Knezevic, Ⅱ, Predescu SA, Neamu RF, et al. Tiaml and Racl are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability [J]. J Biol Chem.2009,284(8):5381-5394.
    [107]Monaghan-Benson E, Burridge K. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species [J]. J Biol Chem.2009,284(38):25602-25611.
    [108]Garrett TA, Van Buul JD, Burridge K. VEGF-induced Racl activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2 [J]. Exp Cell Res. 2007,313(15):3285-3297.
    [109]Sawada N, Kim HH, Moskowitz MA, et al. Racl is a critical mediator of endothelium-derived neurotrophic activity [J]. Sci Signal.2009,2(61):ra10.
    [110]Yeh LH, Park YJ, Hansalia RJ, et al. Shear-induced tyrosine phosphorylation in endothelial cells requires Rac 1-dependent production of ROS [J]. Am J Physiol. 1999,276(4 Pt l):C838-847.
    [111]Chatterjee M, Sequeira L, Jenkins-Kabaila M, et al. Individual rac GTPases mediate aspects of prostate cancer cell and bone marrow endothelial cell interactions [J]. J Signal Transduct.2011,2011(541851.
    [112]Ando K, Ishibashi T, Ohkawara H, et al. Crucial role of membrane type 1 matrix metalloproteinase (MT1-MMP) in RhoA/Racl-dependent signaling pathways in thrombin-stimulated endothelial cells [J]. J Atheroscler Thromb.2011,18(9):762-773.
    [113]Xia M, Li G, Ma J, et al. Phosphoinositide 3-kinase mediates CD40 ligand-induced oxidative stress and endothelial dysfunction via Racl and NADPH oxidase 2 [J]. J Thromb Haemost.2010,8(2):397-406.
    [114]Sugimoto K, Ishibashi T, Sawamura T, et al. LOX-1-MT1-MMP axis is crucial for RhoA and Racl activation induced by oxidized low-density lipoprotein in endothelial cells [J]. Cardiovasc Res.2009,84(1):127-136.
    [115]Chen XL, Zhang Q, Zhao R, et al. Superoxide, H2O2, and iron are required for TNF-alpha-induced MCP-1 gene expression in endothelial cells:role of Racl and NADPH oxidase [J]. Am J Physiol Heart Circ Physiol.2004,286(3):H 1001-1007.
    [116]Ng CK, Deshpande SS, Irani K, et al. Adhesion of flowing monocytes to hypoxia-reoxygenation-exposed endothelial cells:role of Racl, ROS, and VCAM-1 [J]. Am J Physiol Cell Physiol.2002,283(1):C93-102.
    [117]Friedrich EB, Clever YP, Wassmann S, et al.17Beta-estradiol inhibits monocyte adhesion via down-regulation of Rac1 GTPase [J]. J Mol Cell Cardiol.2006,40(1):87-95.
    [118]van Wetering S, van den Berk N, van Buul JD, et al. VCAM-1-mediated Rac signaling controls endothelial cell-cell contacts and leukocyte transmigration [J]. Am J Physiol Cell Physiol.2003,285(2):C343-352.
    [119]Adam O,Hagel M,Theobald K, et al. Inhibitory effect of estrogen on Racl-expression in monocytes [J]. Biochem Biophys Res Commun.2009,386(1):45-49.
    [120]Filippi MD, Szczur K,Harris CE, et al. Rho GTPase Racl is critical for neutrophil migration into the lung [J]. Blood.2007,109(3):1257-1264.
    [121]Glogauer M, Marchal CC,Zhu F, et al. Racl deletion in mouse neutrophils has selective effects on neutrophil functions [J]. J Immunol.2003,170(11):5652-5657.
    [122]Stefanini L,Boulaftali Y,Ouellette TD, et al. Rapl-Racl circuits potentiate platelet activation [J]. Arterioscler Thromb Vase Biol.2012,32(2):434-441.
    [123]Dwivedi S,Pandey D, Khandoga AL, et al. Rac1-mediated signaling plays a central role in secretion-dependent platelet aggregation in human blood stimulated by atherosclerotic plaque [J]. J Transl Med.2010,8(128.
    [124]Akbar H, Kim J, Funk K, et al. Genetic and pharmacologic evidence that Racl GTPase is involved in regulation of platelet secretion and aggregation [J]. J Thromb Haemost. 2007,5(8):1747-1755.
    [125]Bishop AL,Hall A. Rho GTPases and their effector proteins [J]. Biochem J.2000,348 Pt 2(241-255.
    [126]Tobar N,Caceres M,Santibanez JF, et al. RAC1 activity and intracellular ROS modulate the migratory potential of MCF-7 cells through a NADPH oxidase and NFkappaB-dependent mechanism [J]. Cancer Lett.2008,267(1):125-132.
    [127]Lee NK,Choi HK,Kim DK,et al. Rac1 GTPase regulates osteoclast differentiation through TRANCE-induced NF.kappa B activation [J]. Mol Cell Biochem. 2006,281(1-2):55-61.
    [128]Guo F,Debidda M,Yang L,et al. Genetic deletion of Rac1 GTPase reveals its critical role in actin stress fiber formation and focal adhesion complex assembly[J].J Biol Chem. 2006,281(27):18652-18659.
    [129]李娟娟,张美霞Rac1-siRNA抑制大鼠视网膜NF-κB表达的实验研究[J].眼科新进展.2008,28(09):646-648.
    [130]Oeckinghaus A,Ghosh S.The NF-kappaB family of transcription factors and its regulation [J].Cold Spring Harb Perspect Biol.2009,1(4):a000034.
    [131]Wan F,Lenardo MJ.The nuclear signaling of NF-kappaB:current knowledge,new insights,and future perspectives[J].Cell Res.2010,20(1):24.33.
    [132]Mankan AK,Lawless MW,Gray SG,et al NF-kappaB regulation:the nuclear response[J]. J Cell Mol Med.2009,13(4):631-643.
    [133]Donato AJ,Pierce GL,Lesniewski LA,et al. Role of NFkappaB in age-related vascular endothelial dysfunction in humans[J].Aging(Albany NY).2009,1(8):678-680.
    [134]Ungvari Z,Orosz Z,Labinskyy N,et al. Increased mitichondrial H2O2 production promotes endothelial NF-kappaB actiVation in aged rat arter.es[J].Am J Physiol Heart Circ Physiol.2007,293(1):H37-47.
    [135]龙石银,张彩平.二苯乙烯苷对H2O2诱导人脐静脉内皮细胞核因子KB.肿瘤坏死因 子α表达的影响[J].中国动脉硬化杂志.2011,19(06):479-482.
    [136]Gloire G,Piette J.Redox regulation of nuclear post-translational modifications during NF-kappaB activation[J].Antioxid Redox Signal.2009,11(9):2209-2222.
    [137]Lin CW,Chen LJ,Lee PL,et al.The inhibition of TNF-alpha-induced E-selectin expression in endothelial cells via the JNK/NF-kappaB pathways by highly N-acetylated chitooligosaccharides[J].Biomaterials.2007,28(7):1355一1366.
    [138]Rahman A,Kefer J,Bando M,et al. E-selectin expression in human endothelial cells by TNF-aIpha-induced oxidant generation and NF-kappaB activation[J].Am J Physiol. 1998,275(3 Pt 1):L533-544.
    [139]Omori M,Ogino T,Than TA,et al.Monochloramine inhibits the expression of E-selectin and intercellular adhesion molecule-1 induced by TNF-alpha through the suppression of NF-kappaB activation in human endothelial cells[J].Free Radic Res.2002,36(8):845—852.
    [140]Hung CF,Huang TF,Chen BH,et al.Lycopene inhibits TNF-alpha-induced endothelial ICAM-1 expression and monocyte-endothelial adhesion [J]. Eur J Pharmacol. 2008,586(1-3):275-282.
    [141]Read MA,Whitley MZ,Gupta S,et al.Tumor necrosis factor alpha-induced E-selectin expression is activated by the nuclear factor-kappaB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways[J].J Biol Chem.1997,272(5):2753-2761.
    [142]Lee S,Chung J,Ha IS,et al. Hydrogen peroxide increases human Ieukocyte adhesion to poreine aortic endothelial cells via NFkappaB-dependent up-regulation of VCAM-1[J].Int Immunol.2007,19(12):1349-1359.
    [143]Oliveira-Marques V, Marinho HS, Cyme L, et al. Role of hydrogen peroxide in NF-kappaB activation:from inducer to modulator [J]. Antioxid Redox Signal. 2009,11(9):2223-2243.
    [144]Guo W, Wise ML, Collins FW, et al. Avenanthramides, polyphenols from oats, inhibit IL-1 beta-induced NF-kappaB activation in endothelial cells [J]. Free Radic Biol Med. 2008,44(3):415-429.
    [145]Huang F, Xiong XF, You S, et al. Visfatin upregulates MMP-2 and MMP-9 expressions in human monocytes through activating NF-kappaB [J]. Zhonghua Xin Xue Guan Bing Za Zhi.2010,38(5):455-459.
    [146]Suna S, Sakata Y, Shimizu M, et al. Lymphotoxin-alpha3 mediates monocyte-endothelial interaction by TNFR I/NF-kappaB signaling [J]. Biochem Biophys Res Commun. 2009,379(2):374-378.
    [147]Chang CC,Lu WJ,Ong ET, et al. A novel role of sesamol in inhibiting NF-kappaB-mediated signaling in platelet activation [J]. J Biomed Sci.2011,18(93.
    [148]Beaulieu LM, Freedman JE. NFkappaB regulation of platelet function:no nucleus, no genes, no problem? [J]. J Thromb Haemost.2009,7(8):1329-1332.
    [149]Malaver E, Romaniuk MA, D'Atri LP, et al. NF-kappaB inhibitors impair platelet activation responses [J]. J Thromb Haemost.2009,7(8):1333-1343.
    [150]Lu WJ,Lee JJ,Chou DS, et al. A novel role of andrographolide, an NF-kappa B inhibitor, on inhibition of platelet activation:the pivotal mechanisms of endothelial nitric oxide synthase/cyclic GMP [J]. J Mol Med (Ber1).2011,89(12):1261-1273.
    [151]Kanters E, Gijbels MJ, van der Made I, et al. Hematopoietic NF-kappaB1 deficiency results in small atherosclerotic lesions with an inflammatory phenotype [J]. Blood. 2004,103(3):934-940.
    [152]Herseth J, Refsnes M, Lag M, et al. IL-1 beta as a determinant in silica-induced cytokine responses in monocyte-endothelial cell co-cultures [J]. Hum Exp Toxicol. 2008,27(5):387-399.
    [153]Yuan X,Li B,Li H, et al. Melatonin inhibits IL-1 beta-induced monolayer permeability of human umbilical vein endothelial cells via Rac activation [J]. J Pineal Res. 2011,51(2):220-225.
    [154]Huang RB, Eniola-Adefeso O. Shear Stress Modulation of IL-1 beta-Induced E-Selectin Expression in Human Endothelial Cells [J]. PLoS One.2012,7(2):e31874.
    [155]Mako V, Czucz J, Weiszhar Z, et al. Proinflammatory activation pattern of human umbilical vein endothelial cells induced by IL-lbeta, TNF-alpha, and LPS [J]. Cytometry A.2010,77(10):962-970.
    [156]Meng F, Deng Z. Effects of IL-lbeta, TNF-alpha and lipopolysaccharide on the expression of MCP-1 in human umbilical vein endothelial cells [J]. Zhonghua Bing Li Xue Za Zhi. 2000,29(1):46-48.
    [157]Chang WC,Chen CH,Lee MF, et al. Chlorogenic acid attenuates adhesion molecules upregulation in IL-1 beta-treated endothelial cells [J]. Eur J Nutr.2010,49(5):267-275.
    [158]Li Q, Engelhardt JF. Interleukin-1beta induction of NFkappaB is partially regulated by H2O2-mediated activation of NFkappaB-inducing kinase [J]. J Biol Chem. 2006,281(3):1495-1505.
    [159]Wang JG, Williams JC, Davis BK, et al. Monocytic microparticles activate endothelial cells in an IL-1 beta-dependent manner [J]. Blood.2011,118(8):2366-2374.
    [160]Lopez-Bojorquez LN, Arechavaleta-Velasco F, Vadillo-Ortega F, et al. NF-kappaB translocation and endothelial cell activation is potentiated by macrophage-released signals co-secreted with TNF-alpha and IL-1beta [J]. Inflamm Res.2004,53(10):567-575.
    [161]Oliveira SH, Canetti C, Ribeiro RA, et al. Neutrophil migration induced by IL-lbeta depends upon LTB4 released by macrophages and upon TNF-alpha and IL-1beta released by mast cells [J]. Inflammation.2008,31(1):36-46.
    [162]Brown GT, McIntyre TM. Lipopolysaccharide signaling without a nucleus:kinase cascades stimulate platelet shedding of proinflammatory IL-lbeta-rich microparticles [J]. J Immunol.2011,186(9):5489-5496.
    [163]Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells [J]. Nature.1998,391(6667):591-594.
    [164]Gawaz M, Brand K, Dickfeld T, et al. Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis [J]. Atherosclerosis.2000,148(1):75-85.
    [165]Hahn CL, Best AM, Tew JG. Rapid tissue factor induction by oral streptococci and monocyte-IL-lbeta [J]. J Dent Res.2007,86(3):255-259.
    [166]Larsson P, Ulfhammer E, Karlsson L, et al. Effects of IL-lbeta and IL-6 on tissue-type plasminogen activator expression in vascular endothelial cells [J]. Thromb Res. 2008,123(2):342-351.
    [1]Esmon CT. Basic mechanisms and pathogenesis of venous thrombosis [J]. Blood Rev. 2009,23(5):225-229.
    [2]Wakefield TW,Myers DD.Henke PK. Mechanisms of venous thrombosis and resolution [J]. Arterioscler Thromb Vasc Biol.2008,28(3):387-391.
    [3]Jurk K,Kehrel BE. Pathophysiology and biochemistry of platelets [J]. Internist (Berl). 2010,51(9):1086-1094.
    [4]Li Z,Delaney MK,O'Brien KA, et al. Signaling during platelet adhesion and activation [J]. Arterioscler Thromb Vasc Biol.2010,30(12):2341-2349.
    [5]van Hinsbergh VW. Endothelium-role in regulation of coagulation and inflammation [J]. Semin Immunopathol.2012,34(1):93-106.
    [6]Esmon CT. Crosstalk between inflammation and thrombosis [J]. Maturitas. 2008,61 (1-2):122-131.
    [7]Saha P,Humphries J,Modarai B, et al. Leukocytes and the natural history of deep vein thrombosis:current concepts and future directions [J]. Arterioscler Thromb Vasc Biol. 2011,31(3):506-512.
    [8]Furie B,Furie BC. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation [J]. Trends Mol Med.2004,10(4):171-178.
    [9]Cheng H,Yan R,Li S, et al. Shear-induced interaction of platelets with von Willebrand factor results in glycoprotein Ibalpha shedding [J]. Am J Physiol Heart Circ Physiol. 2009,297(6):H2128-2135.
    [10]Dayananda KM,Singh I,Mondal N, et al. von Willebrand factor self-association on platelet GpIbalpha under hydrodynamic shear:effect on shear-induced platelet activation [J]. Blood. 2010,116(19):3990-3998.
    [11]Lenting PJ.Pegon JN,Groot E, et al. Regulation of von Willebrand factor-platelet interactions [J]. Thromb Haemost.2010,104(3):449-455.
    [12]Nieswandt B,Varga-Szabo D,Elvers M. Integrins in platelet activation [J]. J Thromb Haemost. 2009,7 (11):206-209.
    [13]Margadant C,Monsuur HN,Norman JC, et al. Mechanisms of integrin activation and trafficking [J]. Curr Opin Cell Biol.2011,23(5):607-614.
    [14]Massberg S,Schurzinger K,Lorenz M, et al. Platelet adhesion via glycoprotein Ⅱb integrin is critical for atheroprogression and focal cerebral ischemia:an in vivo study in mice lacking glycoprotein Ⅱb [J]. Circulation.2005,112(8):1180-1188.
    [15]Celik S,Langer H,Stellos K, et al. Platelet-associated LIGHT (TNFSF14) mediates adhesion of platelets to human vascular endothelium [J]. Thromb Haemost.2007,98(4):798-805.
    [16]Otterdal K,Smith C,Oie E, et al. Platelet-derived LIGHT induces inflammatory responses in endothelial cells and monocytes [J]. Blood.2006,108(3):928-935.
    [17]Siegel-Axel DI,Gawaz M. Platelets and endothelial cells [J]. Semin Thromb Hemost. 2007,33(2):128-135.
    [18]Chen J,Lopez JA. Interactions of platelets with subendothelium and endothelium [J]. Microcirculation.2005,12(3):235-246.
    [19]Baruch D. Platelet--vessel wall interactions [J]. Therapie.2006,61(5):371-378.
    [20]Mako V,Czucz J,Weiszhar Z, et al. Proinflammatory activation pattern of human umbilical vein endothelial cells induced by IL-lbeta, TNF-alpha, and LPS [J]. Cytometry A. 2010,77(10):962-970.
    [21]Yu YM,Wang ZH,Liu CH, et al. Ellagic acid inhibits IL-1beta-induced cell adhesion molecule expression in human umbilical vein endothelial cells [J]. Br J Nutr. 2007,97(4):692-698.
    [22]Buensuceso CS,Arias-Salgado EG,Shattil SJ. Protein-protein interactions in platelet alphaIIbbeta3 signaling [J]. Semin Thromb Hemost.2004,30(4):427-439.
    [23]Dole VS,Bergmeier W,Patten IS, et al. PSGL-1 regulates platelet P-selectin-mediated endothelial activation and shedding of P-selectin from activated platelets [J]. Thromb Haemost.2007,98(4):806-812.
    [24]Ochoa CD,Wu S,Stevens T. New developments in lung endothelial heterogeneity:Von Willebrand factor, P-selectin, and the Weibel-Palade body [J]. Semin Thromb Hemost. 2010,36(3):301-308.
    [25]Dole VS,Bergmeier W,Mitchell HA, et al. Activated platelets induce Weibel-Palade-body secretion and leukocyte rolling in vivo:role of P-selectin [J]. Blood.2005,106(7):2334-2339.
    [26]McGregor L,Martin J,McGregor JL. Platelet-leukocyte aggregates and derived microparticles in inflammation, vascular remodelling and thrombosis [J]. Front Biosci.2006,11:830-837.
    [27]Zarbock A,Muller H,Kuwano Y, et al. PSGL-1-dependent myeloid leukocyte activation [J]. J Leukoc Biol.2009,86(5):1119-1124.
    [28]Mause SF,von Hundelshausen P,Zernecke A, et al. Platelet microparticles:a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium [J]. Arterioscler Thromb Vasc Biol.2005,25(7):1512-1518.
    [29]von Hundelshausen P,Petersen F,Brandt E. Platelet-derived chemokines in vascular biology [J]. Thromb Haemost.2007,97(5):704-713.
    [30]Wakefield TW,Myers DD,Henke PK. Role of selectins and fibrinolysis in VTE [J]. Thromb Res.2009,123 (14):S35-40.
    [31]Spertini C,Baisse B,Spertini O. The Ezrin-Radixin-Moesin-binding sequence of PSGL-1 regulates leukocyte rolling on selectins and activation of extracellular signal-regulated kinases [J]. J Biol Chem.2012,26(3):1-18
    [32]Yago T,Shao B.Miner JJ, et al. E-selectin engages PSGL-1 and CD44 through a common signaling pathway to induce integrin alphaLbeta2-mediated slow leukocyte rolling [J]. Blood. 2010,116(3):485-494.
    [33]Cerletti C,Tamburrelli C,Izzi B, et al Platelet-leukocyte interactions in thrombosis [J]. Thromb Res.2012,129(3):263-266.
    [34]Wang HB,Wang JT,Zhang L, et al. P-selectin primes leukocyte integrin activation during inflammation [J]. Nat Immunol.2007,8(8):882-892.
    [35]Pluskota E,Woody NM,Szpak D, et al. Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles [J]. Blood. 2008,112(6):2327-2335.
    [36]Ma YQ,Plow EF,Geng JG. P-selectin binding to P-selectin glycoprotein ligand-1 induces an intermediate state of alphaMbeta2 activation and acts cooperatively with extracellular stimuli to support maximal adhesion of human neutrophils [J]. Blood.2004,104(8):2549-2556.
    [37]Seizer P,Gawaz M,May AE. Platelet-monocyte interactions--a dangerous liaison linking thrombosis, inflammation and atherosclerosis [J]. Curr Med Chem.2008,15(20):1976-1980.
    [38]Prevost N,Kato H,Bodin L, et al. Platelet integrin adhesive functions and signaling [J]. Methods Enzymol.2007,426:103-115.
    [39]Li N. Platelet-lymphocyte cross-talk [J]. J Leukoc Biol.2008,83(5):1069-1078.
    [40]Fernandes LS,Conde ID,Wayne Smith C, et al. Platelet-monocyte complex formation:effect of blocking PSGL-1 alone, and in combination with alphallbbeta3 and alphaMbeta2, in coronary stenting [J]. Thromb Res.2003,111(3):171-177.
    [41]da Costa Martins P,van den Berk N,Ulfman LH, et al. Platelet-monocyte complexes support monocyte adhesion to endothelium by enhancing secondary tethering and cluster formation [J]. Arterioscler Thromb Vasc Biol.2004,24(1):193-199.
    [42]Yokoyama S,Ikeda H,Haramaki N, et al. Platelet P-selectin plays an important role in arterial thrombogenesis by forming large stable platelet-leukocyte aggregates [J]. J Am Coll Cardiol. 2005,45(8):1280-1286.
    [43]Marquardt L,Anders C,Buggle F, et al. Leukocyte-platelet aggregates in acute and subacute ischemic stroke [J]. Cerebrovasc Dis.2009,28(3):276-282.
    [44]Chakroun T,Abdelkefi S,Bouslama M, et al. Platelet-leukocyte aggregates as a marker for platelet activation in platelet concentrates[J]. Transfus Clin Biol.2008,15(4):148-153.
    [45]Elalamy I,Chakroun T,Gerotziafas GT, et al. Circulating platelet-leukocyte aggregates:a marker of microvascular injury in diabetic patients [J]. Thromb Res.2008,121 (6):843-848.
    [46]Martins Pda C,Zwaginga JJ. Leukocyte-platelet aggregates:new particles reflecting and effecting cardiovascular disease [J]. Thromb Haemost.2005,94(6):1120-1121.
    [47]Zarbock A,Ley K. Mechanisms and consequences of neutrophil interaction with the endothelium [J]. Am J Pathol.2008,172(1):1-7.
    [48]Zarbock A,Ley K. New insights into leukocyte recruitment by intravital microscopy [J]. Curr Top Microbiol Immunol.2009,334:129-152.
    [49]Boisseau MR. Leukocyte involvement in the signs and symptoms of chronic venous disease. Perspectives for therapy [J]. Clin Hemorheol Microcirc.2007,37(3):277-290.
    [50]Laudanna C,Alon R. Right on the spot. Chemokine triggering of integrin-mediated arrest of rolling leukocytes [J]. Thromb Haemost.2006,95(1):5-11.
    [51]Huveneers S,Danen EH. Adhesion signaling-crosstalk between integrins, Src and Rho [J]. J Cell Sci.2009,122(8):1059-1069.
    [52]Hyduk SJ,Cybulsky MI. Role of alpha4betal integrins in chemokine-induced monocyte arrest under conditions of shear stress [J]. Microcirculation.2009,16(1):17-30.
    [53]Zarbock A,Ley K. Neutrophil adhesion and activation under flow [J]. Microcirculation. 2009,16(1):31-42.
    [54]Rose DM,Alon R,Ginsberg MH. Integrin modulation and signaling in leukocyte adhesion and migration [J]. Immunol Rev.2007,218:126-134.
    [55]Ludwig RJ,Hardt K,Hatting M, et al. Junctional adhesion molecule (JAM)-B supports lymphocyte rolling and adhesion through interaction with alpha4betal integrin [J]. Immunology.2009,128(2):196-205.
    [56]Ostermann G,Fraemohs L,Baltus T, et al. Involvement of JAM-A in mononuclear cell recruitment on inflamed or atherosclerotic endothelium:inhibition by soluble JAM-A [J]. Arterioscler Thromb Vasc Biol.2005,25(4):729-735.
    [57]van Gils JM,Zwaginga JJ.Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases [J]. J Leukoc Biol.2009,85(2):195-204.
    [58]Wittchen ES. Endothelial signaling in paracellular and transcellular leukocyte transmigration [J]. Front Biosci.2009,14:2522-2545.
    [59]Alon R,Shulman Z. Chemokine triggered integrin activation and actin remodeling events guiding lymphocyte migration across vascular barriers [J]. Exp Cell Res. 2011,317(5):632-641.
    [60]Woodfin A,Voisin MB,Imhof BA, et al. Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1 [J]. Blood.2009,113(24):6246-6257.
    [61]Woodfin A,Reichel CA,Khandoga A, et al. JAM-A mediates neutrophil transmigration in a stimulus-specific manner in vivo:evidence for sequential roles for JAM-A and PECAM-1 in neutrophil transmigration [J]. Blood.2007,110(6):1848-1856.
    [62]Goodman RS.Kirton CM,Oostingh GJ, et al. PECAM-1 polymorphism affects monocyte adhesion to endothelial cells [J]. Transplantation.2008,85(3):471-477.
    [63]Sircar M,Bradfield PF,Aurrand-Lions M, et al. Neutrophil transmigration under shear flow conditions in vitro is junctional adhesion molecule-C independent [J]. J Immunol. 2007,178(9):5879-5887.
    [64]Braun OO,Johnell M,Varenhorst C, et al. Greater reduction of platelet activation markers and platelet-monocyte aggregates by prasugrel compared to clopidogrel in stable coronary artery disease [J]. Thromb Haemost.2008,100(4):626-633.
    [65]Desch S,Siegemund A,Scholz U, et al. Platelet inhibition and GP Ilb/IIIa receptor occupancy by intracoronary versus intravenous bolus administration of abciximab in patients with ST-elevation myocardial infarction [J]. Clin Res Cardiol.2012,101(2):117-124.
    [66]Meier TR,Myers DD, Jr.,Wrobleski SK, et al. Prophylactic P-selectin inhibition with PSI-421 promotes resolution of venous thrombosis without anticoagulation [J]. Thromb Haemost. 2008,99(2):343-351.
    [67]Ramacciotti E,Myers DD, Jr.,Wrobleski SK, et al. P-selectin/PSGL-1 inhibitors versus enoxaparin in the resolution of venous thrombosis:a meta-analysis [J]. Thromb Res. 2010,125(4):e138-142.
    [68]Braunersreuther V,Steffens S,Amaud C, et al. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice [J]. Arterioscler Thromb Vasc Biol.2008,28(6):1090-1096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700