用户名: 密码: 验证码:
几种芳香族化合物光化学重排反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机光化学反应是指有机分子在光诱导条件下发生的反应,具有操作简单、反应快、副产物少等优点,符合绿色化学的要求,因而受到广大有机光化学爱好者的广泛关注。作为众多有机光化学反应类型的其中之一,有机光化学重排反应不但具有环保、高效的优点,而且在合成复杂结构的化合物及探索新型化合物方面具有至关重要的作用。本论文以探索新型有机光化学重排反应为目标,以肉桂酸酯及芳香类γ,δ-环氧酮类化合物作为研究对象,在液相中研究了它们的光化学反应过程,所发现的新型有机光化学重排反应提出了可能的反应机理,并对其在有机合成领域的潜在应用价值进行了初步分析。
     在液相环境中研究了具有不同结构的肉桂酸酯衍生物的光化学反应行为,发现了这类化合物在液相环境中经过一个新型有机光化学重排反应过程产生异色酮衍生物。以原料转化率及光化学产物的收率为衡量标准,采用气相色谱作为分析手段讨论了反应介质、光照时间对该新型光化学重排反应的影响,结果表明以500W高压汞灯作为紫外光来源,室温条件下,以充分排除空气的干燥苯溶液作为反应介质时,该光化学重排反应产物的收率最高达89.6%;底物结构对光化学反应行为影响的分析结果显示底物结构中甲酰基氢与酯羰基α-位氢的共同存在是该重排反应过程能否顺利发生的关键因素;分析了该新型光化学重排反应的机理及在合成异色酮类化合物方面潜在的应用性;初步讨论了光化学不对称合成异色酮衍生物的可能性。
     研究了芳香类γ,δ-环氧酮化合物在液相环境中的光化学反应行为,发现了这类光化学底物经过Norrish type-Ⅱ与无路易斯酸催化的semi-pinacolrearrangement之间的新型光化学串联反应产生为苯并环丁酮类化合物。条件优化结果表明以经过除氧的干燥苯溶液作为反应介质,以450W中压汞灯提供的经过石英玻璃过滤后的紫外光作为激发光源时,苯并环丁酮的分离产率最高可达76.7%;分析了底物结构对该光化学重排反应的影响发现底物结构中酮羰基γ-与δ-位氢的共同存在是该光化学重排反应能否发生的关键;提出了可能的光化学反应机理并初步讨论了该新型光化学重排反应在其他结构的γ,δ-环氧酮体系中的普适性及合成苯并环丁酮衍生物方面的应用性。
     采用450W中压汞灯作为激发光来源,在充分排除空气的干燥苯溶液中研究了带有非末端环氧基的芳香类γ,δ-环氧酮的光化学反应行为,发现了该类分子可以经过光诱导环氧重排与分子内1,5-自由基环化之间的新型光化学串联反应转化为苯并环戊酮衍生物。条件优化实验结果表明以450W中压汞灯提供的经过石英玻璃过滤后的紫外光作为激发光源,同时采用没有任何添加剂的干燥苯溶液作为反应介质时,苯并环戊酮分离收率可达62.0%以上;提出了可能的光化学反应机理;初步分析了该新型光化学重排反应在苯并环戊酮衍生物合成方面的应用性;确定了苯并环戊酮的立体构型。
Organic photochemical reaction (OPR) focuses on the conversion frommolecule(s) to other molecule(s) induced by light, which shows many advantages,such as simple operation and post-processing, almost no waste is generated, littleside-products, et al. Photochemical rearrangement reaction is an important OPR dueto its application for the preparation of highly functionalized compounds whichwould be difficult to access with standard chemical reactions in the ground state andtotal synthesis of natural products. In the thesis, cinnamate esters and aromaticγ,δ-epoxy ketones were selected as the research objects, the photochemistry of themwas studied in solution under variable conditions.
     The photochemistry of cinnamate esters was studied using500Whigh-pressure mercury lamp as light resource in different solution at roomtemperature. It’s found that cinnamate esters could be conversed to polysubstitutedisochromanone derivatives via a novel photochemical rearrangement reaction. Theinfluence of solvents, time of irradiation on this reaction was studied by GC basedon the conversation of substrate and yield of photoproduct, the results showed thatthe highest yield of isochromanone was89.6%when the experiment was advancedin degassed anhydrous benzene with500W high-pressure mercury lamp as lightresource. After studies on the proposed mechanism of this novel photochemicalrearrangement reaction, the application of it to aromatic α,β-unsaturated ketone andpreparation of isochromanone derivatives were discussed preliminarily. At last, thephotoinduced asymmetric synthesis of isochromanone was studied in solution.
     The preparation of aromatic γ,δ-epoxy ketones and photochemistry of themwas studied in solution and a novel photorearrangement reaction was found, namedNorrish type-Ⅱ/semi-pinacol rearrangement tandem reaction. After theoptimization of conditions, it can be concluded that the yield photoproductbenzocyclobutanone was highest with anhydrous degassed benzene solution assolvent and450W medium-pressure mercury lamp as light source. Additionally, thephotorearrangement reaction couldn’t be happened if the γ-H or δ-H of ketonecarbonyl was substituted with methyl. At last, the proposed mechanism andapplication of it in organic synthesis were discussed simply.
     The photochemistry of aromatic γ,δ-epoxy ketones with substituted epoxygroup was studied in solution using450W medium-presure mercury lamp as lightsource. The results revealed that these substrates could be conversed tobenzocyclopentenones by a novel photoinduced epoxy rearrangement/1,5-biradicalscyclization tandem reaction. The result of analysis of solvent, wavelengths and lewis acid on this photorearrangement reaction showed anhydrous degassedbenzene was the best solvent, the yield of benzocyclopentenone could be higherthan80.0%under the optimized condition. The proposed methanism of thisreaction and the potential application of this new photochemical rearrangementreaction to synthesis of benzocyclopentenone were studied be analysis theabsolutely structure of the photoproduct.
引文
[1]刑其毅,徐瑞秋,周政.基础有机化学(第二版,下册)[M].北京:高等教育出版社,1994:807~807.
    [2] Protti S, Dondi D, Fagnoni M, Albini A., et al. Photochemistry in Synthesis:Where, When, and Why [J]. Pure Appl. Chem.,2007,79(11):1929~1938.
    [3] Hoffman N. Photochemical Eeactions as key Steps in Organic Synthesis [J].Chem. Rev.,2008,108:1052~1103.
    [4] Jasperse C. P, Curran.D. P. Radical Reactions in Natural Product Synthesis [J].Chem. Rev.,1991,91:1237~1386.
    [5] Itoh A, Kodama T, Inagaki S., et al. Photooxidation of Arylmethyl Bromideswith Mesoporous Silica FSM-16[J]. Org. Lett.,2000,2(16):2455~2457.
    [6] Rejt M., Saltzman S, Acher A. J. Photodecomposition of Propachlor [J]. J.Agric. Food Chem.,1984,32(2):226~230.
    [7] Yang C, Xia W J, Scheffer J R., et al. Orbital-overlap Control of the Reactivityof a Bicyclic1-Hydroxy-1,4-Biradical [J]. Angew. Chem. Int. Ed.,2005,44:5087~5089.
    [8] Xia W J, Scheffer J R, Botoshansky M., et al. Photochemistry of1-isoPropylcycloalkyl Aryl Ketones: Ring Size Effects Medium effects andasymmetric induced [J]. Org. Lett.,2005,7(7):1315~1318.
    [9] Xia W J, Yang C, Patrick B O., et al. Asymmetric Synthesis of Dihydrofuransvia a Formal retro-Claisen Photorearrangement [J]. J. Am. Chem. Soc.,2005,127:2725~2730.
    [10] Griesser T, Adams J, Wappel J., et al. Micrometer and Nanometer ScalePattering Using the Photo-Fries Rearrangement: Toward Selective Executionof Molecular Transformations with Nanoscale Spatial Resolution [J]. Langmuir,2008,24:12420~12425.
    [11] Miranda M A, Galinda F. CRC Handbook of Organic Photochemistry andPhotobiology [M], CRC Press, Boca Raton,2nd edn,2004, ch.42~1.
    [12] Gohdo M, Takamasu T, Wakasa M., et al. Photochemical Primary Process ofPhoto-Fries Rearrangement Reaction of1-Naphthyl Acetate as Studies by MFEProbe [J]. Phys. Chem. Chem. Phys.,2011,13:755~761.
    [13] Zarkadis A K, Georgakilas V, Perdikomatis G P., et al. Triplet-vs Singlet-stateImposed Photochemistry. The Role of Substituent Effects on the Photo-Friesand Photodissociation Reaction of Triphenylmethyl Silanes [J]. Photochem.Photobiol. Sci.,2005,4:469~480.
    [14] Tung C H, Xu X H. Selectivity in the Photo-Fries Reaction of PhenylPhenylacetates Included in a Nafion Membrane [J]. Tetrahedron Lett.,1999,40:127~130.
    [15] Koodanjeri S, Pradhan A R, Kaanumalle L S., et al. Cyclodextrin-mediatedRegioselective Photo-Fries Reaction of1-Naphthyl Phenyl Acylates [J].Tetrahedron Lett.,2003,44:3207~3210.
    [16] Kawatsuk N, Neko T, Kurita M. Axis-selective Photo-Fries Rearrangement andPhotoinduced Molecular Reorientation in Liquid Crystalline Polymer Films [J].Macromolecules,2011,44:5736~5742.
    [17] Marin M, Lhiaubet-Vallet V, Miranda M A., et al. Site-dependent Photo-FriesRearrangement within Serum Albumins [J]. J. Phys. Chem.B,2011,115:2910~2915.
    [18] López C S, Balsells R E, Bonesi S M., et al. A mild and Convenient One-potPhotochemical Synthesis of Chroman-4-one Derivatives. The Photo-FriesRearrangement of (hetero)Aryl3-methyl-2-butenoate Esters under BasicCatalysis [J]. Tetrahedron Lett.,2010,51:4387~4390.
    [19] Park K K, Lee H J, Kim E H., et al. Facile Synthesis and Photo-FriesRearrangement of2-Benzoyl-4-Benzoyloxyphenol Leading to Dibenzoyldi-hydroxybenzene Derivatives [J]. J. Photochem. Photobio. A: Chem.,2003,59:17~21.
    [20] Park K K, Han I K, Park J W., et al. Photochemical Synthesis of CyclophanesContaining Tethered Benzofuran Rings [J]. J. Org. Chem.,2001,66:6800~6802
    [21] Park K K, Kim S H, Park J W., et al. Synthesis of Benzo [1,2-b:4,5-b’]difuranDerivatives Utilizing Concomitant Photocyclization and Photo-FriesRearrangement Reactions [J]. J. Photochem. Photobio. A: Chem.,2004,163:241~247.
    [22] Magauer T, Martin H J, Mulzer J., et al. Total Synthesis of the AntibioticKendomycin by Macrocyclization using Photo-Fries Rearrangement andRing-closing Metathesis [J]. Angew. Chem. Int. Ed.,2009,48:6032~6036.
    [23] Magnus P, Lescop C. Photo-Fries Rearrangement for the Synthesis of theDiazonamide Macrocycle [J]. Tetrahedron Lett.,2001,42:7193~7196.
    [24] Cheung C M, Goldberg F W, Magnus P., et al. An Expedient Formal TotalSynthesis o(-)-Diazonamide A via a Powerful, Stereoselective O-aryl to C-arylMigration to Form the C10Quaternary Center [J]. J. Am. Chem. Soc.,2007,129:12320~12327.
    [25] Bellu D, Hrdlovi P. Photochemical Reaarrangement of Aryl, Vinyl, andSubstituted Vinyl Esters and Amides of Carboxylic Acids [J]. Chem. Rev.,1967,67(6):599~609.
    [26] Bonesi S M, Balsells R E. Photochemistry of N-Acetyl and N-BenzoylCarbazoles: Photo-Fries Rearrangement and Photoinduced Single ElectronTransfer [J]. J. Photochem. Photobio. A: Chem.,1997,110:271~284.
    [27] Ferrini S, Ponticelli F, Taddei M., et al. Convenient Synthetic Approach to2,4-Disubstituted Quinazolines [J]. Org. Lett.,2007,9(1):69~72.
    [28] Guerrini G, Taddei M, Ponticelli F., et al. Synthesis of FunctionalizedQuinolines and Benzo[c][2,7]Naphthyridines based on a Photo-FriesRearrangement [J]. J. Org. Chem.,2001,76:7597~7601.
    [29] Ferrini S, Ponticelli F, Taddei M., et al. Rapid Approach to3,5-Disubstituted1,4-Benzodiazepines via the Photo-Fries Rearrangement of Anilides [J]. J. Org.Chem.2006,71:9217~9220.
    [30] Park K K, Lee J J, Ryu J. Photo-Fries rearrangement of N-Arylsulfonamides toAminoaryl Sulfone Derivatives [J]. Tetrahedron,2003,59:7651~7659.
    [31] Galindo F. The Photochemical Rearrangement of Aromatic Ethers A Review ofthe photo-Claisen reaction [J]. J. Photochem. Photobio. C: PhotoChem.Reviews.,2005,6:123~138.
    [32] Hageman H J, Louwerse H L, M s W J., et al. The Photoreactions of someDiaryl Ethers [J]. Tetrahedron,1970,26:2045~2052.
    [33] Pincock A L, Pincock J A, Stefanova R., et al. Substituent Effects on the RateConstants for the Photo-Claisen Rearrangement of Allyl Aryl Ethers [J]. J. Am.Chem. Soc.,2002,124:9768~9778.
    [34] Haga N, Takayanagi H. Mechanisms of the Photochemical Rearrangement ofDiphenyl Ethers [J]. J. Org. Chem.,1996,61:735~745.
    [35] Jiménez M C, Miranda M A, Scaiano J C., et al. Two-photon Processes in thePhoto-Claisen and Photo-Fries Rearrangements. Direct Observation of DienicKetenes Generated by Photolysis of Transient Cyclohexa-2,4-Dienones [J].Chem. Commun.,1997,1487~1488.
    [36] Galindo F, Miranda MA, Tormos R., et al. Coupling of Phenoxy and AlkylRadicals Derived from the Photolysis of Phenol/Ketone Pairs: anIntermolecular Approach to the Photo-Claisen Rearrangement [J]. J.Photochem. Photobio. A: Chem.,1998,117:17~19.
    [37] Gu W Q, Warrier M, Schoon B. Understanding the Influence of Active (Zeolite)and Passive (Polyethylene) Reaction Cages ton Photo-Claisen Rearrangementsof Aryl Benzyl Ethers [J]. Langmuir,2000,16:6977~6981.
    [38] Syamala M S, Ramamurthy V. Modification of Photochemical Reactivity byCyclodextrin Complexation: Selectivity in Photo-Claisen Rearrangement [J].Tetrahedron,1988,44(23):7223~7233.
    [39] Sarma S J, Jones P B. Photochemistry of1,n-dibenzyloxy-9,10-Anthraquinones [J]. J. Org. Chem.,2010,75:3806~3813.
    [40] Luniwal A, Khupse R S, Reese M. Total Synthesis of Racemic and NaturalGlycinol [J]. J. Nat. Prod.,2009,72(11):2072~2075.
    [41] Zimmerman H E, Grunewald G L. The Chemistry of Barrelene. III. A UniquePhotoisomerization to Semibullvalene [J]. J. Am. Chem. Soc.,1966,88,183~184.
    [42] Zimmerman H E, Armesto D. Synthetic Aspects of the Di-π-ethaneRearrangement [J]. Chem. Rev.,1996,96,3065~3112.
    [43] Hixson S S, Mariano P S, Zimmerman H E., et al. The Di-π-methane andOxa-di-π-methane Rearrangements [J]. Chem. Rev.,1973,73(5):531~551.
    [44] Zimmerman H E, Welter T R. Control of Regioselectivity and Excited SingletReaction Rates by Substitution in the Di-π-methane Rearrangement.Mechanistic and Exploratory Photochemistry [J]. J. Am. Chem. Soc.,1978,100,4146~4162.
    [45] Mariano P S, Ko J K. The Di-π-methane Rearrangement. Stereochemistry[J]. J.Am. Chem. Soc.,1973,95(26):8670~8678.
    [46] Hart H, Love G M. Regiospecificity in Di-π-methane Photoisomerizations [J].J. Am. Chem. Soc.,1973,95(14):4592~4599.
    [47] Roughton A L, Muneer M, Demuth M. Efficient Chiral Crystallization andAsymmetric Synthesis via Solid-state Di-π-methane-type Photorearrangements[J]. J. Am. Chem. Soc.,1993,115(5):2085~2087.
    [48] Halton B, Kulig M, Perreten J., et al. Photocyclization of Aryl-substitutedAcetylenes, Application of Di-π-methane-like Rearrangements to Arylcylo-propene syntheses [J]. J. Am. Chem. Soc.,1971,93(9):2327~2329.
    [49] Dauben W G, Spitzer W A. Photochemistry of3,3-Diphenylcyclohexene. TheVinyl-aryl Di-π-methane Rearrangement in a Nonconjugated System [J]. J. Am.Chem. Soc.,1970,92(19):5817~5818.
    [50] J J, Lamberts M, Laarhoven W H. Photochemistry of2-Phenyl-1,2-Dihydronaphthalene. A Competition Between a Singlet State Di-π-methaneRearrangement and a Ring-opening Reaction [J]. J. Am. Chem. Soc.,1984,106(6):1736~1739.
    [51] Dura R D, Paquette L A. Ring Contraction of Bridgehead Sultams byPhotoinduced Di-π-methane Rearrangement [J]. J. Org. Chem.,2006,71,2456~2459.
    [52] Chang S Y, Huang S, Villarante N R, et al. Photochemical Reactions of1,3,3-Trimethylbcyclo [2.2.2] octa-5,7-dien-2-ones [J]. Eur. J. Org. Chem.,2006,20:4648~4657.
    [53] Padwa A, Brookhart T. Photochemical Migratory Aptitudes in theDi-π-methane Rearrangement of5,5-Diary-substituted2,5-Dihydrofurans [J]. J.Org. Chem.,1979,44(23):4021~4030.
    [54] Elitzin V I, Harvey K A, Kim H. Development of a New Synthesis for theLarge-scale Preparation of Triple Reuptake Inhibitore (-)-GSK1360707[J].Org. Process Res. Dev.,2010,14:912~917.
    [55] Petronijevic F R, Wipf P. Total Synthesis of (±)-Cycloclavine and(±)-5-Epi-cycloclavine [J]. J. Am. Chem. Soc.,2011,133:7704~7707.
    [56] Look S A, Fenical W, Engen D V. Erythrolides: Unique Marine DiterpenoidsInterrelated by a Naturally Occuring Di-π-methane Rearrangement [J] J. Am.Chem. Soc.,1984,106:5027~5028.
    [57] Dauben W G, Spitzer W A, Boden R M, et al. A Novel PhotochemicalRearrangement-elimination of an Allylic Alcohol Having a Di-π-methaneStructure [J]. J. Org. Chem.,1971,36(16):2834~2835.
    [58] Uppilli. S. Ramamurthy. V. Enhanced Enantio-and Diastereoselectivities viaConfinedment: Photorearrangement of2,4-Cyclohexadienones Included inZeolites [J]. Org. Lett.,2002,4(1):87~90.
    [59] Hsu L F, Chang C P, Li M C, et al. Bicyclo[3.2.1] octenones as BuildingBlocks in Natural Products Synthesis.1. Formal Synthesis of(.+-.)-Mussaenoside and (.+-.)-8-Epiloganin Aglucones [J]. J. Org. Chem.,1993,58:4756~4757.
    [60] Y D J, Bon D, Banwell M G, Cade I A, et al. The Total Synthesis of(-)-Connatusin A, a Hirsutane-type Sesquiterpene Isolated from the FungusLentinus Connatus BCC8996[J]. Tetrahedron,2011,67:8348~8352.
    [61] Y D J, Bon D, Banwell M G, Willins A C, et al. A Chemoenzymatic TotalSynthesis of the Hirsutene-type Sesquiterpene (+)-Connatusin B from Toluene[J]. Tetrahedron,2010,66:7807~7814.
    [62] Banwell M G, Austin K A B, Willins A C, et al. Chemoenzymatic TotalSyntheses of the Linear Triquinane-type Natural Products (+)-Hirsutic Acidand (-)-Complicatic Acid from Toluene [J]. Tetrahedron,2007,63:6388~6403.
    [63] Austin K A B, Banwell M G, Harfoot G J, et al. Chemoenzymatic Syntheses ofthe Linear Triquinane-type Sesquiterpenes (+)-Hirsutic Acid and(-)-Complicatic Acid [J]. Tetrahedron Lett.,2006,47:7381~7384.
    [64] Singh V, Vedantham P, Sahu P K, et al. Reactive Species from Aromatics andOxa-di-π-methane Rearrangement: a Stereoselective Synthesis of (±)-Hirsutenefrom Salicyl Alcohol [J]. Tetrahedron,2004,60:8161~8169.
    [65] Armesto D, Gallego M G, Horspool W M, et al. A New PhotochemicalSynthesis of Cyclopropanecarboxylic Acids Present in Pyrethroids by theAza-di-π-methane Rearrangement [J]. Tetrahedron,1995,51(33):9223~9240.
    [66] Armesto D, Gallego M G, Horspool W M, et al. General Synthesis Method byPhotochemical Process of Cyclopropanic Components Present in NaturalPyrethrines and in Synthetic Pyrethroids and their1-Aza-1,4,6TrianicPrecursors.1991, Patent ES9100648.
    [67] Wong J P K, Fahmi A A, Griffin G W, et al. Photo-and ThermoinducedGeneration of1,3-Diaryl Carbonyl Ylides from2,3-Diaryloxiranes1,3-DipolarCycloadditions to Dipolarophiles [J]. Tetrahedron,1981,37(19):3345~3355.
    [68] Ariamala G., Sumathi T, Balasubramanian K K, et al. Photochemical Studies on3,4-Epoxy-3,4-dihydro-2H-1-benzopyrans [J]. Proc. Indian Acad. Sci.(Chem.Sci.),1992,104(6):753~757.
    [69] Paulson D R, Korngold G, Jones G. Photochemistry of Epoxides. The AcetoneSensitized Rearrangement of3,4-Epoxyolefins [J]. Tetrahedron Lett.,1972,17:1723~1726.
    [70] Hasegawa E, Ishiyama K, Horaguchi T, et al. Exploratory Study onPhotoinduced Single Electron Transfer Reactions of α,β-Epoxy Ketone withAmines [J]. J. Org. Chem.,1991,56:1631~1635.
    [71] Kumar C, Ramaiah V D, Das P K, et al. Photochemistry of Aromaticα,β-Epoxy Ketones. Substituent Effects on Oxirane Ring-opening and RelatedYlide Behavior [J]. J. Org. Chem.,1985,50,2818~2825.
    [72] Pappas S P, Gresham R M, Miller M J, et al. Photoisomerization ofPhenalen-1-one Oxide. A New Course of Light-induced α,β-Epoxy KetoneRearrangement [J]. J. Am. Chem. Soc.,1970,92,5797~5798.
    [73] olomek T, tacko P, Veetil A T, et al. Photoenolization-induced OxiraneRing Opening in2,5-dimethylbenzoyl Oxiranes to Form PharmaceuticallyPromising Indanone Derivatives [J]. J. Org. Chem.,2010,75:7300~7309.
    [74] Hasegawa E, Ishiyama K, Fujita T, et al. Electron-transfer Reactions ofAromatic α,β-Epoxy Ketones: Factors That Govern Selective Conversion toβ-Diketones and β-Hydroxy Ketones [J]. J. Org. Chem.,1997,62:2396~2400.
    [75] Paquette L A, Lin H S, Belmont D T, et al. Application ofthe.alpha.,.beta.-Epoxy Ketone Photorearrangement to DiterpeneConstruction. Stereoselective Synthesis of (.+-.)-4a.beta.,10.beta.-DoladiolAcetate [J]. J. Org. Chem.,1986,51,4807~4813.
    [76] Hallet P, Muzart J, Pete J P, et al. Influence of Localization of the ExcitationEnergy on the Photochemistry of α,β-Epoxy Ketones [J]. J. Org. Chem.,1981,46:4275~4279.
    [77] Padwa A. Photochemical Transformations of a β,γ-Epoxy Ketone [J]. J. Am.Chem. Soc.1965,87:4205~4207.
    [78] Wenderski T A, Marsini M A., Pettus T R R, et al. A DiastereoselectiveFormal Synthesis of Berkelic Acid [J]. Org. Lett.,2011,13(1):118~121.
    [79] Khanapure S P, Biehl E R. Preparation of Novel4-Substituted6-methoxy-,6,7-dimethoxy-, and6,7-(methylenedioxy)isochroman-3-ones.2J. Org. Chem.,1990,55:1471~1475.
    [80] Ayral-Kaloustian S, Agosta W C. Absence of Stereoelectronic Control in thePhotochemistry of two Diastereomeric β,γ-Epoxy Ketones [J]. J. Am. Chem.Soc.,1980,102(1):314~323.
    [81] Murray R K, Morgan T K, Polley J A S, et al. The Photochemistry ofβ,γ-Epoxy Cyclic Ketones [J]. J. Am. Chem. Soc.,1975,97(4):938~940.
    [82] Chambers R J, Marples B A. Photolysis of Steroidal β,γ-Epoxy Ketones [J]. J.Chem. Soc. Chem. Commun.,1972,1122~1123.
    [83] Murray R K, Morgan T K, Polley J A S, et al. The Photochemistry ofβ,γ-Epoxy Cyclic Ketones [J]. J. Am. Chem. Soc.,1973,38(21):3805~3807
    [84] Frei V B, Eichenberger H, Wartberg B V, et al. Photoinduced Vinylogousβ-Cleavage of Epoxy-enones of the Inone Series [J]. Helv. Chim. Acta.,1977,60(8):2968~3006.
    [85] Ishii K, Gong D, Asai R, et al. Photochemical Reaction of α,β-Unsaturatedγ,δ-Epoxy Ketones and Nitriles in the Presence of Amine [J]. J. Chem. Soc.Perkin Trans.1,1990,855~861.
    [86] Su M D. The Mechanism of Photochemcial Rearrangement ofVinylcyclopropanes to Cyclopentenes [J]. Tetrahedron,1995,51(20):5871~5876.
    [87] Armesto D, Ramos A, Mayoral E P, et al. A Novel PhotochemicalVinylcyclopropane Rearrangement Yielding6,7-dihyo-5H-benzocyclohepteneDerivatives [J]. Org. Lett.,2000,2(2):183~186.
    [88] Armesto D, Ortiz M, Agarrabeitia A R, et al. Photochemical VinylcyclopropaneRearrangements of1-Substituted-3-(2,2-diphenylvinyl)-2,2-dimethylcyclo-propanes to Cyclopentenes and Different Heterocycles [J]. J. Org. Chem.,1999,64:1056~1060.
    [89] Sonawane H R, Bellur N S, Kulkarni D G, et al. PhotoinducedVinylcyclopropane-cycopentene Rearrangement (Photo-VCP-CP): aMethodology for Chiral Bicyclo [3.2.0] Heptenes and Their Application inNatural Product Synthesis [J]. Synlett.,1993,875~974.
    [90] Campos P J, Sodevilla A, Sampedro D, et al. N-Cyclopropylimine-1-pyrrolineRearrangement. A Novel Photochemical Reaction [J]. Org. Lett.,2001,3(25):4087~4089.
    [91] Campos P J, Sodevilla A, Rodriguez M A, et al. Mechanism of the N-cyclo-propylimine-1-pyrroline Photorearrangement [J]. J. Am. Chem. Soc.,2005,127:441~448.
    [92] Sodevilla A, Sampedro D, Campos P J, et al. The N-cyclopropylimine-1-pyrroline Photorearrangement as a Synthetic tool: Scope and Limitations [J].J. Org. Chem.,2005,70:6976~6979.
    [93] Lacount R B, Griffin C E A. Photo-induced Arbuzov Rearrangement ofTrialkyl Phosphotes [J]. Tetrahedron Lett.,1965,35:3071~3074.
    [94] Mullah K B, Bentrude W G. Photo-Arbuzov Rearrangement Route to AcyclicNucleoside Benzylphosphonates [J]. J. Org. Chem.,1991,56:7218~7224.
    [95] Landis M S, Turro N J, Bhanthumnavin W, et al. Photo-ArbuzovRearrangement of Cyclic Phosphite Systems [J]. J. Organometal. Chem.,2002,646:239~246.
    [96] Ganapathy S, Sekhar B B V S, Cairns S M, et al. Photo-ArbuzovRearrangement of Dimethyl Benzyl and Dimethyl p-Aceylbenzyl Phosphite [J].J. Am. Chem. Soc.,1999,121:2085~2096.
    [97] Bhanthumnavin W, Bentrude W G. Effect of Amino Substituent on theStereochemical outcome of the Photo-Arbuzov Rearrangements of1-ArylethylPhosphorodiamidites [J]. J. Org. Chem.,2005,70:4643~4651.
    [98] Kassaee M Z, Vessally E. Different Relative Rates for Photo-rearrangements of(E)-and (Z)-β-Nitrostyrene Derivative to Oximinoketones [J]. J. Photochem.Photobio. A: Chem.,2005,172:331~336.
    [99] Plí til L, ololmek T, Wirz J, et al. Photochemistry of2-Alkoxymethyl-5-methyl phenacyl Chloride and Benzoate [J]. J. Org. Chem.,2006,71:8050~8058.
    [100] Nelson J D, Modi D P, Evans P A., et al. Photo-induced ring expansion of1-triisopropylsilyloxy-1-azidocyclohexane: preparation of-caprolactam [J].Org. Syn. Coll. Vol.10,2004,207.
    [101] Iwakuma T, Nakai H, Yonemitsu O, et al. Photocyclizations ofPharmacodynamic Amines. Ⅶ. Photorearrangements andRoentgen-rayAnalyses of Novel Tyramine Dimers [J]. J. Am. Chem. Soc.,1972,94(14):5136~5139.
    [102] Natarajan A, Wang K Y, Ramamurthy V, et al. Control of Enantioselectivity inthe Photochemical Conversion of α-Oxoamides into β-Lactam Derivatives [J].Org. Lett.,2002,4(9):1443~1446.
    [103] Ma C C, Steinmetz M G. Substituent Effects on Competitive Release ofPhenols and1,3-Rearrangement in α-Keto Amide Photochemistry [J]. Org.Lett.,2004,6(4):629~632.
    [104] Donati D, Fusi S., Ponticellin F, et al. Photochemical Synthesis of a4,5-Dihydrofuro-azetidinone, a Novel β-Lactam System [J]. Tetrahedron Lett.,2003,44:9247~9250.
    [105] Zeng Y B, Smith B T, Hershberger J, et al. Rearrangements of BicyclicNitrones to Lactams: Comparison of Photochemical and Modified BartonConditions [J]. J. Org. Chem.,2003,68:8065~8067.
    [106] Pavlik J W, Tongcharoensirikul P, Bird N P, et al. PhototranspositionChemistry of Phenylisothiazoles and Phenylthiazoles.1. Interconversions inBenzene Solution [J]. J. Am. Chem. Soc.,1994,116:2292~2300.
    [107] Su M D. The Photochemical Rearrangement Pathways of Imidazoles: aTheoretical Study [J]. J. Phys. Chem. A.,2007,111(9):1567~1574.
    [108] Auzias M, H ussinger D, Neuburger M, et al. Photoinduced Rearrangementsof3,3'-Bis(arylbenzofurans)[J]. Org. Lett.,2011,13(3):474~477.
    [109] Su M D A. Theoretical Study of the Photochemical Isomerization Reactionsof Furans from the Triplet State [J]. J. Phys. Chem. A.,2008,112:194~198.
    [110] Buscemi S, Pace A, Vivona N, et al. Photoinduced Molecular Rearrangements.Some Comments on the Ring-photoisomerization of1,2,4-Oxadiazoles into1,3,4-Oxadiazoles [J]. J. Heterocycl. Chem.,2001,38:777~780.
    [111] Pace A, Buscemi S, Vivona N, et al. Heterocyclic Rearrangements inConstrained Media. A Zeolite-directed Photorearrangement of1,2,4-Oxadiazoles [J]. J. Org. Chem.,2005,70:2322~2324.
    [112] Ihmels H, Schneider M, Waidelich M, et al. Medium-dependent TypeSelectivity in Photoreaction of a Crown Ether-annelated DibenzobarreleneDerivative [J]. Org. Lett.,2002,4(19):3247~3250.
    [113] Olivella S, Solé A, LIedó A, et al. Theoretical and Experimental Studies onthe Mechanism of Norbornadiene Pauson-Khand CycloadductsPhotorearrangements. Is There a Pathway on the Excited Singlet PotentialEnergy Surgace?[J]. J. Am. Chem. Soc.,2008,130:16898~16907.
    [114] Ji Y N, Verdaguer X, Riera A, et al. Sovlvent and Substituent Effects on thePhotochemistry of Norbornadiene-diaryacetylene Pauson-Khand Adducts [J].Chem. Eur. J.,2011,17:3942~3948.
    [115] Suzuki M, Imai K, Wakabayashi H, et al. Photorearrangements inSpiro-conjoined Cyclohexa-2,5-dien-1-one [J]. Tetrahedron,2011,67:5500~5506.
    [116] Morrison H. Photochemistry of Organic Bichromophoric Molecules [J]. Acc.Chem. Res.,1979,12:383-389.
    [117] Forseca I, Baias M, Hayes S E, et al. Effects of Aromatic Substitution on thePhotodimerization Kinetcs of β-trans Cinnamic Acid Derivatives Studiedwith13C Solid-State NMR [J]. J. Phy. Chem. C.,2012,116:12212-12218.
    [118] Nieuwendaal R C, Mattler S J, Bartmer M, et al. Single Crystal to SingleCrystal Topochemical Photoreactions: Measuring the Degree of Disorder inthe [2+2] Photodimerization of trans Cinnamic Acid Using Single-Crystal13CNMR Spectroscopy [J]. J. Phy. Chem. B.,2011,115:5785-5793.
    [119] Benedict J B, Coppens P. Kinetics of the Single-Crystal to Single-CrystalTwo-Photo Photodimerization of α-trans-Cinnamic Acid to α-Truxillic Acid[J]. J. Phy. Chem. A.,2009,113:3116-3120.
    [120] Das S, Kumar J S D, Thomas K G, et al. Photocatalyzed Multiple Additions ofamines to α,β-Unsaturated Esters and Nitriles [J]. J. Org. Chem.,1994,59:628~634.
    [121] Ullman E F, Babad E, Sung M T, et al. Wavelenth-dependent Photochemistryof α,β-Unsaturated Carboxylate Anions [J]. J. Am. Chem. Soc.,1969,91(21):5792~5796.
    [122] Berger M, Goldblatt I L, Steel C, et al. Photochemistry of Benzaldehyde [J]. J.Am. Chem. Soc.,1973,95(6):1717~1725.
    [123] Bach T, Bergmann H, Harms K, et al. High Facial Diastereoselectivity in thePhotocycloaddition of a Chiral Aromatic Aldehyde and an Enamide Inducedby Intermolecular Hydrogen Bonding [J]. J. Am. Chem. Soc.,1999,121:10650~10651.
    [124] Moorthy J N, Mal P, Natarajan R, et al. Efficient Photocyclization ofo-Alkylbenz-aldehydes in the Solid State: Direct Observation ofE-Xylylenols en Route to Benzocyclobutenols [J]. J. Org. Chem.,2001,66:7013~7019.
    [125] Birbaum F, Neels A, Bochet C G, et al. Photochemistry of AllenylSalicylaldehydes [J]. Org. Lett.,2008,10(15):3175~3178.
    [126] Kessar K V, Mankotia A K S, Scaiano J C, et al. Photochemistry ofo-Vinylbenz-aldehyde: Formation of a Ketene Methide Intermediate and ItsTrapping with Secondary Amines [J]. J. Am. Chem. Soc.,1996,118:4361~4365.
    [127] Wei G H, Wang J, Du Y G, et al. Total Synthesis of Solamargine [J]. Bioorg.Med. Chem. Lett.,2011,21:2930-2933.
    [128] Chen L, Zhou F, Shi T D, et al. Metal-free Tandem Fridel-Crafts/Lactonization Reaction to Benzofuranones Bearing a Quaternary Center at C3Position [J]. J. Org. Chem.,2012,77:4354-4362.
    [129] Girgis M J, Liang J K, Du Z M, et al. A Scalable Zinc Activation ProcedureUsing DIBAL-H in a Reformatsky Reaction [J]. Org. Process Res. Dev.,2009,13:1094-1099.
    [130] Kuranaga T, Ishihara S, Ohtani N, et al. Chemoselective deprotection of silylethers by DIBALH [J]. Tetrahedron Lett.,2010,51:6345-6348.
    [131] Dayoub W, Faver-Reguillon A, Berthod M, et al. An Improved and SaferSynthesis of (R)-and (S)-4,4’-Diaminomethyl-BINAP [J]. Eur. J. Org. Chem.,2012,3074-3078.
    [132] Bryan C S, Lautens M. A Tandem Catalytic Approach to Methyleneindenes:Mechanistic Insights into Gem-Dibromoolefin Reactivity [J]. Org. Lett.,2010,12(12):2754~2757.
    [133] Taber D F, Sheth R B. A Three-step Route to a Tricyclic Steroid Precursor [J].J. Org. Chem.,2008,73:8030~8032.
    [134] Chinnagolla R K, Jeganmohan M. Regioselective Synthesis of Isocoumarinsby Ruthenium-catalyzed Aerobic Oxidative Cyclization of Aromatic Acidswith Alkynes [J]. Chem. Commun.,2012,48:2030~2032.
    [135] Wilson R M, Patterson W S, Austen S C, et al. Orbital Symmetry GovernedReactions Under High-intensity Argon Laser-jet Conditions: the Involvementof a [1,5s] Sigmatropic Shift in the Photocyclization of ano-Alkenylbenzaldehyde to a Benzocyclobutenone [J]. J. Am. Chem.Soc.,1995,117:7820~7821.
    [136] Padala K, Jeganmohan M. Highly Regio-and Stereoselective Ruthenium(Ⅱ)Catalyzed Direct ortho-Alkenylation of Aromatic and HeteroaromaticAldehydes with Activated Alkenes Under Open Atmosphere [J]. Org. Lett.,2012,14(4):1134~1137.
    [137] Clawson P, Lunn P M, Whiting D A, et al. The Photochemistry of2,3-Bis(p-methoxy phenyl) oxirane: Trapping of a C-C Cleaved Intermediatein an Electron-transfer Sensitised Process [J]. J. Chem. Soc., Chem. Commun.,1984,134~135.
    [138] Dong D J, Li H H, Tian S K, et al. A Highly Tunable StereoselectiveOlefination of Semistabilized Triphenylphosphonium Ylides with N-SulfonylImines [J]. J. Am. Chem. Soc.,2010,132:5018-5020.
    [139] Little A, Porco Jr J A. Total Syntheses of Graphisin A and Sydowinin B [J].Org. Lett.,2012,14:2862-2865.
    [140] Wang Z X, Shu L H, Frohn M, et al. Asymmetric Epoxidation of trans-β-Methylstyrene and1-Phenylcyclohexene Using a D-Fructose-derived Ketone:(R,R)-trans-β-Methylstyrene Oxide and (R,R)-1-Phenylcyclohexene Oxide[J]. Org. Syn. Coll. Vol.11,2009,183~188.
    [141] Li X H, Danishefsky S J. Cyclobutenones as a Highly Reactive Dienophile:Expanding Upon Diels-Alder Paradigms [J]. J. Am. Chem. Soc.,2010,132:11004-11005.
    [142] Creary X, Kochly E D. Systematic Repression of β-Silyl CarbocationStabilization [J]. J. Org. Chem.,2009,74:2134-2144.
    [143] Leemans E, D’hooghe M, Kimpe N D, et al. Ring Expansion ofCyclobutylmethylcarbenium Ions to Cyclopentane or CyclopenteneDerivatives and Metal-promoted Analogous Rearrangements [J]. Chem. Rev.,2011,111:3268-3333.
    [144] Fan C A, Wang B M, Tu Y Q, et al. Samarium-Catalyzed Tandemsemi-pinacol Rearrangement/Tishchenko Reaction of α-Hydroxy Epoxides: aNovel Approach to Highly Stereoselective Construction of2-Quaternary1,3-Diol Units [J]. Angew. Chem. Int. Ed.,2001,40(20):3877~3880.
    [145] Niphade N, Mali A, Jagtap K. An Improved and Efficient process for theProduction of Donepezi Hydrochloride: Substitution of Sodium Hydroxidefor n-Butyl Lithium via Phase Transfer Catalysis [J]. Org. Process. Res. Dev.,2008,12:731~735.
    [146] Deng Q H, Wadepohl H, Gade L H, et al. Highly EnantioselectiveCopper-catalyzed Electrophilic Trifluoromethylation of β-Ketoesters [J]. J.Am. Chem. Soc.,2012, Doi:10.1021/ja3039773.
    [147] Camps P, Dominago L R, Formosa X, et al. Highly DiastereoselectiveOne-pot Synthesis of Spiro{cyclopenta[a]indene-2,2'-indene}dinones from1-Indanones and Aromatic Aldehydes [J]. J. Org. Chem.,2006,71:3464~3471.
    [148] Yang Y, Philips D, Pan S, et al. A Concise Synthesis of Paucifloral F andRelated Indanone Analogues via Palladium-catalyzed α-Arylation [J]. J. Org.Chem.,2011,76:1902~1905.
    [149] Liu S Y, Katsumura S. An Improved Synthesis of (-)-7-isopropyl-cis-1-amino-2-indanol the chiral auxiliary for6π-azaelectrocyclization [J]. Chin.Chem. Lett.,2009,20:1204~1206.
    [150] Katsumoto K, Kitamura C, Kawase T, et al. An Indenone Synthesis Involvinga New Aminotransfer Reaction and Its application to DibenzopentaleneSynthesis [J]. Eur. J. Org. Chem.,2011,25:4885~4891.
    [151] Saito A, Umakoshi M, Yagyu N, et al. Novel One-pot Approach to Synthesisof Indanones through Sb(Ⅴ)-Catalyzed Reaction of Phenylalkynes withAldehydes [J]. Org. Lett.,2008,10(9):1783~1785.
    [152]刘少祯,李红梅,卢敏,等.烯丙基季磷盐的合成与表征[J].河南科技大学学报:自然科学版,2011,32(3):89~92.
    [153] Dong D J, Li H H, Tian S K, et al. A Highly Tunable StereoselectiveOlefination of Semistabilized Triphenylphosphonium Ylides with N-sulfonylImines [J]. J. Am. Chem. Soc.,2010,132:5018~5020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700