甘蓝型油菜品种耐旱性鉴定筛选及赤霉素诱导耐旱性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国最重要的油料作物之一,但长江流域季节性干旱对我国的油菜生产造成了严重的威胁,筛选油菜耐旱资源、选育油菜耐旱品种是减少干旱造成损失的有效途径之一。本研究对81个甘蓝型油菜种质资源在PEG胁迫下的种子发芽耐旱性进行了鉴定,测定了发芽率、苗高、鲜重和相对活力指数等指标。继而选择17个甘蓝型油菜品种进行盆栽干旱处理,以萎蔫率为主要指标,通过叶片、光合相关、根系等生理性状的比较,筛选出若干苗期耐旱性强的品种。后期以中双10号为研究材料,开展了不同浓度的赤霉素(GA3)浸种在促进甘蓝型油菜发芽期耐旱性中的作用和机理研究。
     以10%(w/v)PEG6000做渗透介质模拟干旱条件,对不同来源的甘蓝型油菜(Brassica napus L.)品种(系)进行干旱胁迫下种子发芽鉴定,分析油菜种子发芽耐旱性的遗传多样性。结果表明:干旱胁迫下,部分材料处理与对照的发芽性状有显著性差异,81个甘蓝型油菜材料的平均苗高处理比对照低36.5%,平均鲜重处理比对照低31%,成苗率降低11.1%。甘蓝型油菜品种(系)耐旱性有较大遗传差异,幼苗活力指数的变异幅度为19%-81%,平均活力指数为55%。相关分析表明,活力指数与胁迫下的发芽性状达极显著正相关,可以作为油菜种子发芽耐旱的综合指标。根据活力指数,将81个油菜资源划分为强,中,弱三个耐旱等级,并筛选到30295,30253,中双6号,30703,30296,30290,30704,中油杂9号,德油4号等一批耐旱遗传资源。
     分析干旱胁迫下17个甘蓝型油菜品种苗期生理生化变异,探讨了不同品种间耐旱性差异及品种耐旱性的鉴定方法。水分胁迫条件下,17个甘蓝型油菜品种间叶片保水能力,光合色素的保护,膜脂过氧化程度以及活性氧清除能力都表现出较大差异。总的趋势是,水分胁迫下品种的叶片萎蔫指数与叶片光合速率,叶绿素、类胡萝卜素含量,SOD、CAT酶活性达正相关,以及与WSD,MDA含量,电泄漏达负相关。叶片萎蔫指数最为直观、综合的反映了油菜苗期耐旱性。以叶片萎蔫指数作为主要指标将17个品种评定为三个耐旱等级,筛选出了B108、H3531、Q2、9548、8056等苗期耐旱性强的种质资源。
     为提高油菜耐旱性,筛选到具有诱导耐旱性提高的植物生长调节剂—赤霉素,并对赤霉素浸种诱导甘蓝型油菜发芽耐旱性的机理进行了研究。利用15%(w/v)PEG6000做渗透介质模拟干旱条件,将0、100、200、300、400和500 m g·l-1的赤霉素溶液中浸种处理8h的油菜籽(中双10号)发芽并进行发芽耐旱鉴定。结果表明:赤霉素可以显著改善干旱条件下油菜种子发芽性状。与对照相比,200—300 m g·l-1的赤霉素溶液显著提高耐旱指数88%、鲜重42%、苗高72.7%、增加可溶性物质含量(可溶性糖47.2%、可溶性蛋白35.6%、脯氨酸62.9%);同时通过提高包括CAT45.6%、POD46.6%、SOD13%的抗氧化酶系活性,显著降低了子叶细胞膜质过氧化水平(MDA36.6%)。赤霉素作为一种可以促进种子萌发、提高油菜发芽期耐旱性的调节物质,在生产上具有很大的应用潜力。
Rapeseed (Brassica napus L.) is one of the most important sources of vegetable oil and protein rich meal in the world. Because of frequent seasonal autumn drought occurring, rapeseed production in China is often disturbed. It is an effective pathway for withdraw drought stress to screen idioplasmic resource and breed variety with drought tolerance. According to germination percentage, hypocotyl length, fresh weight and DTI, present study evaluated drought tolerance of 81 varieties of Rapeseeds (Brassica napus L.) from different genetic resources during germination stage with simulate water stress by 10% (w / v) PEG6000. Wither percentage as the key parameter combined photosynthesis, leaf, root were observed to screen out some varieties with drought tolerance from 17 rapeseeds. And Zhongshuang No.10 was used to explore role of GA3 priming with concentrations in improving drought tolerance of germinating seeds in rapeseed.
     Drought tolerance of 81 varieties of Rapeseeds from different genetic resources was investigated during germination stage with simulate water stress by 10% (w / v) PEG6000. The results showed that the germinating traits of several treatments were significantly different from control after drought stress. The average seedling height of treatment deceased 36.5%, the average fresh weight decreased 31% and relative germinate rate decrease 11.1%. There was significant difference of drought tolerance among different varieties or lines. The vigor index of seedling ranges from 19% to 81%, the average relative vigor index is 55%. Correlation analyses indicated that the vigor index has significant positive correlation with the seedling traits under drought stress. Some varieties or lines, 30295, 30253, Zhongshuang No.6,30703, 30296, 30290, 30704, Zhuongyouza No.9 and Deyou No.4, could be classed as high drought tolerant germplasm resources with higher vigor index.
     It is positive to evaluate rapeseeds varieties with high drought tolerance in 17 rapeseeds seedling under water stress, we study the physiological variance and the method to evaluate drought tolerance. It is difference to keep water statue, photosynthesis, antioxidants activity in 17 varieties under drought. As higher LWI as lower decrease of Pn, chorophyll, caroternoid content and increase of WSD, MDA content, electrolyte leakage were in 17 varieties. Moreover, there was significant correlation between antioxidants (SOD) activity and LWI. LWI is an easy and general parameter to reflect drought tolerance in rapeseed seedling. Third degrees of drought tolerance and B108,H3531,Q2,9548,8056 with high drought tolerance were evaluate by LWI in 17 rapeseeds.
     The role of gibberellic acid-3 (GA3) to improve drought tolerance in rapeseed was evaluated. For priming, seeds of rapeseed (c.v. Zhongshuang No.10) were soaked in 0, 100, 200, 300, 400 and 500 mg·l-1 aerated solution of GA3 for 8 h. The primed seeds were sown to germinate for 7 days under a simulated drought stress by applying 15% PEG6000 solution. The result showed that GA3 can significantly improve seed germination characteristics under drought stress. Compared with controls, priming seed with 300 mg·l-1 GA3 significantly increased drought tolerance index by 88%, fresh weight by 42.9% and hypocotyl length by 72.7%. GA3 treatment also increased soluble sugars significantly by 47.2%, soluble proteins by 35.6%, free proline by 62.9%. The level of oxidative damage was reduced significantly with lower electrolyte leakage (decreased by 36.5%) and malondialdehyde (MDA) content (decreased by 36.6%), possibly due to the enhanced superoxide dismutase (SOD) (increased by 13%), catalase (CAT) (increased by 45.6%) and peroxidase (POD) (increased by 46.6%). The result of this research showed that GA3 is an effective regulator to boost seed germination of rapeseed and improve seedling tolerance to drought stress.
引文
[1]陈志辉,张良诚,吴光林,等.水分胁迫对柑桔光合作用的影响[J].园艺学报, 1992, 19(2): 60-66.
    [2]戴清明,吕爱钦,何维君,等.洞庭湖区油菜主要气象灾害发生规律与减灾避灾对策[J].作物研究, 2006, (1): 60-65.
    [3]樊高峰,苗长明,毛裕定.干旱指标及其在浙江省干旱监测分析中的应用[J].气象,2006,(2): 70-74.
    [4]方益华,杨玉爱.不同水分条件下硼对油菜营养生理的影响[J].中国油料作物学报,1999, (3): 52-56.
    [5]傅寿仲,戚存扣,浦惠明,等.中国油菜栽培科学技术的发展[J].中国油料作物学报, 2006(1): 86-91.
    [6]官春云.改变冬油菜栽培方式,提高和发展油菜生产[J].中国油料作物学报, 2006(1): 83-85.
    [7]韩瑞宏,卢欣石,高桂娟,杨秀娟.紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应[J]。生态学报, 2007, 27(12): 5229-5237.
    [8]贺鸿雁,孙存华,杜伟,等.PEG6000胁迫对花生幼苗渗透调节物质的影响[J].中国油料作物学报, 2006, 28 (1): 76-78.
    [9]胡颂平,杨华,邹桂花,等.水稻胚芽鞘长度与抗旱性的关系及QTL定位[J].中国水稻科学, 2006, 20(1): 19-24.
    [10]黄文江,黄义德,王纪华,等.水稻旱作条件下渗透调节物质和激素含量的研究[J].干旱地区农业研究, 2002, 20(1): 61-64, 80.
    [11]景蕊莲,昌小平.用渗透胁迫鉴定小麦种子萌发期抗旱性的方法分析[J].植物遗传资源学报, 2003, 4(4): 292-296.
    [12]李艳,王青,李凤兰,赵小明,杜昱光.植物诱导抗旱研究进展.作物杂志, 2007, 4: 16-19.
    [13]李云鹏.抗旱剂(FA)的原理及使用.内蒙古气象, 1999, 1: 48.
    [14]李自超,刘文欣,赵笃乐. PEG胁迫下水陆稻幼苗生长势比较研究[J].中国农业大学学报, 2001, 6(3): 16-20.
    [15]李智念,王光明,曾之文.植物干旱胁迫中的ABA研究[J].干旱地区农业研究, 2003, 21(2): 99-104.
    [16]黎锡扬,吴亚华,王育启.植物体内脯氨酸积累与γ-谷氨酰磷酸合成活力的关系[J].植物生理学报, 1988, 14(3): 301-303.
    [17]黎裕.作物抗旱鉴定方法与指标.干旱地区农业研究.1993, 11(1): 91-99.
    [18]刘孟雨,陈培元.水分胁迫条件下气孔与非气孔因素对小麦光合的限制[J].植物生理学通讯, 1990(4): 24-27.
    [19]刘效瑞,赵华生,刘荣清,蒲育林,王克敏.土壤保水剂与作物抗旱剂配施效果. 1993, 6: 29-32.
    [20]刘子凡.作物对土壤干旱胁迫适应机理的最新研究进展[J].安徽农业科学.2007, 35(34): 11011-11013.
    [21]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社.1994.
    [22]卢从明,唐崇钦,张其德,等.水分胁迫对小麦叶绿体色素蛋白复合体的影响[J].植物学报, 1995, 37(12): 950-955.
    [23]骆爱玲,刘家尧,马德钦,等.转甜菜碱脱氢酶基因烟草叶片中抗氧化酶活性增高[J].科学通报,2000 ,45 (18) : 1953~1956
    [24]吕江宁,李龙昌,王昕.化学抗旱剂在农作物上应用试验研究.水土保持学报, 2004, 11(1): 132-136.
    [25]娄成后,王学臣.作物产量形成的生理学基础—干旱胁迫与光合作用[M].北京:中国农业出版社, 2001, 39-51.
    [26]任永波,吴中军,段拥军.作物抗旱研究方法与抗旱性鉴定指标[J].西昌农业高等专科学校学报, 2001, 15(1): 1-5.
    [27]盛志证.化学抗旱剂保水剂在农业上的应用.中国农学通报, 1990, 6(4): 41.
    [28]孙文越,王辉,黄久常.外源甜菜碱对干旱胁迫下小麦幼苗膜脂过氧化作用的影响[J].西北植物学报, 2001 , 21 (3) : 487-491.
    [29]孙梅霞,祖朝龙,徐经年.干旱对植物影响的研究进展[J].安徽农业科学, 2004, 32(2): 365-367, 384.
    [30]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002,43-54,272-279.
    [31]王宝山,赵思齐.干旱对小麦幼苗膜脂过氧化及保护酶的影响[J].山东师范大学学报(自然科学版), 1987, (2): 29-38.
    [32]王汉中.入世后的中国油料产业[J].中国油料作物学报, 2002, 24: 82-86.
    [33]王贺正,马均,李旭毅,等.水稻种质芽期抗旱性和抗旱性鉴定指标的筛选研究[J].西南农业学报, 2004, 17(5): 594-599.
    [34]王俊香,曹春田,冶晓瑞,汪长峰.如何科学合理使用植物生长调节剂.中国农药. 2010, 2: 48-50.
    [35]王列富,杨玉珍,彭方仁.干旱胁迫对不同种源香椿苗木膜脂过氧化作用的影响[J].安徽农业科学, 2008, 36(1): 137-139.
    [36]魏爱丽,王志敏,陈斌,翟志席,张英华.土壤干旱对小麦绿色器官光合电子传递和光合磷酸化活力的影响[J].作物学报, 2004, 30(5): 487-490.
    [37]武斌,李新海,肖木辑,谢传晓,郝转芳,李明顺,张世煌. 53份玉米自交系的苗期耐旱性分析[J].中国农业科学, 2007, 40(4): 665-676.
    [38]邢君,费俊杰,杨建群,等.安徽省油菜主要气象灾害与防御技术对策.安徽农学通报, 2004, (4): 28.
    [39]许雯,苏梅好,朱亚芳等.甘氨酸甜菜碱增强青菜抗盐的作用[J].植物学报, 2001, 43 (8): 809-814.
    [40]杨春杰,张学昆,邹崇顺,等. PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响[J].中国油料作物学报. 2007, 29(4): 425-430.
    [41]杨加水,徐桂楠,王韶楠,王增兰.化学抗旱剂在农业的应用[J].广西农业科学, 1991, 1: 38.
    [42]杨剑平,陈学珍,王文平,李扬.大豆实验室PEG-6000模拟干旱体系的建立[J].中国农学通报, 2003, 19(3): 65-68.
    [43]赵恢武,刘晗,林忠平,等.耐旱植物厚叶旋蒴苣苔BDN1脱水素基因的克隆及表达特性分析[J].科学通报, 2000 , 45(15): 1648~1653.
    [44]张海燕,李贵全.大豆抗旱性与生理生态指标关系的研究[J].中国农学通报, 2005, 21(8): 140-142.
    [45]张剑,池宝亮,黄学芳,等.玉米萌芽期水分胁迫的抗旱性分析[J].山西农业科学, 2007, 35(2): 34-38.
    [46]张明生,谈锋.快速鉴定甘薯品种抗旱性的生理指标及方法的筛选[J].中国农业科学, 2001, 34(3): 260-265.
    [47]张士功,高吉寅,宋景芝,等.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响[J].植物学通报, 1999 , 16 (4) : 429~432.
    [48]张树珍,王自章.植物耐旱的分子基础及植物耐旱基因工程的研究进展.生命科学研究. 2001, 5(3): 134-140.
    [49]张卫星,赵致,廖景容,吴盛黎.作物抗旱剂的应用研究进展[J].农业工程学报, 2004, 20(6): 334-339.
    [50]张彦芹,贾玮珑,杨丽莉,徐珊珊.不同玉米品种苗期抗旱性研究[J].干旱地区农业研究, 2001, 19(1):83-86, 92.
    [51]张志良,瞿伟菁.植物生理学实验指导(第三版)[M].北京:高等教育出版社, 2003, 158~159, 258?259, 274-276.
    [52] Aebi, H. Catalase in vitro [J]. Methods in Enzymology, 1984, 105, 121–126.
    [53] Abdel-Kader, D.Z. Drought and gibberellic acid-dependent oxidative stress: Effect on antioxidant defense system in two lettuce cultivars [J]. Pakistan Journal of Biological Sciences, 2001, 4(9): 1138–1143.
    [54] Aebi, H. Catalase in vitro[C]. Methods in Enzymology, 1984, 105: 121–126.
    [55] Aliyev, R.T., Coskuncelebi, K., Beyazoglu, O. and Hacieva, S.I. Alterations in the genome of wheat seedlings grown under drought stress and the effect of gibberellic acid on these alterations [J]. Rivista Di Biologia, 2000, 93: 183–189.
    [56] Allainguillaume, J., Alexander, M., Bullock, J.M., Saunders, M., Allender, C.J., King, G., Ford, C.S. and Wilkinson M.J. Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats [J]. Molecular Ecology, 2006, 15: 1175–1184.
    [57] Bates, L.S., Waldern, R.P. and Teare, I.D. Rapid determination of free proline for water stress studies [J]. Plant and Soil, 1973, 39: 205–207.
    [58] Blum, A. and Ebercon, A. Cell membrane stability as a measure of drought and heat tolerance in wheat [J]. Crop Science, 1981, 21: 43–47.
    [59] Blum, A., Golan, G., Mayer, J. et al. The drought response of landraces of wheat from thenorthern Negev Desert in Israel[J] . Euphytica ,1989, 43 : 87-96.
    [60] Bouslama, M. Stress tolerance in soybeans Evaluation [J].Crop Sci, 1984, 24:933-937.
    [61] Bradford, M.M. A rapid and sensitive method for quantitaties of microgram of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248–254.
    [62] Cohen, E. and Kende, H. The effect of submergence, ethylene and gibberellin on polyamines andtheir biosynthetic enzymes in deepwater-rice internodes [J]. Planta, 1986, 169: 498–504.
    [63] Deikman, J. and Jones, R.L. Control ofα-Amylase mRNA Accumulation by Gibberellic Acid and Calcium in Barley Aleurone Layers [J]. Plant Physiology, 1985, 78: 192–198.
    [64] Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. Plant drought stress: effects, mechanisms and management [J]. Agronomy for Sustained Development, 2008, 021: 1051–1079.
    [65] Fu, T.D., Yang, G.S. and Tu, J.X. Proceedings of international symposium on rapeseed science [C]. Science Press, 2001, New York.
    [66] Foolad, M.R. and Winicov, I. Mapping salt tolerance genes in tomato (Lycopersicon esculentum) using trait based marker analysis[J]. Theor. Appl. Genet, 1993 , 87 :184-192.
    [67] Gong, H., Zhu, X., Chen, K., Wang, S. and Zhang, C. Silicon alleviates oxidative damage of wheat plants in pots under drought [J]. Plant Science, 2005, 169: 313–321.
    [68] Giannopolities, C.N. and Ries, S.K. Superoxide disumtaseⅠoccurrence in higher plants [J]. Plant Physiology, 1977, 59: 309–314.
    [69] Guiltinan M. J., Marcotte WR J.R, Quatrano R.S.A. plant lercine zipper protein that recognizes an abscisic acid response element[J].Science.1990 Oct.12:250(4978):267-271.
    [70] Harmey, M.A. and Murray, A.M. The effect of gibberellic acid on peroxidase levels in barley [J]. Planta, 1968, 83: 387–389.
    [71] Heath, R.L. and Packer, L. Photo peroxidation in isolated chloroplast kinetics and stochiometery of fatty acid peroxidation [J]. Archives of. Biochemistry and Biophysics, 1968, 125: 189–198.
    [72] Kaur, S., Gupta, A.K. and Kaur, N. Gibberellin A3 reverses the effect of salt stress in chickpea (Cicer arietinum L.) seedlings by enhancing amylase activity and mobilization of starch in cotyledons [J]. Plant Growth Regulation, 1998, 26: 85–90.
    [73] Kaur, S., Gupta, A.K. and Kaur, N. Effect of GA3, kinetin and indole acetic acid on carbohydrate metabolism in chickpea seedlings germinating under water stress [J]. Plant Growth Regulation, 2000, 30: 61–70.
    [74] Koster, K.L. Glass formation and desiccation tolerance in seeds [J]. Plant Physiology, 1991, 96: 302–304.
    [75] Kramer, P.J. and Boyer, J.S. Water relations of Plants and Soils [J]. Academic Press, 1995, San Diego.
    [76] Kratsch, H.A. and Wise, R.R. The ultra structure of chilling stress [J]. Plant Cell and Environment,2000, 23: 337–345.
    [77] Leul, M. and Zhou, W.J. Alleviation of waterlogging damage in winter rape by uniconazole application: Effects on enzyme activity, lipid peroxidation, and membrane integrity [J].Journal of Plant Growth Regulation, 1999, 18: 9-14.
    [78] Ling, J.S. and Wang, G.X. Effects of doubled CO2 concentration on antioxidant enzymes and programmed cell death of wheat leaves under osmotic stress [J]. Acta Phytophysiologica Sinica, 2000, 26(5): 453-457.
    [79] Lu, D.B. Increasing stress resistance by in vitro selection for abacisic acid insensitivity in wheat[J]. Crop Science, 1989, 29: 939~943
    [80] Matsukura, C., Itoh, S-I., Nemoto, K., Tanimoto, E. and Yamaguchi, J. Promotion of leaf sheath growth by gibberellic acid in a dwarf mutant of rice [J]. Planta, 1998, 205: 145–152.
    [81] Morgan, J.M. and Tan, M.K. Chromosomal location of a wheat osmorgulation gene using RFLP analysis [J].Australian Journal of Plant Physiology.1996, 23:803-806.
    [82] Patel, J.A. and Vora, A.B. Free proline accumulation in drought-stressed plants [J]. Plant and Soil, 1985, 84: 427–429.
    [83] Pasternak, D. and Wilson, G.L. Differing effects of water deficit on net photosynthesis, respiration and transpiration of apple leaves [J]. Plant Physiology, 1974; 16:565~583
    [84] Ravikumar, R.L., Patil, B.S. and Salimath, P.M. Drought tolerance in sorghum by pollen selection using osmotic stress[J]. Euphytica, 2003, 133: 371–376.
    [85] Sauter, M. and Kende, H. Gibberellin-induced growth and regulation of the cell division cycle in deepwater rice [J]. Planta, 1992, 188: 362–368.
    [86] Shackel K.A. et a1.Genotypic differences in leaf osmotic potential among grain sorghum cultivars grown under irrigation and drought[J].Crop Science, 1982, 22:1121-1125.
    [87] Shannon, L.M., Kay, E. and Law, J.Y. Peroxidase isoenzyme from horse radish roots: isolation and physical properties [J]. Journal of Biolgical Chemistry, 1966, 241: 2166–2172.
    [88] Williams, T.V., Snell, R.S. and Ellis, J.F. Method of measuring drought tolerance in corn[J].Crop Science, 1967(7):179-182.
    [89] Wincor, I. New molecular approaches to improving salt tolerance in crop plants[J]. Ann.Bot., 1998 , 82 :703-710.
    [90] Zhu, J.K. Genetic analysis of plant salt tolerance using Arabidopsis [J]. Plant Physiology, 2000, 124: 941–948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700