锡林河流域水体痕量元素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然水的化学成分是水在循环过程中与周围环境长期相互作用的结果,因此天然水化学组成从一定程度上记录着水体形成和运移的历史。水体中的痕量元素组成在很大程度上表征着水体环境质量状况、区域环境化学特征、水体元素分布及迁移转化的规律,对其特征的研究对于正确理解流域内地表水与大气降水和地下水的补给关系、河水的离子组成和来源具有重要意义。
     锡林郭勒草原是世界范围内温带草原最有代表性的地区。近年来,区域生态环境已出现明显退化并引起学术界和政府的广泛关注。干旱半干旱地区生态环境的退化和水资源的过度开发利用直接相关。锡林河流域水文方面的研究很少,这给区域生态环境的恢复治理带来了一定困难。
     本文是在2006~2008年连续3年对锡林河流域开展野外考察和取样(24个取样点,416个样品),取得第一手水化学数据资料的基础上,利用相关分析手段如主成分分析法和聚类分析等,较全面地分析了锡林河流域痕量元素的时空分布特征,并尝试对其形成原因做了一定的解释,阐述了锡林河流域水体之间的转化关系。主要研究结果和初步结论如下:
     (1)锡林河河水痕量元素平均浓度大部分在0.1~10μg·L-1之间,与松花江干流、长江干流和海水进行对比,映射出河水中痕量元素的组成与地理位置密切相关。同时,结合区域地下水和大气降水痕量元素平均浓度,表明地表水同时受大气降水和地下水补给并主要依靠地下水补给。
     (2)锡林河流域痕量元素年内、年际变化较稳定。地表水和地下水大部分元素变化趋势相似,年内浓度变化表现为5月浓度较大,8月较小,主要原因是痕量元素在冬季积雪中富集,随着径流量增大,元素浓度被稀释。部分元素浓度变化有所不同,可能受到吸附作用或其他补给源的影响。年际间大部分元素在2007年间浓度略小,主要是由于07年全年干旱,降水少,降水淋滤作用减小;同时由于流域地表水主要受地下水补给,在干旱年中地表水和浅层地下水补给主要来源于深层地下水,而深层地下水痕量元素浓度明显低于浅层地下水,因此,地表水和地下水在07年同时表现出浓度降低。
     (3)地表水痕量元素和常量元素浓度从上游到下游大部分呈上升趋势,与地下水补给和蒸发作用有关。各元素均在S7~S8处有不同程度的增加,由于地下水的侧向径流补给及人类活动的影响有关。地下水从上游至下游方向,各元素均在G4出现峰值,可能与南岸不同岩性构造发生的水岩作用和人类生活有密切关系;垂直于锡林河方向由南向北,元素浓度在G9处浓度变化明显,这是由于此处受到的基岩裂隙水的补给;G5、G8为深层地下水,大部分元素浓度较其他点位均低。
     (4)使用主成分分析法对元素的相关性和主成分的分类,对元素的变化规律有了初步的判断,从而印证第四章各元素时间分布的结果,结果表明大部分元素相关,其中TDS、HCO3-、Cl-、SO42-、Na+、Mg2+、Ca2+、Sr、B、Li之间高度相关,其变化趋势也相似。主成分分析结果发现,元素变化主要受到岩石溶滤作用、土壤淋滤作用、周围采矿、人为作用以及大气降水作用的影响。
     (5)通过聚类分析,将24个点位分成为聚合区与发散区。S1~S12,以及G1~G3、G5、G8最先聚合,视为同一补给源,基本上受岩石风化作用和蒸发结晶作用的共同影响,外界的影响较小。与降水发生二次聚合,说明降水还受到远处其他水汽的补给。与G4、G6、G7、S13发生第三次聚合,表明此处受外界影响较大。与G9、G10离散,由于G9受到山区基岩裂隙水的补给,G10可能受到更远处水源的补给,此结果与第四章个元素空间分布结果一致。
The chemical components of natural water are the consequences of long-term interaction between water and the surrounding environment. As a result, the chemical composition of water records, to a certain extent, the history of water formation and movement. To a large extent, the composition of trace elements in water body characterizes the water environmental quality, the chemical signatures of regional environment, the rules of the distribution, migration and transmission of water elements. The studies on the features of trace elements have the significance both for understanding the relationship between surface water and precipitation or groundwater in a basin scale, and for ion composition and ion source in the river.
     Xilin Gol prairie is the most typical temperate grassland all over the world. In recent years, the sharply degeneration of regional environment has extensivly attracts academic and governmental attention. As we have known, the degeneration of environment of arid and semi-arid region is directly related to overutilization of water resources. However, because of the rare studies on the regional hydrology in Xilin river basin, it brings a bit more difficulties for the restoration of the ecological environment.
     This paper is based on the firsthand chemical data information by the field work and sample (24sampling points,471samples) in Xilin river basin from2006to2008and use relatively analytical tools, like PCA, cluster analysis, etc. It analyzes roundly the spatial and temporal distribution characteristic of trace element that tries to be given a certain explanation of the forming reason, and states the transforming relationship of water in this basin. Above all, the main results and preliminary conclusions as follows:
     (1)Compared with SongHua River, Yangtze River and sea, the average concentrations of most of trace elements is in between0.1~10μg·L-1in Xilin River, which indicates the trace element composition is closely related to geography location. In addition, according to the average concentrations of trace elements in local groundwater and meteoric waters, it indicates that surface water depends on meteoric waters and groundwater at the same time, principally groundwater.
     (2)There is little annual and interannual change of trace element in Xilin River basin. And the changed trend of most elements of surface water and ground water is similar, the record of annual change of concentration is that the concentration is higher in April and May and lower in July and August. Because the trace element enriches in snow in winter, and the element concentration is diluted with runoff increased. However, the change of concentration of a part of element is different, which may be influenced by absorption or other recharge sources. In2007, mainly due to the drought, the precipitation amount decreased and precipitation leaching effect reduced. At the same time, in drought years the main supply source of shallow groundwater is deep groundwater, and the deep groundwater concentration is obviously lower than the of shallow groundwater. Most elements concentration in the surface water and groundwater is slightly smaller than other years, the surface water and groundwater both show a lower concentration in2007.
     (3)The concentration of most of the trace elements and macroelements of surface water is on the rise from upstream to downstream, which is related to supply and evaporation from groundwater. To varying degrees, each element increases in the point location S7-S8for the effects of human behaviors and the supply of the side runoff. Each element for groundwater reaches to peak at the point location G4from upstream to downstream, which is closely related to water-rock interaction occurring on the different lithologic structure at south bank and human behaviors. Moreover, perpendicular to the direction of Xilin River, from south to north element concentration changes obviously at the point location G9, this because there is the supply of bedrock fissure water. In addition, the point locations G5and G8are deep phreatic water, whose element concentrations are lower than other point locations.
     (4)Using PCA can classify correlation and main component of element, and we can preliminary judge the change rule of elements to confirm the results of each element's time distribution at chapter four, which show that most elements are relative, and the elements like TDS、HCO3-、Cl-、SO42-、Na+、Mg2+、Ca2+、Sr、B、Li are high correlation and their changed trends are similar. As a result of PCA, the change of element is influenced by rock-eluviation, soil-eluviation, mining, human behaviors and meteoric waters.
     (5)24point locations are classified the convergence and divergence zone by clustering analysis. The point locations like S1~S12, G1~G3, G5and G8are polymerized first, regarded as the same supply recharge source, which is influenced by rock-weathering and evaporative crystallization and less from outside. Then a secondary polymerization occurs between the first polymer and rainfall, which shows rainfall is affected by other supply of far moisture. The third polymerization occurs between the second polymer and G4, G6, G7and S13, which shows influence from outside is strong. Otherwise, the polymer stragglings with G9and G10, because bedrock fissure water from coteau supplies G9, and farther water source may supply G10, which is consistent with the result of each element's time distribution at chapter four.
引文
[1]Manahan, S.E环境化学[M].南开大学出版社,1993.pp120-140.
    [2]刘桂建.兖州矿区煤中微量元素的环境地球化学研究[D].徐州:中国矿业大学,1999.
    [3]中国科学院地球化学所.高等地球化学[M].北京:科学出版社.159p.
    [4]程介克.痕量元素及痕量分析[J].痕量分析,1986(1):90-110.
    [5]颜世铭.微量元素迁移的水文地球化学环境[J].广东微量元素科学,2009,16(2):29.
    [6]韩念勇,蒋高明,李文军.锡林郭勒生物圈保护区退化生态系统管理[M].北京:清华大学出版社,2006.pp1184-1191.
    [7]吕达仁,陈佐忠,王庚辰,等.内蒙古半干旱草原气候生态相互作用问题—IMGRASS计划初步结果[J].地学前缘,2002,9(2):307-320.
    [8]云景田,李清海.锡林郭勒盟地下水资源开发利用存在的主要问题及水管理对策[J].内蒙古水利,2000,(4):30-31.
    [9]Tong C, Wu J, Yong S, et al. A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China [J]. Journal of Arid Environments,2004,59:133-149.
    [10]魏俊峰,戴民汉,洪华生,等.海洋胶体与痕量金属的相互作用[J].地球科学进展,2001,19(1):26-31.
    [11]Dinelli E, Lima A, Albanese S, et al. Major and trace elements in tap water from Italy[J]. Journal of Geochemical Exploration,2012,112:54-75.
    [12]Garrels R.M., Thompson M.E.. A chemical model for sea water at 25℃ and one atmosphere total pressuer[J]. American Journal of Science,1962,260:57-66.
    [13]Garrels,R.M., Christ C L. Solution, Minerals, and Equilibria[M]. Newyork:Harper and Row, 1965.1-62.
    [14]Plummer,L.N.. Geochemical modeling of water-rock interaction:Past, Persent, future[J]. Water-Rock Interaction, Kharka & Maest(eds.),1992,23-33.
    [15]Heigeson H.C.. Evaluation of irreversible reaction in geochemical processes involving minerals and aqueous solutions-1. Thermodynamic relation[J]. Geochimica et Cosmochimica Acta, 1968,32(8):853-877.
    [16]Ferry J M, Dipple G M. Fluid flow, mineral reaction and metasomatism[J]. Geology,1991,19:211-214.
    [17]Dubrovsky N.M., Deverel, S.J., and Gilliom, R.J.,1993, Multiscale approach to regional ground water quality assessment:Selenium in the San Joaquin Valley[C]. California, Alley, W.M.. Regional Ground Water Quality. New York:Van Nostrand Reinhold,1993:537-562.
    [18]Seiler, R.L., Skorupa, J.P., Naftz, D.L., and Nolan, B.T.. Irrigation-induced contamination of water, sediment, and biota in the western United States—Synthesis of data from the National Irrigation Water Quality Program[J]. U.S. Geological Survey Professional Paper,2003,1655:123.
    [19]Seiler, R.L.. Temporal changes in water quality at a childhood leukemia cluster[J]. Ground Water,2004,42(3):446-455.
    [20]Fujii, R.F., and Swain, W.C.. Areal distribution of trace elements, salinity, and major ions in shallow ground water, Tulare Basin, southern San Joaquin Valley, California[J]. U.S. Geological Survey Water-Resources Investigations Report,1995,4048:67.
    [21]Welch, A.H., and Lico, M.S.. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada[J]. Applied Geochemistry,1998,13(4):521-539.
    [22]Hydrogen ion concentration as pH from measurements made at the field laboratories[J/OL]. National Atmospheric Deposition Program Office, Illinois State Water Survey, accessed October 11,2007. http://nadp.sws.uiuc.edu/isopleths/maps2001/phfield.
    [23]Jacks G. Acid precipitation[C]//Alley W.M., ed..Regional groundwater quality[M]New York, Van Nostrand Reinhold,1993.p405-421.
    [24]Ayotte J D, Szabo Z, Focazio M J, and et al. Effects of human-induced alteration of groundwater flow on concentrations of naturally-occurring trace elements at water-supply wells[J]. Applied Geochemistry,2011,26(5):747-762.
    [25]Tarvainen T, Lahermo P, Mannio J. Sources of Trace Metals in Streams and Headwater Lakes in Finland[J]. Water, Air,& Soil Pollution,1997,94(1/2):1-32.
    [26]Riedel G F, Williams S A, Riesel G S, et,al. Temporal and Spatial Patterns of Trace Elements in the Patuxent River:A Whole Watershed Approach[J]. Estuaries,2000,23(4):521-535.
    [27]Mitchell A C, Brown G H. Diurnal hydrological-physicochemical controls and sampling methods for minor and trace elements in an Alpine glacial hydrological system[J]. Journal of Hydrology,2007,332:123-143.
    [28]Dupre B, Gaillardet J, Rousseau D, et al. Major and trace elements of river-borne material: The Congo Basin[J]. Transport of sediment and dissolved ions in rivers,1996,60:1301-1321.
    [29]Shiller A M. Dissolved trace elements in the Mississippi River:Seasonal, interannual, and decadal variability [J]. Geochimica et Cosmochimica Acta,1997,61(20):4321-4330.
    [30]Cortecci G, Boschetti T, Dinelli E, et al. Geochemistry of trace elements in surface waters of the Arno River Basin, northern Tuscany, Italy[J]. Applied Geochemistry,2009,24:1005-1022.
    [31]Barthold FK., Wu J, Vache KB, et al. Identification of geographic runoff sources in a data sparse region:hydrological processes and the limitations of tracer-based approaches[J]. Hydrological processes,2010,24:2313-2327.
    [32]Holemann J A., Schirmacher M, Prange A. Seasonal variability of trace metals in the Lena River and the southeastern Laptev Sea:Impact of the spring freshet[J]. Global and Planetary Change,2005,48:112-125.
    [33]Nordstrom DK. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters[J]. Applied Geochemistry,2011,26(11):1777-1791.
    [34]Viers J, Dupre B, Braun J, et al. Major and trace element abundances, and strontium isotopes in the Nyong basin river (Cameroon):constraints on chemical weathering processes and elements transport mechanisms in humid tropical environments[J]. Chemical Geology,2000,169:211-241.
    [35]Schenone N, Volpedo A V, Cireli A F. Trace metal contents in water and sediments in Samborombon Bay wetland, Argentina[J]. Wetlands Ecol Manage,2007,15:303-310.
    [36]Jarvie H P, Neal C, Burton JD, et al. Patterns in trace element chemistry in the freshwater tidal reaches of the River Trent[J]. The science of the total environment,2000,251/252:317-333.
    [37]Cidu R, Biddau R. Transport of trace elements under di□erent seasonal conditions:E□ects on the quality of river water in a Mediterranean area[J]. Applied Geochemistry,2007, 22:2777-2794.
    [38]Bohlke, J K. Groundwater recharge and agricultural contamination[J]. Hydrogeology Journal, 2002,10(1):153-179.
    [39]Seiler R L, Skorupa J P, Naftz D L, et al. Irrigation-induced contamination of water, sediment, and biota in the western United States—Synthesis of data from the National Irrigation Water Quality Program[J]. U.S. Geological Survey Professional Paper,2003,1655:123.
    [40]Stollenwerk K G, and Colman J A. Natural remediation of arsenic contaminated ground water associated with landfill leachate[J]. U.S. Geological Survey Fact Sheet,2004,3057:4.
    [41]Eberts S M, Erwin M L, and Hamilton P A. Assessing the vulnerability of public-supply wells to contamination from urban, agricultural and natural sources[J]. U.S. Geological Survey Fact Sheet 2005, (3022):4.
    [42]De Lemos J L, Bostick B C, Renshaw C E, et al. Landfill-stimulated iron reduction and arsenic release at the Coakley Superfund Site (NH)[J]. Environmental Science and Technology, 2006,40(1):67-73.
    [43]Dubrovsky N M, Burow K R, Clark G M, et al. The quality of our Nation's waters—Nutrients in the Nation's streams and groundwater,1992-2004[J]. U.S. Geological Survey Circular,2010, (1350):174.
    [44]Ayotte J D, Gronberg Jo A.M., Apodaca L.E. Trace Elements and Radon in Groundwater Across the United States,1992-2003[J]. Scientific investigations Report,2011,50(59):15-20.
    [45]Chen K, Jiao J J,Huang J, et al. Multivariate statistical evaluation of trace element in groundwater in coastal area in Shenzhen, China[J]. Environmental Pollution,2007,147:771-780.
    [46]王明远,章申.生物地球化学和地方病的探讨[J].中国科学,1985,10:931-936.
    [47]刘志光,孙含元.土壤和天然水中痕量金属化学形态的研究[J].土壤学进展,1987,2:1-12.
    [48]成春奇,徐龙.临涣矿区水化学特征及在矿井水源判别中的意义[J].煤田地质与勘探,1995,1:43-48.
    [49]冯启言,韩宝平.任丘雾迷山组储层、水、结垢中微量元素赋存特征[J].中国矿业大学学报,2000,30(2):68-72.
    [50]桂和荣.皖北矿区地下水水文地球化学特征及判别模式研究[D].安徽:中国科学技术大学.2005
    [51]张绮,王克波,高素琴,等.苏锡常地区建制镇水厂水中总硬度及微量元素调查[J].南京医科大学学报,1999,32(4):68-72.
    [52]高明,华致洁,林凤勋,等.渡口地区基岩裂隙水水化学特征研究[C].水文地球化学理论与方法的研究(论文集).1985.
    [53]刘光华,李凌浩,陈佐忠.内蒙古锡林河流域植被多样性特点及其与气候因子的关系[J].植物生态学报,1998,22(5):466-472.
    [54]Xiao Xiangming, Ojima D S.Ennis C A,et al. Estimation of A boveground Biomass of the Xilin River Basin,NeiMongol,Using Landsat TM Imgery[C]//中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第5集)[M].北京:科学出版社,1997,130-138.
    [55]雍世鹏,仝川,雍伟义.内蒙古锡林郭勒草原雪盖与植被覆盖重叠关系的遥感分析[J].冰川冻土,1994,(3):238-244.
    [56]雍世鹏,崔海亭.内蒙古自治区1∶150万植被类型图说明[A].《内蒙古自治区资源系列地图》编辑委员会.内蒙古自治区资源系列地图说明书[M].北京:科学出版社,1991,83-103.
    [57]雍世鹏,李博.锡林郭勒自然保护区图(1∶700000).中国自然保护地图集[M].北京:科学出版社,1989.
    [58]李博,雍世鹏,李忠厚.锡林河流域植被及其利用[C].中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第3集)[M].北京:科学出版社,1988,84-]83.
    [59]现代草原畜牧综合试验研究中心,1966,科学研究资料汇编,第一集(内部资料).
    [60]现代草原畜牧综合试验研究中心,1966,植被、草场调查报告(内部资料).
    [61]Bai Yongfei,Han Xingguo,Wu jianguo,et al.Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Letter to nature,2004,431:181-184.
    [62]仝川,杨景荣,雍伟义,等.锡林河流域草原植被退化空间格局分析[J].自然资源学报,2002,9:571-578.
    [63]刘钟龄,王炜,郝敦元等.内蒙古草原退化与恢复演替机理的探讨[J].干旱区资源与环境,2002,3:84-90.
    [64]刘钟龄,王炜,梁存柱,等.内蒙古草原植被在持续牧压下退化演替的模式与诊断[J].草地学报,1986,12:244-251.
    [65]王炜,刘钟龄,郝敦元,等.内蒙古草原退化群落恢复演替的研究-退化草原的基本特征与恢复演替动力[J].植物生态学报,1996,20(5):449-459.
    [66]王炜,梁存柱,刘钟龄,等.内蒙古草原退化群落恢复演替的研究-恢复演替时间进程的分析[J].植物生态学报,1996,20(5):460-471.
    [67]刘佳慧,刘芳,王炜,等.“3S”技术在生态用水量研究中的应用[J].干早区资源与环境,2005,19(4):92-97.
    [68]杨淇越,吴锦奎,丁永建,等.锡林河流域地表水和浅层地下水的稳定同位素研究[J].冰川冻土,2009,31(5):850-856.
    [69]WU Jinkui, DING Yongjian, YE Baisheng, et al. Stable isotopes in Precipitation in Xilin River Basin, Northern China and Their Implications[J]. Chin. Geogra. Sci.,2012,22(5):531-540.
    [70]赵斌,蔡庆华,刘瑞秋,等.锡林河中游水体理化特征的初步研究[J].中国草地,1999(03):77-81.
    [71]刘书润,刘钟龄.内蒙古锡林河流域植物区系纲要[C].//中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第3集),1988,9:227-268.
    [72]陈佐忠.锡林河流域地形与气候概况[C].//中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第3集),北京:科学出版社,1988:13-22.
    [73]Tong C, Wu J, Yong S, et al. A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China [J]. Journal of Arid Environments,2004,59:133-149.
    [74]许中旗,李文华,闵庆文,等.锡林河流域生态系统服务价值变化研究[J].自然资源学报,2005,20(1):99-104.
    [75]王文辉.内蒙古气候[M].北京:气象出版社,1990.
    [76]内蒙古气象局.内蒙古农牧林气候资源和规划[R]内蒙古:内蒙古气象局,1981.
    [77]汪久文,蔡蔚祺.锡林河流域土壤的发生类型及其性质的研究[C].//中国科学院内蒙古草原 生态系统定位站.草原生态系统研究(第3集)[M].科学出版社,1988.pp60-64.
    [78]李绍良.锡林河流域土壤持水特性的评价[J].干旱区资源与环境,1988,2(2):52-62.
    [79]樊江文,钟华平,员旭疆.50年来我国草地开垦状况及其生态影响[J].中国草地2002,24(5):69-72.
    [80]李博,雍世鹏,李忠厚.锡林河流域植被及其利用[C].//中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第3集),1988,3:84-182.
    [81]内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社,1996.
    [82]季劲钧,刘青,李银鹏.半干旱地区地表水平衡的特征和模拟[J].地理学报,2004,59(6):964-971.
    [83]赵献英,姚彦臣,杨汝荣.锡林河流域天然草场资源的生态地理特征及其展望[A].//中国科学院内蒙古草原生态系统定位站.草原生态系统研究(第3集)[M].北京:科学出版社,1988.pp184-226.
    [84]朱德举,朱道林.西部土地资源保护基本知识[M].畜牧兽医图书出版社,2001.pp34
    [85]长江水环境化学元素研究系列专著编辑委员会.水环境化学元素研究方法[M].武汉:湖北科学技术出版社,1992.pp5-6,175-185.
    [86]陈静生,陶澍,邓宝山,等.水环境化学[M].北京:高等教育出版社,1987.45-66.
    [87]Mitamura O, Seike Y, Kondo K, et al. First investigation of utraoligotrophic alpine Lake Puma Yumco in the pre-Himalaya China[J]. Limnology,2003,4:167-175.
    [88]Murakami T, Terai H, Yoshiyama Y, et al The second investigation of Lake Puma Yum Co located in the Southern Tibetan Platean, China[J]. Limnology,2007,8:331-335.
    [89]鞠建廷,朱立平,汪勇,等.藏南普莫雍错流域水体离子组成与空间分布及其环境意义初步研究[J].湖泊科学,2008,20(5):591-599.
    [90]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1993.62-93.
    [91]丁沽玉,叶尔骅,杨纪龙.对数正态与正态分布定时截尾寿命试验参数的近似置信域[J].南京航空航天大学学报,2003,35(6):682-687.
    [92]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2001.pp 56-62.
    [93]张立城,佘中盛,章申.水环境化学元素研究[M].北京:中国环境科学出版社,1996.30-33.pp257-263.
    [94]蔡宝森.环境统计[M].1.湖北:武汉工业大学出版社,1999.pp36-41.
    [95]李艳双,曾珍香,张闽,等.主成分分析法在多指标综合评价方法中的应用[J].河北工业大学学报,1999,1(28):94-97.
    [96]徐志军,郑俊杰,张军,等.聚类分析和因子分析在黄土湿陷性评价中的应用[J].岩土力学,2010,2(31):401-411.
    [97]代述勇,雷加强,赵景峰,等.塔里木盆地南缘策勒绿洲区地下水TDS空间变异及水化学特征分析[J].中国沙漠,2010,30(3):722-728。
    [98]李月芳,王宁练,姚檀栋,等.东昆仑山玉珠峰冰川雪坑中痕量元素的组成特征[J].冰川冻土,2011,33(4):752-759.
    [99]张立城,余中盛,章申.水环境化学元素研究[M].中国环境科学出版社,1996.2(1):30-33,257-263.
    [100]李健,郑春江.环境背景值数据手册[M].中国环境科学出版社,1988.
    [101]Cortecci G, Boschetti T, Dinelli E, et al. Geochemistry of trace elements in surface waters of the Arno River Basin, northern Tuscany, Italy [J]. Applied Geochemistry,2009.24:1005-1022.
    [102]Drever, J.I.. The geochemistry of natural waters (2d ed.)[M]. Englewood Cliffs, N.J., Prentice-Hall,1988.437.
    [103]Welch, A.H., and Stollenwerk, K.G., eds.. Arsenic in groundwater-Geochemistry and Occurrence:Boston[M]. Kluwer Academic Publishers,2003.475.
    [104]Paschke, S.S.. Hydrogeologic settings and ground-water flow simulations for regional studies of the transport of anthropogenic and natural contaminants to public-supply wells—Studies begun in 2001 [J]. U.S. Geological Survey Professional Paper,2007, (1737):244.
    [105]张明亲.统计学[M].西安:西北大学出版社,2009.pp139-148.
    [106]刘英俊,曹励明.元素地球化学导论[M].北京:地质出版社,1987.
    [107]戎秋涛,翁焕新.环境地球化学[M].北京:地质出版社,1990.
    [108]王新建,陈建生,等.水化学成分聚类法分析巴丹吉林沙漠及邻区地下水补给源[J].工程勘察,2005,5:25-29.
    [109]王式安.数理统计[M].北京:北京理工大学出版社,1995.
    [110]李艳双,曾珍香,张闽,等.主成分分析法在多指标综合评价方法中的应用[J].河北工业大学学报,1999,28(1)94-97.
    [111]黄迎朝.黑河流域气候变化对生态环境与自然植被影响的诊断分析[J].气候与环境研究,2003,8(1):84-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700