流域生态环境需水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速识别流域内生态缺水严重的区域、动态评估生态用水状况对流域生态环境建设和水资源优化配置具有重要意义。本文借鉴水体快速生物评价方法的思想,建立了一种适于不同尺度的流域生态环境需水快速评估方法,并在黄土高原区的延河流域、纸坊沟流域开展了案例研究。
     流域生态环境需水快速评估方法包括以下主要步骤:(1)根据流域等级嵌套结构的特点,选择小流域为评价和计算单元;(2)基于流域内土地利用/覆盖和各种生态系统的内在关系,构建生态环境需水特征指标EWRI作为流域生态环境需水的表现因子;(3)针对不同的研究尺度,选择生态环境需水的影响因子作为环境因子;(4)以小流域为基本单元,进行表现因子与环境因子的数据集成;(5)以典型小流域单元作为参照单元,构建参照组;(6)以环境因子相似性作为判别依据,将待评估单元匹配到参照组中,计算其对各参照组的隶属度;(7)根据各参照组表现因子的平均特征及待评估单元对其隶属度,计算待评估单元表现因子的预测值;(8)进行评估单元表现因子预测值和实际值的对比,得到生态缺水度指标EWDI的值,以此为依据进行生态缺水严重程度的评估。
     以位于黄土高原区的黄河流域一级支流延河流域为研究区域,利用1990年与2000年两期土地利用/覆盖数据对流域生态缺水进行了评估。结果表明,安塞县南部、延安市周边及宝塔区是生态缺水最严重的区域。为此,进一步利用位于安塞县南部的延河二级支流纸坊沟流域1938~1999年15期的土地利用资料进行了生态缺水动态评估。结果表明,纸坊沟流域生态环境用水经历了“自然平衡-严重亏缺-逐渐改善-趋向平衡”的变化过程,这一过程与该流域的开发治理过程是一致的。案例研究的结果说明了流域生态环境需水快速评估方法的可行性、快速性。
     针对研究区以水土流失为首要生态环境问题的特点,以纸坊沟流域为例开展了基于水土保持的流域生态环境需水研究。结果表明:在允许土壤流失量1000 t/km~2·a的目标下,纸坊沟流域的生态环境需水量约为1.77×10~6m~3,占该流域降水资源总量的39.0%,这与1998年该流域的情景相当;适当降低水土保持目标可在一定程度上减少生态环境用水量。
     在纸坊沟流域生态环境需水研究结果的基础上进一步探讨了水土保持中“水保”和“土保”的关系。利用土壤侵蚀的特征指标和水流失的特征指标分别表征土壤侵蚀和水流失,分析了水流失与土壤侵蚀之间的关系,并对不同目标下的水土保持用水进行了讨论。结果表明:伴随着“土壤侵蚀”的“水流失”反映了生态环境水向潜在资源水和灾害水转化的趋势。1938~1999年间纸坊沟流域“水流失”与土壤侵蚀程度之间具有较好的相关关系。当流域出口测站的径流量约为6.77×10~4m~3时,不仅流域生态环境需水和社会经济用水能够基本得到满足,而且流域“土保”也可达到微度侵蚀的目标(侵蚀模数≤1000t/km~2·a)。
Rapid identification of areas suffering serious Eco-environmental Water Deficit (EWD) and dynamic assessment of Eco-environmental Water Use (EWU) are of significance to ecological construction and sustainable utilization of water resources in a catchment. With the similar spirit as the prevailing rapid biological assessment methods for water body, a rapid assessment method in terms of Eco-environmental Water Requirement (EWR) was developed to address this point for different scales of catchments, and a case study was carried out on the Yanhe Basin and Zhifanggou Watershed located on the Loess Plateau.
     The method proposed herein contains 8 main steps, specifically, (1) partition of the study area into proper units; (2) construction of indicator of EWR (EWRI) for a basin; (3) selection of environmental variables; (4) integration of the data about EWRI and the environmental variables into the units obtained in step (1); (5) pick of typical units as the reference units and construction of reference groups, and the other units as test ones; (6) calculation of memberships of each test unit to all reference groups; (7) calculation of the expected EWRI of each test unit based on its degree of membership to and the average EWRI of each reference group; (8) with the observed and expected EWRIs of each test unit, an indicator of EWD (EWDI) could be calculated to show its severity of EWD.
     The method was applied to the Yanhe Basin with land use data of 1990 and 2000, and the result showed that the south of Ansai County, the Yan’an build-up surrounding areas and Baota District were suffering serious EWD. A further study was carried out on Zhifanggou Watershed located in south Aansai, a secondary tributary of Yanhe River, with land use data of 15 periods among 1938~1999. The result showed that the variation of its EWU experienced a process of“natural balance - severe EWD - gradual improvement - tending to balance”. This was highly consistent with the developed process in the watershed. These applications proved the proposed method of practicability and rapidness.
     The dominant objective of ecological construction in the study area is to prevent soil erosion. Therefore, this dissertation calculated the EWR of Zhifanggou according to certain objectives of soil conservation. The result showed that given a soil loss tolerance of 1000 t/km~2·a, the EWR of Zhifanggou was about 1.77×10~6m~3, 39.0% of the total annual precipitation, similar to the situation in 1998. Moderately reducing the objective of soil conservation can save a little EWR to some extent.
     In order to reveal the relationship between“water conservation”and“soil conservation”, analytical method of water resource structure was applied to discover the connotation of“water loss”. Furthermore, with Zhifanggou watershed as the study area, indicators for soil erosion and water loss were used to address the relationship between them, and the water use for soil conservation under deferent objectives was discussed. The result showed that as the concomitant of soil erosion, water loss reflected the transforming trends of water for entironment to that of latent resource and calamity. From 1938 to 1999, the degree of water loss and soil erosion in Zhifanggou had significant correlativity. The objective of soil conservation could be set to a soil loss tolerance of 1000 t/km~2·a, with a corresponding runoff of 6.77×10~4m~3 which could approximately meet the EWR of the river ecosystem and human water requirement.
引文
鲍卫锋, 黄介生, 于福亮, 2005. 区域生态需水量计算方法研究. 水土保持学报, 19(5): 139-142.
    卞戈亚, 周明耀, 朱春龙, 2003. 生态需水量计算方法研究现状及展望. 水资源保护, (6): 46-49.
    陈丽华, 王礼先, 2001. 北京市生态用水分类及森林植被生态用水定额的确定. 水土保持研究, 8(4): 161-164.
    陈丽华, 余新晓, 王礼先, 2002. 北京市生态用水的计算. 水土保持学报, 16(4): 116-118.
    陈敏建, 2007. 水循环生态效应与区域生态需水类型. 水利学报, 38(3): 282-288.
    陈敏建, 丰华丽, 王立群, 等, 2007. 适宜生态流量计算方法研究. 水科学进展, 18(5): 745-750.
    陈敏建, 王浩, 王芳, 2004a. 内陆干旱区水分驱动的生态演变机理. 生态学报, 24(10): 2108-2104.
    陈敏建, 王浩, 王芳, 等, 2004b. 内陆河干旱区生态需水分析. 生态学报, 24(10): 2136-2142.
    陈锐, 邓祥征, 战金艳, 等, 2005. 流域尺度生态需水的估算模型与应用——以克里雅河流域为例. 地理研究, 24(5): 725-731.
    陈兴茹, 刘树坤, 2006. 经济合理的生态用水量及其计算模型(I)——理论. 水利水电科技进展, 26(5): 1-6.
    崔保山, 杨志峰, 2002. 湿地生态环境需水量研究. 环境科学学报, 22(2): 219-224.
    崔保山, 杨志峰, 2003. 湿地生态环境需水量等级划分与实例分析. 资源科学, 25(1): 21-28.
    崔保山, 翟红娟, 2006. 高原湿地功能退化的表征及其恢复中的生态需水量. 科学通报, 51(增刊): 106-113.
    崔保山, 赵翔, 杨志峰, 2005. 基于生态水文学原理的湖泊最小生态需水量计算. 生态学报, 25(7): 1788-1795.
    崔丽娟, 鲍达明, 肖红, 等, 2005. 湿地生态用水计算方法探讨与应用实例. 水土保持学报, 19(2): 147-151.
    崔树彬, 2001. 关于生态环境需水量若干问题的探讨. 中国水利, (8): 71-75.
    代锋刚, 蔡焕杰, 张鑫, 等, 2004. 西北干旱内陆河流域生态需水量理论初探. 干旱地区农业研究, 22(3): 148-153.
    董福平, 管仪庆, 周黔生, 等, 2007. 河流生态用水流量确定新方法研究. 水利学报, (增刊): 547-551.
    段水强, 2005. 德令哈盆地湖泊湿地变化与生态需水初步研究. 中国农村水利水电, (9): 22-23.
    樊自立, 马英杰, 张宏, 等, 2004. 塔里木河流域生态地下水位及其合理深度确定. 干旱区地理, 27(1): 8-13.
    樊自立主编, 1998. 塔里木河流域资源环境及可持续发展. 北京: 科学出版社.
    方圆, 倪晋仁, 蔡立哲, 2000. 湿地泥沙环境动态评估方法及其应用研究(II) 应用. 环境科学学报, 20(6): 670-675.
    方子云(主编), 1988. 水资源保护工作手册. 天津: 河海大学出版社.
    方子云, 1993. 水利建设的环境效益分析与量化. 北京: 中国环境出版社. 84-106.
    丰华丽, 王超, 李剑超, 2002b. 干旱区流域生态需水量估算原则分析. 环境科学与技术, 25(1): 31-34.
    丰华丽, 王超, 朱光灿, 2002a. 土地利用变化对流域生态需水的影响分析. 水科学进展, 13(6): 757-762.
    丰华丽, 夏军, 占车生, 2003. 生态环境需水研究现状和展望. 地理科学进展, 22(6): 591-598.
    高清竹, 杨劼, 宋炳煜, 等, 2004. 黄河中游砒砂岩地区长川流域生态用水分析. 自然资源学报, 19(4): 499-507.
    顾圣华, 2004. 长江口环境用水量计算方法探讨. 水文, (6): 35-37.
    郭克贞, 史海滨, 苏佩凤, 等, 2004. 锡林郭勒草原生态需水初步研究. 中国农村水利水电, (8): 82-85.
    郭跃东, 何岩, 邓伟, 等, 2004. 扎龙国家自然湿地生态环境需水量研究. 水土保持学报, 18(6): 163-167.
    韩曾萃, 尤爱菊, 徐有成, 等, 2006. 强潮河口环境和生态需水及其计算方法. 水利学报, 37(4): 395-402.
    何永涛, 李文华, 李贵才, 等, 2004. 黄土高原地区森林植被生态需水研究. 环境科学, 25(3): 35-39.
    何永涛, 闵庆文, 李文华, 2005. 植被生态需水研究进展及展望. 资源科学, 27(4): 8-13.
    胡顺军, 康绍忠, 宋郁东, 2004. 渭干河平原绿洲生态用水量初步估算. 水科学进展, 15(3): 346-351.
    胡顺军, 康绍忠, 宋郁东, 等, 2003. 利用地下水动态观测资料估算芦苇耗水量. 灌溉排水学报, 22(3): 19-21.
    胡顺军, 田长彦, 宋郁东, 等, 2005. 塔里木河流域水面蒸发折算系数分析. 中国沙漠, 25(5): 649-651.
    胡习英, 陈南祥, 2006. 城市生态环境需水量计算方法与应用. 人民黄河, 28(2): 48-50.
    黄锦辉, 郝伏勤, 高传德, 等, 2004. 黄河干流生态环境需水量初探. 人民黄河, 26(4): 26-28.
    黄奕龙, 陈利顶, 傅伯杰, 等, 2005. 黄土丘陵小流域植被生态用水评价. 水土保持学报, 19(2): 152-156.
    吉利娜, 刘苏峡, 吕宏兴, 等, 2006. 湿周法估算河道内最小生态需水量的理论分析. 西北农林科技大学学报(自然科学版), 34(2): 124-130.
    贾宝全, 慈龙骏, 2000. 新疆生态用水量的初步估算. 生态学报, 20(2): 243-250.
    贾宝全, 许英勤, 1998. 干旱区生态用水的概念和分类——以新疆为例. 干旱区地理, 21(2): 8-12.
    贾宝全, 张志强, 张红旗, 等, 2002. 生态环境用水研究现状、问题分析与基本构架探索. 生态学报, 22(10): 1734-1740.
    江忠善, 郑粉莉, 2004. 纸坊沟流域水土流失综合治理减沙效益评价. 泥沙研究, (2): 56-61.
    姜翠玲, 范晓秋, 2004. 城市生态环境需水量的计算方法. 河海大学学报(自然科学版), 32(1): 14-17.
    姜德娟, 王会肖, 2004. 生态环境需水量研究进展. 应用生态学报, 15(7): 1271-1275.
    姜德娟, 王会肖, 李丽娟, 2003. 生态环境需水量分类及计算方法综述. 地理科学进展, 22(4): 369-378.
    姜杰, 杨志峰, 刘静玲, 2004. 海河流域平原河道生态环境需水量计算. 地理与地理信息科学, 20(5): 81-83.
    鞠文学, 李天宏, 倪晋仁, 2003. 隶属度判别法在水土流失快速评估中的应用. 地理科学进展, 22(4): 388-399.
    瞿伦强, 1997. 论成都的环境用水和水生态环境建设. 四川环境, 16(1): 51-55.
    李壁成, 1995. 小流域水土流失与综合治理遥感监测. 北京: 科学出版社.
    李壁成主编, 1995. 小流域水土流失与综合治理遥感监测. 北京: 科学出版社.
    李加林, 赵寒冰, 刘闯, 等, 2006. 辽河三角洲湿地生态环境需水量变化研究. 水土保持学报, 20(2): 129-134.
    李嘉, 王玉蓉, 李克锋, 等, 2006. 计算河段最小生态需水的生态水力学法. 水利学报, 37(10): 1169-1174.
    李九一, 李丽娟, 姜德娟, 等, 2006. 沼泽湿地生态储水量及生态需水量计算方法探讨. 地理学报, 61(3): 289-296.
    李丽娟, 李海滨, 王娟, 2002. 海河流域河道外生态需水研究. 海河水利, (4): 9-13.
    李丽娟, 郑红星, 2000. 海滦河流域河流系统生态环境需水量计算. 地理学报, 55(4): 495-500.
    李兴春, 林年丰, 汤洁, 等, 2004. 扎龙湿地生态环境需水量研究. 吉林大学学报(理学版), 42(1): 143-146.
    李英奎, 2001. 基于土地利用结构变化的土壤侵蚀动态评估方法研究. 北京大学博士学位论文.
    李英奎, 倪晋仁, 杨勤科, 等, 2001. 基于综合信息元的多源数据集成. 应用基础与工程科学学报, 9(4): 320-329.
    李玉山, 1997. 黄土高原治理开发与黄河断流的关系. 水土保持通报, 17(6): 41-45.
    李云开, 杨培岭, 任树梅, 等, 2004. 建设项目水资源论证中生态需水的计算方法. 中国水利, (11): 18-19.
    李宗礼, 1995. 干旱内陆河流域下游地区生态用水量及水资源承载能力分析. 见: 环境水利论文选编(第八集).
    林超, 何杉, 2003. 海河流域生态现状用水量调查和生态需水量计算方法. 水利规划与设计, (2): 11-18.
    林剑, 王宁, 林庆华, 等, 2004. 贵阳市市西河最小生态环境水量初步研究. 地球与环境, 32(2): 40-43.
    刘昌明, 1994. 地理水文学的研究进展与 21 世纪展望. 地理学报, 49(增刊): 601-608.
    刘昌明, 1999. 中国 21 世纪水供需分析:生态水利研究. 中国水利, (10): 18-20.
    刘桂民, 王根绪, 2004. 我国干旱区生态需水若干问题评述. 冰川冻土, 26(5): 650-656.
    刘国彬, 胡维银, 许明祥, 2003. 黄土丘陵区小流域生态经济系统健康评价. 自然资源学报, 18(1): 44-49.
    刘静玲, 杨志峰, 2002. 湖泊生态环境需水量计算方法研究. 自然资源学报, 17(5): 604-609.
    刘凌, 董增川, 崔广柏, 等, 2002. 内陆河流生态环境需水量定量研究. 湖泊科学, 14(1): 25-31.
    刘仁志, 2004. 突发性泥沙灾害危险性快速区划方法与应用. 北京大学博士学位论文.
    刘苏峡, 莫兴国, 夏军, 等, 2006. 用斜率和曲率湿周法推求河道最小生态需水量的比较. 地理学报, 61(3): 273-281.
    刘苏峡, 莫兴国, 朱永华, 等, 2004. 基于水量平衡的流域生态耗水量计算——以海河为例. 自然资源学报, 19(5): 662-671.
    刘万铨, 1999. 黄土高原水土保持在黄河流域水资源开发利用中的地位和作用. 中国水土保持, (11): 28-32.
    刘霞, 王礼先, 张志强, 2001. 生态环境用水研究进展. 水土保持学报, 15(6): 58-61.
    刘小勇, 2003. 黄河下游输沙用水及其调控方法. 北京大学博士学位论文.
    刘钰, Pereira L. S., 2001. 气象数据缺测条件下参照腾发量的计算方法. 水利学报, (3): 11-17.
    柳长顺, 陈献, 刘昌明, 等, 2005. 流域生态用水与需水研究. 水利水电技术, 36(6): 17-21.
    栾兆擎, 邓伟, 朱宝光, 2004. 洪河国家级自然保护区湿地生态环境需水初探. 干旱区资源与环境, 18(1): 59-63.
    罗华铭, 李天宏, 倪晋仁, 等, 2004. 多沙河流的生态环境需水特点研究. 中国科学 E 辑, 34(增刊I): 155-164.
    马蔼乃, 1997. 遥感信息模型. 北京: 北京大学出版社. 65-87.
    马洪涛, 贾海峰, 王军, 等, 2007. 城市水生生态系统最小生态需水量——以北京为例. 清华大学学报(自然科学版), 47(3): 352-355,360.
    门宝辉, 刘昌明, 夏军, 等, 2005. 南水北调西线一期工程河道最小生态径流的估算与评价. 水土保持学报, 19(5): 135-138.
    苗鸿, 魏彦昌, 姜立军, 等, 2003. 生态用水及其核算方法. 生态学报, 23(6): 1156-1164.
    穆兴民, 徐学选, 陈霁巍等, 2001. 黄土高原生态水文研究. 北京: 中国林业出版社.
    倪晋仁, 崔树彬, 李天宏, 等, 2002b. 论河流生态环境需水. 水利学报, (9): 14-20.
    倪晋仁, 方圆, 2000. 湿地泥沙环境动态评估方法及其应用研究(I) 理论. 环境科学学报, 20(6): 665-669.
    倪晋仁, 金玲, 赵业安, 等, 2002a. 黄河下游河流最小生态环境需水量初步研究. 水利学报, (10): 1-7.
    倪晋仁, 李英奎, 2001a. 基于土地利用结构变化的水土流失动态评估. 地理学报, 56(5): 611-621.
    倪晋仁, 李英奎, 方圆, 2001b. 泥沙灾害和泥沙环境快速评估方法研究. 自然灾害学报, 10(2): 19-24.
    倪晋仁, 王裕东, 钱征寒, 等, 2004. 黄河下游水资源转化结构及其变化规律. 中国科学 E 辑 技术科学, 34(增刊 I): 103-116.
    倪深海, 崔广柏, 2002. 河道生态环境需水量的计算. 人民黄河, 24(1): 37-38.
    潘耀忠, 史培军, 1997. 区域自然灾害系统基本单元研究--Ⅰ:理论部分. 自然灾害学报, 6(4): 1-9.
    庞 治 国 , 王 世 岩 , 胡 明 罡 , 2005. 河 流 生 态 系 统 健 康 评 价 及 展 望 . www.iwhr.com/special/05jlh/thesis/w13.doc.
    逄勇, 范丽丽, 汤瑞梁, 等, 2003. 晋江流域河道水库最小生态需水量计算研究. 河海大学学报(自然科学版), 31(6): 612-615.
    裴青, 张焱, 刘玉秀, 等, 2002. 河北省生态环境用水初探. 地理学与国土研究, 18(3): 69-71.
    钱正英, 张光斗, 2001. 中国可持续发展水资源战略研究综合报告及各专题报告. 北京: 中国水利水电出版社.
    钱正英, 张光斗等, 2000. 中国可持续发展水资源战略研究综合报告. 中国水利, (8): 5-17.
    乔云峰, 王晓红, 纪昌明, 等, 2004. 基于生态经济理论的生态需水计算方法研究. 水科学进展, 15(5): 621-625.
    全国科学技术名词审定委员会, 1998. 土壤学名词. 北京: 科学出版社.
    邵宏波, 梁宗锁, 邵明安, 2004. 生态环境用水研究的某些进展. 干旱区资源与环境, 18(3): 97-102.
    石伟, 王光谦, 2002. 黄河下游生态需水量及其估算. 地理学报, 57(5): 595-602.
    石伟, 王光谦, 2003. 黄河下游最小输沙用水总量的初步估算. 泥沙研究, (2): 60-64.
    水利部水土保持司, 1998. 土壤侵蚀分类分级标准(SL190-96). 北京: 中国水利水电出版社.
    司建华, 龚家栋, 张勃, 2004. 干旱地区生态需水量的初步估算——以张掖地区为例. 干旱区资源与环境, 18(1): 49-53.
    宋炳煜, 杨劼, 2003. 关于生态用水研究的讨论. 自然资源学报, 18(5): 617-625.
    宋进喜, 李怀恩, 王伯铎, 2003. 河流生态环境需水量研究综述. 水土保持学报, 17(6): 95-98.
    粟晓玲, 康绍忠, 2003. 生态需水的概念及其计算方法. 水科学进展, 14(6): 740-744.
    孙涛, 杨志峰, 2005. 河口生态环境需水量计算方法研究. 环境科学学报, 25(5): 573-579.
    孙涛, 杨志峰, 刘静玲, 2004. 海河流域典型河口生态环境需水量. 生态学报, 24(12): 2707-2715.
    汤国安, 杨昕, 2006. ArcGIS 地理信息系统空间分析实验教程. 北京: 科学出版社. 429-455.
    汤洁, 佘孝云, 林年丰, 等, 2005. 生态环境需水的理论和方法研究进展. 地理科学, 25(3): 367-373.
    汤奇成, 1989. 塔里木盆地水资源与绿洲建设. 自然资源, (6): 28-34.
    汤奇成, 1995. 绿洲的发展与水资源的合理利用. 干旱区资源与环境, 9(3): 107-111.
    唐克丽等编著, 2004. 中国水土保持. 北京: 科学出版社.
    唐克旺, 王浩, 刘畅, 2003b. 陕北红碱淖湖泊变化和生态需水初步研究. 自然资源学报, 18(3): 304-309.
    唐克旺, 王浩, 王研, 2003a. 生态环境需水分类体系探讨. 水资源保护, 19(5): 5-9.
    唐蕴, 王浩, 陈敏建, 等, 2004. 黄河下游河道最小生态流量研究. 水土保持学报, 18(3): 171-174.
    唐蕴, 王浩, 严登华, 2005. 向海自然保护区湿地生态需水研究. 资源科学, 27(5): 101-106.
    唐占辉, 马逊风, 盛连喜, 2004. 生态用水量估算与植被生态建设. 环境保护, (9): 31-33.
    田英, 杨志峰, 刘静玲, 等, 2003. 城市生态环境需水量研究. 环境科学学报, 23(1): 100-106.
    万东辉, 夏军, 2007. 南水北调西线一期工程雅砻江河道内生态需水量研究. 武汉大学学报(工学版), 40(6): 1-5.
    王芳, 梁瑞驹, 杨小柳, 等, 2002b. 中国西北地区生态需水研究(1)——干旱半干旱地区生态需水理论分析. 自然资源学报, 17(1): 1-8.
    王芳, 王浩, 陈敏建, 等, 2002a. 中国西北地区生态需水研究(2)——基于遥感和地理信息系统技术的区域生态需水计算及分析. 自然资源学报, 17(2): 129-137.
    王根绪, 程国栋, 2002. 干旱内陆流域生态需水量及其估算——以黑河流域为例. 中国沙漠, 22(2): 129-134.
    王根绪, 张钰, 刘桂民, 等, 2005. 干旱内陆流域河道外生态需水量评价——以黑河流域为例. 生态学报, 25(10): 2467-2476.
    王国梁, 刘国彬, 常欣, 等, 2002. 黄土丘陵区小流域植被建设的土壤水文效应. 自然资源学报, 17(3): 339-344.
    王化齐, 蔡焕杰, 张鑫, 2006. 石羊河下游民勤绿洲恢复地下水位生态需水量研究. 水土保持通报, 26(1): 44-49.
    王礼先, 常丹东, 2005. 水土保持用水的调节问题. 中国水利, (13): 121-124.
    王礼先主编, 2004. 中国水利百科全书水土保持分册. 北京: 中国水利水电出版社.
    王丽霞, 任志远, 2006. 基于 GIS 的区域植被-土壤生态系统需水定量测评——以陕北延安地区为例. 地理学报, 61(7): 763-770.
    王莲芬, 许树柏, 1990. 层次分析法引论. 北京: 中国人民大学出版社.
    王沛芳, 王超, 李智勇, 2004. 山区城市河流生态环境需水量计算模式及其应用. 河海大学学报(自然科学版), 32(5): 500-503.
    王让会, 卢新民, 宋郁东, 等, 2003. 西部干旱区生态需水的规律及特点——以塔里木河下游绿色走廊为例. 应用生态学报, 14(4): 520-524.
    王让会, 宋郁东, 樊自立, 等, 2001. 塔里木流域“四源一干”生态需水量的估算. 水土保持学报, 15(1): 19-22.
    王让会, 于谦龙, 李凤英, 等, 2005. 基于生态水文学的新疆绿洲生态用水若干问题. 水土保持通报, 25(5): 100-104.
    王珊琳, 丛沛桐, 王瑞兰, 等, 2004. 生态环境需水量研究进展与理论探析. 生态学杂志, 23(6): 111-115.
    王西琴, 刘昌明, 杨志峰, 2001a. 河道最小环境需水量确定方法及其应用研究(Ⅰ)——理论. 环境科学学报, 21(5): 544-547.
    王西琴, 刘昌明, 杨志峰, 2001b. 河道最小环境需水量确定方法及其应用研究(Ⅱ)——实践. 环境科学学报, 21(5): 548-552.
    王西琴, 刘昌明, 杨志峰, 2002. 生态及环境需水量研究进展与前瞻. 水科学进展, 13(4): 507-514.
    王西琴, 刘昌明, 张远, 2003a. 黄淮海平原河道基本环境需水研究. 地理研究, 22(2): 169-176.
    王西琴, 张远, 2008. 我国七大流域河道生态用水现状评价. 自然资源学报, 23(1): 95-102.
    王西琴, 张远, 刘昌明, 2003b. 河道生态及环境需水理论探讨. 自然资源学报, 18(2): 240-246.
    王西琴, 张远, 刘昌明, 2007. 辽河流域生态需水估算. 地理研究, 26(1): 22-28.
    王效科, 赵同谦, 欧阳志云, 等, 2004. 乌梁素海保护的生态需水量评估. 生态学报, 24(10): 2124-2129.
    王秀兰, 张芸, 2001. 河北省地面水环境用水量估算方法初探. 水文, 21(4): 30-32.
    王雁林, 王文科, 杨泽元, 2004. 陕西省渭河流域生态环境需水量探讨. 自然资源学报, 19(1): 69-78.
    王玉敏, 周孝德, 2002. 流域生态需水量的研究进展. 水土保持学报, 16(6): 142-144.
    王占礼, 邵明安, 刘文兆, 等, 1999. 纸坊沟流域土壤侵蚀与产沙初步研究. 天津师大学报(自然科学版), 19(1): 45-50.
    魏彦昌, 苗鸿, 欧阳志云, 等, 2003. 城市生态用水核算方法及应用. 城市环境与城市生态, 16(Suppl.): 18-20.
    魏彦昌, 苗鸿, 欧阳志云, 等, 2004. 海河流域生态需水核算. 生态学报, 24(10): 2100-2107.
    温仲明, 焦峰, 张晓萍, 等, 2004. 纸坊沟流域近 60 年来土地利用景观变化的环境效应. 生态学报, 24(9): 1903-1909.
    吴洁珍, 王莉红, 王卫军, 等, 2005. 生态环境建设规划中引入生态环境需水的探讨. 水土保持研究, 12(1): 59-62.
    吴薇, 倪晋仁, 刘荣霞, 等, 2003. 基于土地利用结构变化的沙漠化动态评估——以内蒙古自治区奈曼旗为例. 北京大学学报(自然科学版), 39(4): 481-488.
    武春龙, 江忠善, 郑世清, 1990. 安塞县纸坊沟流域土壤侵蚀类型遥感制图. 水土保持通报, 10(4): 6-12.
    夏军, 孙雪涛, 丰华丽, 等, 2003. 西部地区生态需水问题研究面临的挑战. 中国水利, A 刊(5): 57-60.
    夏军, 郑冬燕, 刘青娥, 2002b. 西北地区生态环境需水估算的几个问题研讨. 水文, 22(5): 12-17.
    夏军, 朱一中, 2002a. 水资源安全的度量:水资源承载力的研究与挑战. 自然资源学报, 17(3): 262-269.
    夏星辉, 杨志峰, 吴宇翔, 2007. 结合生态需水的黄河水资源水质水量联合评价. 环境科学学报, 27(1): 151-156.
    肖芳, 刘静玲, 杨志峰, 2004. 城市湖泊生态环境需水量计算——以北京市六海为例. 水科学进展, 15(6): 781-786.
    谢新民, 杨小柳, 1999. 半干旱半湿润地区枯季水资源实时预测理论与实践. 北京: 中国水利水电出版社. 228-229.
    徐志侠, 陈敏建, 董增川, 2004a. 河流生态需水计算方法评述. 河海大学学报(自然科学版), 32(1): 5-9.
    徐志侠, 陈敏建, 董增川, 2004b. 基于生态系统分析的河道最小生态需水计算方法研究(I). 水利水电技术, 35(12): 15-18.
    徐志侠, 董增川, 唐克旺, 等, 2005c. 生态用水决策过程、研究层次及生态需水重要概念研究. 水利水电技术, 36(3): 9-12.
    徐志侠, 董增川, 周健康, 等, 2003. 生态需水计算的蒙大拿法及其应用. 水利水电技术, 34(11): 15-17.
    徐志侠, 王浩, 陈敏建, 等, 2005b. 基于生态系统分析的河道最小生态需水计算方法研究(Ⅱ). 水利水电技术, 36(1): 31-34.
    徐志侠, 王浩, 唐克旺, 等, 2005a. 吞吐型湖泊最小生态需水研究. 资源科学, 27(3): 140-144.
    许新发, 2005. 建设项目水资源论证应正确合理考虑生态需水. 江西水利科技, 31(1): 34-37.
    许新宜, 杨志峰, 2003. 试论生态环境需水量. 中国水利, 3(A 刊): 12-15.
    延安市水利水保局, 1997. 延安市延河流域水土保持综合治理规划报告(1998-2002). 1-23.
    延安市水土保持工作队, 2001. 黄土高原水土保持基础资料汇编(延安地区). 1-65.
    严登华, 何岩, 邓伟, 等, 2001. 东辽河流域河流系统生态需水研究. 水土保持学报, 15(1): 46-49.
    严登华, 何岩, 邓伟, 等, 2002. 东辽河流域坡面系统生态需水研究. 地理学报, 57(6): 685-692.
    杨爱民, 唐克旺, 王浩, 等, 2004. 生态用水的基本理论与计算方法. 水利学报, (12): 39-45.
    杨勤科, 李锐, 1998. 论矢量 GIS 的基本信息元及其应用. 土壤侵蚀与水土保持学报, 4(1): 66-70.
    杨荣金, 傅伯杰, 刘国华, 等, 2004. 黄土丘陵沟壑区生态环境建设中的水问题——以延河流域为例. 环境科学, 25(2): 37-42.
    杨振怀, 崔宗培, 徐乾清等, 1990. 中国水利百科全书(第二卷). 北京: 水利电力出版社. p.853.
    杨志峰, 陈贺, 2006. 一种动态生态环境需水计算方法及其应用. 生态学报, 26(9): 2989-2995.
    杨志峰, 崔保山, 刘静玲, 2004. 生态环境需水评估方法与例证. 中国科学(D 辑,地球科学), 34(11): 1072-1082.
    杨志峰, 姜杰, 张永强, 2005b. 基于MODIS数据估算海河流域植被生态用水方法探讨. 环境科学学报, 25(4): 449 - 456.
    杨志峰, 尹民, 崔保山, 2005a. 城市生态环境需水量研究——理论与方法. 生态学报, 25(3): 389-396.
    杨志峰, 张远, 2003a. 河道生态环境需水研究方法比较. 水动力学研究与进展 A 辑, 18(3): 294-301.
    杨志峰等, 2003b. 生态环境需水量理论、方法与实践. 北京: 科学出版社.
    叶朝霞, 陈亚宁, 李卫红, 2007. 基于生态水文过程的塔里木河下游植被生态需水量研究. 地理学报, 62(5): 451-461.
    尹民, 崔保山, 杨志峰, 2005. 黄河流域城市生态环境需水量案例研究. 生态学报, 25(3): 397-403.
    英晓明, 李凌, 2006. 河道内流量增加方法 IFIM 研究及其应用. 生态学报, 26(5): 1567-1573.
    于龙娟, 夏自强, 杜晓舜, 2004. 最小生态径流的内涵及计算方法研究. 河海大学学报(自然科学版), 32(1): 18-22.
    余新晓, 陈丽华, 1996. 黄土地区防护林生态系统水量平衡研究. 生态学报, 16(3): 238-245.
    曾维华, 宋其龙, 陈荣昌, 2004. 城市河道生态环境需水研究——以湖南省常德市穿紫河为例. 生态环境, 13(4): 528-531.
    张丽, 董增川, 丁大发, 2003a. 生态需水研究进展及存在问题. 中国农村水利水电, (1): 13-15.
    张丽, 董增川, 徐建新, 2002. 黑河流域下游天然植被生态及需水研究. 灌溉排水学报, 21(4): 16-20.
    张丽, 董增川, 赵斌, 2003b. 干旱区天然植被生态需水量计算方法. 水科学进展, 14(6): 745-748.
    张玫, 贾新平, 魏洪涛, 2005. 南水北调西线一期工程调水地区河道内生态环境需水的分析与计量. 资源科学, 27(4): 180-184.
    张思玉, 杨辽, 陈戈萍, 2001. 生态用水的概念界定及其在西北干旱区实施的策略. 干旱区地理, 24(3): 277-282.
    张新海, 杨立彬, 王煜, 2002. 西北内陆河地区生态环境需水量初步分析. 人民黄河, 24(6): 13-14.
    张鑫, 蔡焕杰, 2001. 区域生态需水量与水资源调控模式研究综述. 西北农林科技大学学报(自然科学版), 29(增刊): 84-88.
    张远, 杨志峰, 2002. 黄淮海地区林地最小生态需水量研究. 水土保持学报, 16(2): 72-75.
    张远, 杨志峰, 2004. 黄河流域坡高地系统最小生态需水研究. 山地学报, 22(2): 154-160.
    张远, 郑丙辉, 王西琴, 等, 2007. 辽河流域浑河、太子河生态需水量研究. 环境科学学报, 27(6): 937-943.
    章光新, 邓伟, 何岩, 2002. 基于生态用水的地下水系统模拟与优化管理模型. 地理学报, 57(5): 611-618.
    赵文智, 常学礼, 何志斌, 等, 2006. 额济纳荒漠绿洲植被生态需水量研究. 中国科学 D 辑地球科学, 36(6): 559-566.
    赵西宁, 吴普特, 王万忠, 等, 2005. 生态环境需水研究进展. 水科学进展, 16(4): 617-622.
    赵欣胜, 崔保山, 杨志峰, 2005. 黄河流域典型湿地生态环境需水量研究. 环境科学学报, 25(5): 567-572.
    郑冬燕, 夏军, 黄友波, 2002. 生态需水量估算问题的初步探讨. 水电能源科学, 20(3): 3-6.
    郑红星, 刘昌明, 丰华丽, 2004. 生态需水的理论内涵探讨. 水科学进展, 15(5): 626-633.
    郑建平, 王芳, 华祖林, 等, 2005. 海河河口生态需水量研究. 河海大学学报(自然科学版), 33(5): 518-521.
    钟华平, 刘恒, 耿雷华, 等, 2006. 河道内生态需水估算方法及其评述. 水科学进展, 17(3): 430-434.
    衷平, 杨志峰, 崔保山, 等, 2005. 白洋淀湿地生态环境需水量研究. 环境科学学报, 25(8): 1119一1126.
    左其亭, 2002. 干旱半干旱地区植被生态用水计算. 水土保持学报, 16(3): 114-117.
    左其亭, 周可法, 杨辽, 2002. 关于水资源规划中水资源量与生态用水量的探讨. 干旱区地理, 25(4): 296-301.
    Adinarayana J., Gopal R. K., Krishna N. R., et al., 1999. A rule-based soil erosion model for a hilly catchment. Catena, 37: 309-318.
    Allen R. G., Pereira L. S., Raes D., et al., 1998. Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. Rome: FAO - Food and Agriculture Organization of the United Nations.
    Armentrout G. W., Wilson J. F., 1987. Assessment of low flows in streams in northeastern Wyoming. USGS Water Resources Investigations Report, 85-4246, 4(5): 533-538.
    Arthington A. H., King J. M., 1992. Development of an holistic approach for assessing environmental flow requirements of riverine ecosystems. In: Pigram J. J., Hooper B. P., (Eds.), Water Allocation for the Environment. Armindale: the Center for Policy Research, University of New England. 69-76.
    Arthington A. H., Pusey B. J., 1993. Instream flow management in Australia: methods, deficiencies and future direction. Australian Biology, 6(1): 52-60.
    Barbour M. T., Gerritsen J., Snyder B. D., et al., 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second edition. United States Environmental Protection Agency; Office of Water; Washington, D.C., EPA 841-B-99-002.
    Bartschi D. K., 1976. A habitat discharge-method of determining instream flows for aquatic habitat. In: Orsborn J. F., Allman C. H., (Eds), Proceedings of Symposium and Specility Conference on Instream Flow Needs II. Bethesda: American Fisheries Society. Maryland. 285-294.
    Bennett M., McCosker R., 1994. Estimating environmental flow requirements of wetlands. Environmental Flows Seminar 1994, Australian Water and Wastewater Association, canberra.
    Boner M. C., Furland L. P., 1982. Seasonal treatment and variable effluent quality based on assimilative capacity. Journal Water Pollution Control Field, 54: 1408-1416.
    Bovee K. D., 1982. A guide to stream habitat analysis using the instream flow incremental methodology. US Fish and Wildlife Service FWS/OBS-82/26.
    Breen P., Walsh C., Nichols S. J., et al., 1999. Urban AUSRIVAS: An evaluation of the use of AUSRIVAS models for urban stream assessment. Report No. 5, LWRRDC Occasional Paper 12/99.
    Chessman B. C., 1995. Rapid assessment of rivers using macroinvertebrates: a procedure based on habitat-specific sampling, family-level identification, and a biotic index. Australian Journal of Ecology, 20: 122-129.
    Clifford D. R., 2000. Instream flows in Washington State - past, present and future, draft. Water Resources Program, Washington Department of Ecology.
    Costanza R., Mageau M., 1999. What is a healthy ecosystem? Aquatic Ecology, 33: 105-115.
    Covich A., 1993. Water in crisis: a guide to the world's fresh water resources. In: Peter H.G.(Eds.), Water and Ecosystem. New York: Oxford University Press. 40-55.
    Davies P. E., 2000. Development of a national bioassessment system (AUSRIVAS) in Australia. In: Wright J. F., Sutcliffe D. W., Furse M. T., (eds.), Assessing the Biological Quality of Freshwaters. RIVPACS and Other Techniques. Freshwater Biological Association, Ambleside. 113-124.
    Davis J. A., Froend R. H., Hamilton D. P., et al., 2001. Environmental water requirements to maintain wetlands of national and international importance. Environmental Flows Initiative Technical Report No.1; Commonwealth of Australia, Canberra.
    Dunbar M. J., Gustard A., Acreman M. C., et al., 1998. Overseas approaches to setting river flow objectives. R&D Technical Report W6B(96)4, Institute of Hydrology, UK, p.80.
    DWAF(Department of Water Affairs and Forestry), 1999. Resource Directed Measures for Protection of Water Resources. Volume 4: Wetland Ecosystems. Version 1.0. Institute for Water Quality Studies, Department of Water affairs and Forestry: Pretoria, South Africa.
    Elser A., 1972. A partial evaluation and application of the 'Montana method' of determining stream flow requirements. In: A Transcript of Proceedings of the Instream Flow Requirement Workshop. 15-16 March 1972. Pacific Northwest River Basin Commission: Portland, Oregon. 3-11.
    Falkenmark M., 1995. Coping with water scarcity under rapid population growth. Conference of SADC Minsters,Pretoria. 23-24.
    FRIEND, 1997. Flow regimes from international experimental and network data. Third Report: 1994-1997, Cemagref.
    Furse M. T., Wright J. F., Armitage P. D., et al., 1981. An appraisal of pond - net samples for biological monitoring of lotic macroinvertebrates. Water Research, 15: 679-689.
    Gippel G. J., Stewardson M. J., 1998. Use of wetted perimeter in defining minimum environmental flows. Regulated Rivers:Research and Management, 14(1): 53-67.
    Gleick P. H., 1998a. Water in crisis:paths to sustainable water use. Ecological Applications, 8(3): 571-579.
    Gleick P. H., 1998b. The World's Water 2000-2001:The Biennial Report on Freshwater Resources. Washington DC,USA: Island Press.
    Gleick P. H., 2000. The changing Water Paradigm:A Look at Twenty-first Century Water Resource Development. Water International, 25(1): 127-138.
    Gordon N. D., McMahon T. A., Finlayson B. L., 1992. Stream Hydrology:An Introduction for Ecologists. Chichester: Wiley. pp526.
    Gore J. A., Nestler J. M., 1988. Instream flow studies in perspective. Regulated Rivers:Research and Management, 2: 93-101.
    Gustard A., Bukkock A., Dixon J. M., 1992. Low flow estimation in the United Kingdom. Technical Report No.108, Institute of Hydrology, Wallingford, UK.
    Gustard A., Gross R., 1989. Low flow regimes of northern and western Europe. FRIEND in Hydrology. IAHS publication, 187: 205-212.
    Hart B. T., Davies P., Humphrey C., et al., 2001. Application of the Australian river bioassessment system (AUSRIVAS) in the Brantas River,East Java, Indonesia. Journal of Environmental Management, 62: 93-100.
    Hawkins C. P., Norris R. H., 1997. Abstract - Comparison of the ability of multimetric and multivariate assessment techniques to detect biological impairment in mountainous streams of California. Bulletin of the North American Benthological Society, 14(1): 96.
    Herrero J., Casterad M. A., 1999. Using Satellite And Other Data To Estimate The Annual Water Demand Of An Irrigation District. Environmental Monitoring and Assessment, 55(2): 305-317.
    Jorde K., 1996. Ecological evaluation of instream flow regulation based on temporal and spatial variability of bottom shear stress and hydraulic habitat quality. In: Leclerc M., et al., Ecohydraulics 2000, Proceedings of the 2nd international symposium on habitat hydraulics. Quebec City.
    Kerans B. L., Karr J. R., Ahlstedt S. A., 1992. Aquatic invertebrate assemblages: spatial and temporal differences among sampling protocols. Journal of the North American Benthological Society, 11: 377-390.
    King J. M., Louw D., 1995. Assessment of the instream flow requirements of rivers using the building block methodology. In: Arthington A., (Eds.), Tugela River IFR Workshop Department of Water Affairs and Forestry. Montello Lodge,South Africa. 59-75.
    King J. M., Louw D., 1998. Instream flow assessments for regulated rivers in South Africa using the Building Block Methodology. Aquatic Ecosystem Health and Management, 1(2): 109-124.
    King J. M., Tharme R. E., Brown C., 1999. Definition and implementation of instream flows. World Commission on Dams, Thematic Report.
    Kite G., 1997. Manual for the slurp hydrological model, V. 11. National Hydrology Research Institute, Saskatchewan , Canada.
    Kouwen N., Seglenieks F., Soulis E. D., 1995. The use of distributed rainfall data and distributed hydrological models for the estimation of peak flow for the Columbia River Basin. Progress Report No. 2 , Waterloo Research Institute, Waterloo.
    Lenat D. R., Barbour M. T., 1994. Using benthic macroinvertebrate community structure for rapid, cost-effective, water quality monitoring: Rapid bioassessment. In: Loeb S. L., Spacie A., (Eds.), Biological Monitoring of Aquatic System. Lewis Publishers. Ann Arbor, MI.
    Levary R. R., Wan K., 1998. A simulation approach for handling uncertainty in the analytic hierarchy process. European Journal of Operational Research, 106: 116-122.
    Liu C. M., Men B. H., 2007. An ecological hydraulic radius approach to estimate the instream ecological water requirement. Progress in Natural Science, 17(3): 320-327.
    Marchant R., Hirst A., Norris R., et al., 1999. Classification of macroinvertebrate communities across drainage basins in Victoria, Australia: consequences of sampling on a broad spatial scale for predictive modelling. Freshwater Biology, 41: 253-268.
    Mathews R. C., Bao Y., 1991. The Texas method of preliminary instream flow determination. Rivers, 2(4): 295-310.
    McCosker R. O., 1998. Methods addressing the flow requirements of wetland, riparian and floodplain vegetation. In: Arthington A. H., Zalucki J. M., (Eds), Comparative Evaluation of Environmental Flow Assessment Techniques: Review of Methods. Occasional Paper No. 27/98. Land and Water Resources Research and Development Corporation: Canberra, Australia. 47-65.
    Metzeling L., Chessman B., Hardwick R., et al., 2003. Rapid assessment of rivers using macroinvertebrates: the role of experience, and comparisons with quantitative methods. Hydrobiologia, 510: 39-52.
    Metzeling L., Miller J., 2001. Evaluation of the sample size used for the rapid bioassessment of rivers using macroinvertebrates. Hydrobiologia, 444: 159-170.
    Mosely M. P., 1982. The effect of changing discharge on channel morphology and instream uses in a braided river, Ohau River, New Zealand. Water Resources Researches, 18: 800-812.
    Moss B., 1999. Ecological challenges for lake management. Hydrobiologia, 395/396: 3-11.
    Nehring R. B., 1979. Evaluation of instream flow methods and determination of water quantity needs for streams in the State of Colorado. Colorado Division of Wildlife: Fort Collins, CO.
    Nelson F. A., 1980. Evaluation of selected instream flow methods in Montana. In: In: Proceeding of the Annual Conference of the Western Association of Fish and Wildlife Agencies. 412-432.
    Nestler J. M., Milhous R. T., Layzer J. B., 1989. Instream habitat modeling technique. In: Gore J. A., Petts G. E., (eds). Alternatives in Regulative River Management. Boca Raton: CRC Press. 295-315.
    Ni J. R., Li Y. K., 2003. Approach to soil erosion assessment in terms of land-use structure changes. Journal of Soil and Water Conservation, 58(3): 158-169.
    Nienhuis P. H., 1998. New concepts for sustainable management of river basins. Netherlands: Backuys Publishers. 7-33.
    Norris R. H., Prosser I., Young B., et al., 2001. The Assessment of River Condition (ARC): An Audit of the Ecological Condition of Australian Rivers. National Land and Water Resources Audit, Canberra, Australia.
    O'SHEA D. T., 1993. Estimating minumum instream flow requirements for Minnesota streams from hydrologic data and watershed characteristics. North American Journal of Fisheries Management, 15: 569-578.
    Parsons M., Thoms M. C., Norris R. H., 2004. Development of a standardised approach to river habitat assessment in Australia. Environmental Monitoring and Assessment, 98: 109-130.
    Petts G. E., 1996. Water allocation to protect river ecosystems. Regulated Rivers:Research and Management, 12(4-5): 353-365.
    Philip J. R., 1966. Plant water relations: Some physical aspects. Annual Review of Plant Physiology, 17: 245-268.
    Plafkin J. L., Barbour M. T., Porter K. D., et al., 1989. Rapid Bioassessment Protocols for use in Streams and Rivers-Benthic Macroinvertebrates and Fish. Office of Water Regulations and Standards, US Environmental Protection Agency, Washington, D.C., EPA/440/4-89/001.
    Price D. R. H., 1999. Do reservoirs need ecological management? Hydrobiologia, 395/396: 117-121.
    Rapport D. J., 1989. What constitutes ecosystem health. Perspectives in Biology and Medicine, 33: 120-132.
    Reiser D. W., Wesche T. A., Estes C., 1989. Status of instream flow legislation and practice in North America. Fisheries, 14: 22-29.
    Resh V. H., Jackson J. K., 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In: Rosenberg D. M., Resh V. H., (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. New York: Chapman and Hall. 195-233.
    Reynoldson T. B., Day K. E., Norris R. H., 1995. Biological guidelines for freshwater sediment based on benthic assessment of sediment (the BEAST) using a multivariate approach for predicting biological state. Australian Journal of Ecology, 20: 198-219.
    Richardson B. A., 1986. Evaluation of instream flow methodologies for freshwater fish in New South Wales. In: Campbell I. C., (Eds.), Stream protection: the management of rivers for instream uses. Water Studies Center, Chisholm Institute of Technology, Austrlia. 143-167.
    Riggs H. C., 1976. Effects of man on low flows. In: American Society of Civil Engineers, Proceedings of the Conference on Environment,Aspects Irrigation and drainage. New York: University of Ottawa. p.631.
    Saaty T. L., 1980. The Analytic Hierarchy Process. New York: McGraw-Hill.
    Schumn S. A., 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bull. Geol. Surv. Prof. Paper 282-A.
    Sheail J., 1984a. Constraints on water-resources development in England and Wales:concept and management of compensation flows. Journal of Environmental Management, 19: 351-361.
    Sheail J., 1984b. Historical development of setting compensation flows. In: Gustard A., Cole G., Marshall D., et al., A study of compensation flows in the UK, Report 99. Wallingford: Institute of Hydrology. Appendix(I).
    Stalnaker C. B., Lamb B. L., Henriksen J., et al., 1994. The instream flow incremental methodology: a primer for IFIM. National Ecology Research Center, Fort Collins: International Publication, Colorado.
    Statzner B., Higler B., 1985. Questions and comments on the river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 42: 1038-1044.
    Strahler A. N., 1964. Quantitative geomorphology of drainage basins and channel networks. In: Chow V. D., (ed.), Handbook of Applied Hydrology. New York: McGraw-Hill Book Co.
    Sudaryanti S., Trihadiningrum Y., Hart B. T., et al., 2001. Assessment of the biological health of the Brantas River, East Java, Indonesia using the Australian River Assessment System (AUSRIVAS) methodology. Aquatic Ecology, 35: 135-146.
    Taylor B. R., 1997. Rapid assessment procedures: radical reinvention or just sloppy science? Human and Ecological Risk Assessment, 3: 1005-1016.
    Tennant D. L., 1976. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1(4): 6-10.
    Tharme R. E., 1996. Review of international methodologies for the quantification of the instream flow requirement of rivers. Water law review final report for policy development for the Department of Water Affairs and Forestry, Pretoria. Freshwater Research Unit, University of Cape Town, South Africa.
    Tharme R. E., 2003. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Application, 19: 397-441.
    Thoms M. C., Cullen P., 1998. The impact of irrigation withdrawals on inland river systems. Rangeland Journal, 20(2): 226-236.
    Thoms M. C., Sheldon F., 2000. Water resource development and hydrological change in a large dryland river:the Barwon-Darling River,Australia. Journal of Hydrology, 228: 10-21.
    Thoms M. C., Sheldon F., 2002. An ecosystem approach for determining environmental water allocations in Australian dryland river systems:the role of geomorphology. Geomorphology, 47: 153-168.
    Thoms M. C., Sheldon F., Roberts J., et al., 1996. Scientific panel assessment of environmental flows for the Barwon-Darling River. A Report to the Technical Services Division of the New South Wales Department of Land and Water Conservation.
    Turak E., Flack L. K., Norris R. H., et al., 1999. Assessment of river condition at a large spatial scale using predictive models. Freshwater Biology, 41: 283-298.
    Vannote R. L., Minshall G. W., Cummins K. W., et al., 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37: 130-137.
    Ward J. V., 1989. The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society, 8: 2-8.
    Wright J. F., 1995. Development and use of a system for predicting macroinvertebrates in flowing waters. Australian Journal of Ecology, 20: 181-197.
    Wright J. F., Furse M. T., Moss D., 1998. River classification using invertebrates: RIVPACS applications. Aquatic Conservation: Marine and Freshwater Ecosystems, 8: 617-631.
    Wright J. F., Furze M. T., Armitage P. D., 1994. Use of macroinvertebrate communities to detect environmental stress in running waters. In: Sutclifee D. W., (ed.), Water Quality and Stress Indicators in Marine and Freshwater Ecosystems: Linking Levels of Organisation (Individuals, Populations and Communities). Freshwater Biological Association, Ambleside. 15-34.
    Wright J. F., Moss D., Armitage P. D., et al., 1984. A preliminary classification of running-water sites in Great Britain based on macro-invertebrate species and the prediction of community type using environmental data. Freshwater Biology, 14: 221-256.
    Wright J. F., Moss D., Clarke R. T., et al., 1997. Biological assessment of river quality using the new version of RIVPACS (RIVPACS III). In: Boon P. J., Howell D. L., (eds), Freshwater Quality: Defining the Indefinable? The Stationery Office, Edinburgh. 102-108.
    Xia J., Feng H. L., Zhan C. S., et al., 2006. Determination of a Reasonable Percentage for Ecological Water-Use in the Haihe River Basin, China. Pedosphere, 16(1): 33-42.
    Zalewski M., 2000. Ecohydrology - the scientific background to use ecosystem properties as management tools toward sustainability of water resources. Ecological Engineering, 16: 1-8.
    Zalewski M., Janauer G. A., Jolankaj G., 1997. Ecohydrology:a new paradigm for the sustainable use of aquatic resources. In:Conceptual Background, Working Hypothesis, Rationale and Scientific Guidelines for the Implementation of the IHP-V Projects 2.3:2.4.UNESCO, Paris Technical Documents in Hydrology No. 7. .
    Zhang Y., Yang Z., Wang X., 2006. Methodology to determine regional water demand for instream flow and its application in the Yellow River Basin. Journal of Environmental Sciences, 18(5): 1031-1039.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700