稀土磷酸盐K_2LnZr(PO_4)_3(Ln=Gd,Y)基量子剪裁荧光粉
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,为了适应无汞荧光灯和等离子平板显示(PDP)技术的发展,探寻新型量子剪裁荧光粉作为研究开发高量子效率真空紫外发光材料的一种新途径逐渐受到广泛的关注。稀土磷酸盐基质在VUV区有较强的吸收,且合成温度低、制备方法简单、物理化学性质稳定、热稳定性好、溶解度低和透光性好,是高效真空紫外荧光粉比较理想的基质。稀土元素由于其独特的电子层结构及物理化学性质而被广泛的应用于传统发光材料的改性和新材料的开发研究中。本论文以不同稀土离子掺杂的稀土磷酸盐K2LnZr(PO4)3(Ln=Gd,Y)作为研究对象,对于基质中不同离子对之间的能量传递过程和可见光量子剪裁现象做了初步的探索研究。内容主要包括以下几个方面:
     (1)采用高温固相法制备了K2Gd1-xZr(PO4)3:Eux3+(0.02≤x≤0.1),并研究了其在紫外(UV)和真空紫外(VUV)区域的光致发光特性,结果表明:在Eu3+掺杂的K2GdZr(PO4)3体系中可以观察到基于Gd3+-Eu3+离子对间能量传递的量子剪裁下转换现象。在186 nm(Gd3+离子6GJ能级)激发下,该量子剪裁过程通过Gd3+离子到Eu3+离子的两步能量传递过程即交叉弛豫过程(第一步)及剩余激发能的直接传递过程(第二步)实现,并发射出两个可见的红光光子。Gd3+,Eu3+之间能量传递的量子效率可以达到155%。K2GdZr(PO4)3:Eu3+是一种有潜力的量子剪裁发光材料。
     (2)利用高温固相法合成了K2YZr(PO4)3和K2Y1-xZr(PO4)3:xPr3+(0.01≤x≤0.05),通过对K2YZr(PO4)3:Pr3+系列样品在UV-VUV激发下的发射光谱和激发光谱的分析测试,在Pr3+离子掺杂的K2YZr(PO4)3荧光粉中观察到了一种新的光子级联发射现象,这在234 nm和147 nm激发下的发射光谱中得到了验证。该双光子级联发射过程中的第一步光子发射位于407 nm,对应Pr3+离子的1S0→1I6跃迁,属于自旋允许的4f5d→4f2跃迁,第二步发射的光子在610 nm附近,归属于3P0→3H6跃迁,为自旋禁戒的4f2→4f2跃迁。实验结果表明,在K2YZr(PO4)3:Pr3+中即使Pr3+离子1S0能级的能量高于4f15d1能级,双光子级联发射过程仍有可能实现。
     (3)采用高温固相法成功合成了新型的K2YZr(PO4)3:Pr3+,Mn2+量子剪裁荧光粉,并研究了其在UV-VUV激发下的光谱性能并讨论了可见光量子剪裁过程,结果表明归属于Mn2+离子6A1g→4Eg-4A1g跃迁的光子能量与Pr3+离子1S0→1I6跃迁发射的能量相匹配,因此当Mn2+离子作为共激活剂离子掺入K2YZr(PO4)3基质中后,能够将Pr3+离子级联发射过程中第一步发射的对应于1S0→1I6,3PJ跃迁的光子转换成为Mn2+离子的红光发射,而这一过程是通过Pr→Mn之间的能量传递实现的。通过对系列样品量子效率的计算得出最佳量子效率可以达到126.3%左右。
     (4)对K2GdZr(PO4)3:Er3+,Tb3+荧光粉中量子剪裁效应的研究以及量子效率的计算结果表明,Er3+-Gd3+-Tb3+体系中三个发光中心之间可以通过合作能量的过程实现可见光量子剪裁,在这个能量传递过程中Gd3+起到了“中介”的作用,而Er3+→Gd3+之间能量传递过程的有效性决定了量子剪裁效应存在的可能性。该可见光量子剪裁荧光粉的最佳量子效率为110%。
     (5)研究了K2GdZr(PO4)3基质中Dy3+→Tb3+之间的能量传递过程,结果表明通过Dy3+→Tb3+之间非常有效的能量传递,Tb3+离子5D4→7F5跃迁发射增强,此过程中Tb3+通过两步能量传递实现了双光子发射。此外Gd3+→Tb3+和Gd3+→Dy3+间的能量传递也被观察到。
     此外,考虑到实际应用的问题,为了探寻更多的能够实现高效量子剪裁发光的离子及离子对,本论文中还对其它稀土离子和离子对间的能量传递过程进行了研究,虽然结果不是很理想,但是依然为今后进一步的研究工作提供了参考。
Recently, for the development of non-mercury fluorescent tubes and plasma display panels (PDP) technology, new quantum cutting (two-photon luminescent) phosphors are required for the investigation of high efficient luminescent materials under VUV excitation. Rare-earth orthophosphates have stronger absorption in the range of the VUV and are more easily implemented. Besides, they have many advantages, such as high physical-chemical stability, low synthesis temperature and solubility, transparent, etc. Therefore, rare-earth orthophosphates could be ideal hosts for high luminescence efficiency VUV phosphors. Rare-earth (RE) ions are proper activators due to their abundant energy levels and physical-chemical properties. In the present work, the phenomena of energy transfer between different ion pairs and visible quantum cutting in rare-earth orthophosphate K2LnZr(PO4)3 (Ln= Gd, Y) doped with different rare-earth ions have been investigated. The content of this paper includes:
     (1) K2Gd1-xZr(PO4)3:Eux3+(0.02≤x≤0.1) were prepared by solid-state reaction method and their photoluminescence properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The phenomenon of visible quantum cutting through downconversion was observed for the Gd3+-Eu3+ couple in this Eu3+-doped K2GdZr(PO4)3 system. Visible quantum cutting, the emission of two visible light photons per absorbed VUV photon, occured upon the 186 nm excitation of Gd3+ at the 6GJ level via two-step energy transfer from, Gd3+ to Eu3+ by cross relaxation and sequential transfer of the remaining excitation energy. The results revealed that the efficiency of the energy transfer process from Gd3+ to Eu3+ in the Eu3+-doped K2GdZr(PO4)3 system could reach to 155% and K2GdZr(PO4)3:Eu3+ was effective quantum cutting material.
     (2) In present work, K2Y1-xZr(PO4)3:Prx3+(1 mol.%≤x=≤5 mol.%) samples were prepared by solid-state reaction method and their photoluminescence properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The results indicate that, in Pr3+-doped K2YZr(PO4)3 phosphor, even if the 1S0 state is above the lowest 4f5d energy level, the photon cascade emission (PCE) process for Pr3+ still could occur under 147 nm and 234 nm (4f15d1 state) excitation.
     (3) K2YZr(PO4)3:Pr3+, Mn2+ single-phase powder samples were prepared by solid-state reaction method and their photoluminescence (PL) properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The results indicated that in Pr3+ singly doped K2YZr(PO4)3 sample, the first-step transition(1So→I6,3PJ around 405 nm) of Pr3+ is near the ultraviolet (UV) range, not useful for practical application. When Mn2+ was doped as a co-activator ion, the energy of 1So→I6,3PJ transition can be transferred synchronously from Pr3+ to Mn2+ and then emit a visible photon. The optimal quantum efficiency (QE) of this co-doped system K2YZr(PO4)3:Pr3+, Mn2+ reached to 126.3%, suggesting a novel type of practical visible quantum cutting phosphor in promising application.
     (4) Tb3+, Er3+ co-doped K2GdZr(PO4)3 were prepared by solid-state reaction method and their photoluminescence (PL) properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The results indicate that the energy transfers from Er3+ to Gd3+ and from Gd3+ to Tb3+ required for occurring of visible quantum cutting through downconversion were efficient. In this cooperative energy transfer process, Gd3+ was used as an intermediate of energy transfer between Er3+ and Tb3+. The optimal quantum efficiency (QE) of K2GdZr(PO4)3:Er3+, Tb3+ phosphor was estimated to be 110%.
     (5) In this work, K2GdZr(PO4)3:Tb3+, Dy3+ samples were synthesized by high-temperature solid-state reaction method and their photoluminescence (PL) properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The results indicated that the 5D4→7F5 emission of Tb3+ was enhanced observably by the efficient energy transfer from Dy3+. In this phosphor, Tb3+ emitted two green photons through a two-step energy transfer process. In addition, the energy transfer of Gd3+→Tb3+ and Gd3+→Dy3+ was also been observed, suggesting that the existence of Gd3+ is helpful for improving the luminescence intensity of this novel efficient green emitting phosphor.
     In addition, from the aspect of practical application, it is necessary to seek for new rare-earth ions or ion pairs which can implement the high efficient quantum cutting process. It is unfortunately that there was no ideal result. However, these works still provide reference for the further researches.
引文
[1]G Blasse, B. C. Grabmaier, Luminescent Materials, Springer-Verlag (1994)
    [2]Cees Ronda, Luminescence - From Theory to Applications, Wiley-VCH (2008)
    [3]徐叙容,苏勉曾,《发光学与发光材料》,化学工业出版社(2004)
    [4]D. L. Dexter, Possibility of Luminescent Quantum Yields Greater than Unity, Phys. Rev.,1957,108:630-633.
    [5]孙家跃,杜海燕,胡文祥,《固体发光材料》,化学工业出版社(2003)
    [6]张希艳,卢利平,柏朝辉,刘全生,《稀土发光材料》,国防工业出版社(2005)
    [7]冯端,师昌绪,刘治国,《材料科学导论》,化学工业出版社(2002)
    [8]郑子樵,李红英,《稀土功能材料》,化学工业出版社(2003)
    [10]刘光华,《稀土材料与应用技术》,化学工业出版社(2005)
    [11]余宪恩,《实用发光材料》,中国轻工业出版社(2008)
    [12]Q.Y. Zhang, X.Y. Huang, Recent progress in quantum cutting phosphors, Prog. Mater Sci.,2010,55:353-427.
    [13]陈永虎,刘波等,Gd2SiO5:Eu3+中VUV激发的量子剪裁,中国科学(A),2002,32(8):711~715.
    [14]Peter Vergeer, Luminescence Spectroscopy of Quantum Cutting Phosphors-Materials, Measurements and Mechanisms, Dissertation (2005).
    [15]张善端,朱绍龙, 《无汞荧光灯进展评述(三)—量子切割荧光粉》,中国照明电器,2002,7:1~4.
    [16]W. W. Piper, F. S. Ham, Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light, J. Lumin.,1974,8:344-348.
    [17]刘光华,《现代材料化学》,上海科学技术出版社(2000)
    [18]苏锵,《稀土化学》,河南科技出版社(1993)
    [19]方容川,《固体光谱学》,中国科学技术大学出版社(2001)
    [20]Nobuhiro Kodama, Yamato Watanabe, Visible qunantum cutting through downconversion in Eu3+-doped KGdsF10 and KGd2F7 crystals, Appl. Phys. Lett.,2004, 84:4141.
    [21]R. T. Wegh, H. Donker, K. D. Oskam, A. Meijerink, Visible quantum cutting in LiGdF4:Eu3+ through downconversion, Science,1999,283:663.
    [22]C. Feldmann, T. JuE stel, C. R. Ronda and D. U. Wiechert. Quantum effciency of down-conversion phosphor LiGdF4:Eu. J. Lumin.,2001,92:245-254.
    [23]Bo Liu, Yonghu Chen, Chaoshu Shi, et al., Visible quantum cutting in BaF2:Gd, Eu via downconversion.J. Lumin.,2003,101:155-159.
    [24]Y. Zhou, S. P. Feofilov, J. Y. Jeong, D. A. Keszler and R. S. Meltzer, Quantum cutting in GdxY1-xLiF4:Nd-dynamics and mechanisms, J. Lumin.,2006,119-120: 264-270.
    [25]陈永虎,施朝淑,魏亚光,陶冶,Gd2SiO5:Eu3+的VUV-UV光谱特性,核技术,2002,25:788~792.
    [26]Nobuhiro Kodama, Shinya Oishi, Visible quantum cutting through downconversion in KLiGdF5:Eu3+ crystals, J. Appl. Phys.,2005,98:103515.
    [27]S. P. Feofilov, Y. Zhou, J. Y. Jeong, D. A. Keszlerc, R. S. Meltzer, Sensitization of Gd3+ and the dynamics of quantum splitting in GdF3:Pr, Eu, J. Lumin.,2007, 122-123:503-505.
    [28]张林,张俊英,张中太,“量子切割”—一种实现高效下转换的新途径,液晶与显示,2003,1:21~25.
    [29]J. L. Sommerdijk, A. Bril, A. W. de Jager, Two photon luminescence with ultraviolet excitation of trivalent praseodymium, J. Lumin.,1974,8:341-343.
    [30]R. Pappalardo. Calculated quantum yields for photon-cascade emission (PCE) for Pr3+ and Tm3+ in fluoride hosts. J. Lumin.,1976,14:159-193.
    [31]R. T. Wegh, H. Donker, A. Meijerink, et al. Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4, Phys. Rev. B.,1997,56:13841-13848.
    [32]K. D. Oskam, R. T. Wegh, H. Donker, et al. Down-conversion:a new route to visible quantum cutting,J. Alloys. Compd.,2000,300-301:421-425.
    [33]J. L. Sommerdijk, A. Bril, A. W. de Jager. Luminescence of Pr3+-Activated Fluorides,J.Lumin.,1974,9:288-296.
    [34]Cees Ronda, Luminescent materials with quantum efficiency larger than 1, status and prospects,J. Lumin.,2002,100:301-305.
    [35]Stefan Kuck, Irena Sokolska, Markus Henke, Eugen Osiac, Quantum efficiency of1 S0 and 3P0,1 levels of Pr3+ doped YF3, Chem. Phys.,2005,310:139-144.
    [36]R. T. Wegh, H. Donker, K. D. Oskam, A. Meijerink, Visible quantum cutting in Eu3+-doped gadolinium fluorides via down-conversion,J. Lumin.,1999,82:93-104.
    [37]Hsin-Yi Tzeng, Bing-Ming Cheng, Teng-Ming Chen, Visible quantum cutting in green-emitting BaGdF5:Tb3+ phosphors via downconversion, J. Lumin.,2007, 122-123:917-920.
    [38]Te-Ju Lee, Li-Yang Luo, Bing-Ming Cheng, Chien-Yueh Tung, et al. Visible quantum cutting through downconversion in green-emitting K2GdF5:Tb3+ phosphors, Appl. Phys. Lett.,2006,89:131121.
    [39]Fangtian You, Shihua Huang, Shuman Liu, Ye Tao, VUV excited luminescence of MGdF4:Eu3+(M= Na, K, NH4), J. Lumin.,2004,110:95-99.
    [40]R. T. Wegh, H. Donker, van E.V.D Loef, K. D. Oskam, A. Meijerink, Quantum cutting through downconversion in rare-eart compounds, J. Lumin.,2000,87-89: 1017-1019.
    [41]Mirosaw Karbowiak, Agnieszka Mec, Witold Ryba-Romanowski, Optical properties of Eu3+:CsGd2F7 downconversion phosphor, J. Lumin.,2005,114:65-70.
    [42]R. T. Wegh, H. Donker, A. Meijerink, Spin-allowed and spin-forbidden f-d emission from Er3+ in LiYF4, Phys. Rev. B.,1998,57(4):2025-2028.
    [43]Lena Beauzamya, Bernard Moinea, Patrick Gredin, Energy transfers between dysprosium and terbium in YF3, J. Lumin.,2007,127:568-574.
    [44]K. C. Sobha, K. J. Rao, Research of green emitting rare-earth doped materials as potential quantum-cutter, Opt. Mater.,2008,30:1083-1087.
    [45]X. Y. Sun, M. Gua, S. M. Huang, X. L. Liu, B. Liu, C. Ni, Enhancement of Tb3+ emission by non-radiative energy transfer from Dy3+ in silicate glass, Phys. B.,2009, 404:111-114.
    [46]R. T. Wegh, E. V. D van. Loef, A. Meijerink, Visible quantum cutting via downconversion in LiGdF4:Er3+, Tb3+ upon Er3+4f11 → 4f105d excitation, J. Lumin., 2000,90:111-122.
    [47]Y. H. Chen, C. S. Shi, W. Z. Yan, Z. M. Qi, Y. B. Fu, Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr, Mn,Appl. Phys. Lett.,2006,88:061906.
    [48]Chunxu Liu, Junye Liu, Shaozhe Lu, et al. Energy migration and transfer of Tm3+-Gd3+-Dy3+ system in NaGdF4 under VUV and UV excitations. J. Lumin.,2007, 122-123:970-972.
    [49]Feibing Xiong. Yanfu Lin, Yujin Chen, et al. Visible quantum cutting in Pr3+:PbWO4 crystal through energy transfer between the host and Pr3+ ions, Chem. Phys. Lett.,2006,429:410-414.
    [50]曾馨怡,A Study on the Quantum-Cutting and Photoluminescence of Alkaline-Earth Gadolinium Fluorides,台湾国立交通大学硕士学位论文(1993)
    [51]胡小华,杨应国,庞明,稀土元素在PDP荧光粉合成中的应用,矿产保护与利用,2004,4:44~46.
    [52]赵海燕,曾波,李海坤,高温固相反应合成正磷酸盐的研究,无机盐工业,2005,37(4):24~26.
    [53]章伟光,稀土发光材料的开发与应用,贵州化工,2001,3:36~38.
    [54]徐长远,王永生,黄最明,发光材料研究进展,光电子技术与信息,1997,10:8~12.
    [55]Rambabu U, Buddhudu S, Optical properties of LnPO4:Eu(Ln= Y, La and Gd) powder phosphors, Opt. Mater.,2001,17:401-408.
    [56]Rambabu U, Amalnerkar D P, Kale B B, Buddhudu S, Optical properties of LnPO4:Tb3+(Ln= Y, La and Gd) powder phosphors, Mater. Chem. Phys.,2001,70: 1-6.
    [57]O. K. Moune, M. D. Faucher, N. Edelstein, Optical spectrum, crystal field analysis of Pr3+ in YPO4, J. Alloy. Compd.,2001,323-324:783-787.
    [58]R. C. Ropp, Phosphors based on rare earth phosphates Spectral properties of some rare earth phosphates,J.Electrochem. Soc.,1968,115:841-845.
    [59]X. Wu, H. You, H. Cui, X. Zeng, G. Hong, C-H. Kim, C-H. Pyun, B-Y. Yu, C-H. Park, Vacuum ultraviolet optical properties of (La, Gd)PO4:RE3+(RE= Eu,Tb), Mater. Res. Bull.,2002,37:1531-1538.
    [60]Stefan Kuck, Irena Sokolsk, MarkuSHenke, et al. Emission and excitation characteristics and internal quantum efficiencies of vacuum-ultraviolet excited Pr3+-doped fluoride compounds, Phys. Rev. B.,2005,71:165112.
    [61]Cees Ronda, Luminescence from theory to applications, Wiley-vch (2007)
    [62]Hufner S, Optical spectra of transparent rare earth compounds, New York: Academic Press (1978)
    [63]E. van der Kolk, P. Dorenbos, A. P. Vink, R. C. Perego, C. W. E. van Eijk, Vacuum ultraviolet excitation and emission properties of Pr3+ and Ce3+ in MSO4 (M= Ba, Sr and Ca) and predicting quantum splitting by Pr3+ in oxides and fluorides, Phys. Rev. B.,2001,64:195129.
    [64]M. Kim, J. C. Krupa, V. N. Makhov et al, High-resolution vacuum ultraviolet spectroscopy of 5d-4f transitions in Gd and Lu fluorides, Phys. Rev. B.,2004,70: 241101(R).
    [65]S. P. Feofilov, Y. Zhou, H. J. Seo et al, Host sensitization of Gd3+ ions in yttrium and scandium borates and phosphates:Application to quantum cutting, Phys. Rev. B., 2006,74:085101.
    [66]G. Blasse, New Luminescence Materials, Chem. Mater.,1989,1:294.
    [67]陈登铭,李德茹,曾馨仪,郑炳铭,绿光与红光量子剪裁稀土氟化物荧光体发光性能之研究,第五届全国稀土发光材料科学学术研讨会论文摘要集(2005)
    [68]陈永虎,刘波,施朝淑,G. Zimmerer,GdPO4:Eu3+和GdBO3:Eu3+的VUV光谱研究,第五届全国稀土发光材料科学学术研讨会论文摘要集(2005)
    [69]吴雪艳,尤洪鹏,曾小青,洪广言,共沉淀法合成稀土正磷酸盐(La,Gd)PO4:RE3+(RE=Eu,Tb)及其真空紫外光谱特性,高等学校化学学报,2003,24:1~4
    [70]初本莉,真空紫外-紫外光子激发下某些离子的发光特性,中科院博士学位论文(2001)
    [71]来华,纳米稀土磷酸盐发光材料的合成以及发光性能的研究,吉林大学博士学位论文(2009)
    [72]王大伟,稀土Pr3+或Nd3+掺杂的真空紫外荧光材料发光性质的研究,北京交通大学博士学位论文(2008)
    [73]张洪武,纳米稀土钒酸盐、磷酸盐发光材料的合成及性质研究,中科院博士学位论文(2005)
    [74]符义兵,Pr3+,Mn2+共激活氧化物量子剪裁材料的探索及蓝色长余辉材料Sr2MgSi2O7:Eu2+,Dy3+的余辉机理研究(2007)
    [75]D. L. Andrews, R. D. Jenkins, A quantum electrodynamical theory of three-center energy transfer for upconversion and downconversion in rare earth doped materials, J. Chem. Phys.,2001,114:1089.
    [76]C. R. Ronda, Phosphors for lamps and displays:an applicational view, J. Alloys Compd.,1995,225:534-538.
    [77]P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, A. Meijerink, Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+, Phys. Rev. B.,2005,71:014119.
    [78]T. Trupke, M. A. Green, and P. Wurfel, Improving solar cell efficiencies by down-conversion of high-energy photons, J. Appl. Phys.,2002,92:1668-1674.
    [79]R. C. Ropp, Phosphors based on rare earth phosphates spectral properties of some rare earth phosphates, J.Electrochem.Soc.,1968,115:841-845.
    [80]A. Bril, W. L. Wanmaker, Fluorescent properties of some europium-activated phosphors, J.Electrochem.Soc.,1964,111:1363-1368.
    [1]滕凤恩,王煜明,姜小龙,《X射线结构分析与材料性能表征》,科学出版社(1997)
    [2]吕光烈,《固体材料XRD全图拟合相定量分析》,浙江大学分析测试中心
    [3]梁敬魁,《粉末衍射法测定晶体结构》,科学出版社(2003)
    [4]北京同步辐射实验室,《"SRF 4B8 VUV beamline" VUV激发荧光光谱远程采集说明》(2009)
    [1]N. Kodama, Y. Watanabe, Visible quantum cutting through downconversion in Eu3+-doped KGd3F10 and KGd2F7 crystals, Appl. Phys. Lett.84 (2004) 4141.
    [2]N. Kodama, S. Oishi, Visible quantum cutting through downconversion in KLiGdF5:Eu3+ crystals, J. Appl. Phys.98 (2005) 103515.
    [3]D.L. Andrews, R.D. Jenkins, J. Chem. Phys.114 (2001) 1089.
    [4]R. Hua, J.H. Niu, B.J. Chen, M.T.Z. Li, T. Yu, W.L. Li, Nanotechnology 17 (2006) 1642.
    [5]Y. Zhou, S.P. Feofilov, J.Y. Jeong, D.A. Keszler, R.S. Meltzer, Phys. Rev. B.77 (2008) 075129.
    [6]S. Lepoutre, D. Boyer, R. Mahiou, Quantum cutting abilities of sol-gel derived LiGdF4:Eu3+ powders, J. Lumin.128 (2008) 635.
    [7]M. Karbowiak, A. Mech, W. Ryba-Romanowski, Optical properties of Eu3+:CsGd2F7 downconversion phosphor, J. Lumin.114 (2005) 65.
    [8]B. Liu, Y.H. Chen, C.S. Shi, H.G. Tang, Y. Tao, Visible quantum cutting in BaF2: Gd; Eu via downconversion, J. Lumin.101 (2003) 155.
    [9]K.D. Oskam, R.T. Wegh, H. Donker, E.V.D. van Loef, A. Meijerink, J. Alloys Compd.300-301 (2000) 421.
    [10]C. Feldmann, T. Justel, C.R. Ronda, D.U. Wiechert, Quantum efficiency of down-conversion phosphor LiGdF4:Eu, J. Lumin.92 (2001) 245.
    [11]H. Kondo, T. Hirai, S. Hashimoto, Dynamical behavior of quantum cutting in alkali gadolinium fluoride phosphors, J. Lumin.108 (2004) 59.
    [12]F.T. You, S.H. Huang, S.M. Liu, Y. Tao, VUV excited luminescence of MGdF4:Eu3+(M= Na, K, NH4), J. Lumin.110 (2004) 95.
    [13]Y.H. Chen, B. Liu, C.S. Shi, G. Zimmerer, J. Chin. Rare Earth. Soc.23 (2005) 429.
    [14]I. V. Ogorodnyk, I.V. Zatovsky, V.N. Baumer, N.S. Slobodyanik, O.V. Shishkin, Cryst. Res. Technol.1002 (2007) 1.
    [15]C. X. Liu, J.Y. Liu, K. Dou, J. Phys. Chem. B.110 (2006) 20277.
    [16]Y. H. Wang, D. Wang, J. Solid State Chem.180 (2007) 3450.
    [17]L. He, Y.H. Wang, H. Gao, J. Lumin.126 (2007) 182.
    [18]Z.J. Zhang, J.L. Yuan, C.J. Duan, D.B. Xiong, H.H. Chen, J.T. Zhao, J. Appl. Phys.102 (2007) 093514.
    [19]Y. H. Zhou, J. Lin, S. B. Wang, Energy transfer and upconversion luminescence properties of Y2O3:Sm and Gd2O3:Sm phosphors, J. Solid State Chem.171 (2003) 391-395.
    [20]R. T. Wegh, A. Meijerink, R. J. Lamminmaki, J. Holsa, Extending Dieke's diagram, Quantum cutting through downconversion in rare-earth compounds, J. Lumin.87-89 (2000) 1002-1004.
    [21]P. Dorenbos, The 5d level positions of the trivalent lanthanides in inorganic compounds, J. Lumin.91 (2000) 155-176.
    [22]R.T. Wegh, H. Donker, E.V.D. van Loef, K.D. Oskam, A. Meijerink, Quantum cutting through downconversion in rare-earth compounds, J. Lumin.87-89 (2000) 1017-1019.
    [23]Y. Zhou, S. P. Feofilov, J. Y. Jeong, D. A. Keszler, R. S. Meltzer, Energy transfer to Gd3+ from the self-trapped exciton in ScPO4:Gd3+:Dynamics and application to quantum cutting, Phys. Rev. B.77 (2008) 075129
    [24]F. Wang, X. P. Fan, M. Q.Wang, Y. Zhang, Multicolour PEI/NaGdF4:Ce3+, Ln3+ nanocrystals by single-wavelength excitation, Nanotechnology,18 (2007) 025701.
    [25]董宁,徐美,张慰萍,尹民,陶冶,Makhov V N, Khaiduhov N M, Krupa J C,LiKGdF5:Er3+,Sm3+单晶的VUV光谱和量子剪裁,核技术,12(2004)909.
    [26]Yanlin Huang, Weifang Kai, Yonggang Cao, Kiwan Jang, Ho Sueb Lee, Ilgon Kim, Eunjin Cho, Spectroscopic and structural studies of Sm2+ doped orthophosphate KSrPO4 crystal, J. Appl. Phys.103 (2008) 053501.
    [27]Z. J. Zhang, J. L. Yuan, C. J. Duan, D. B. Xiong, H. H. Chen, J. T. Zhao et al., Vacuum ultraviolet spectroscopic properties of rare earth (RE= Ce, Tb, Eu, Tm, Sm)-doped hexagonal KCaGd(PO4)2 phosphate, J. Appl. Phys.102 (2007) 093514.
    [28]R. C. Lima, J. W. M. Espinosa, et al., Photoluminescence in disordered Sm-doped PbTiO3: Experimental and theoretical approach, J. Appl. Phys.100 (2006) 034917.
    [29]Shinobu Fujihara, Masashi Oikawa, Structure and luminescent properties of CeO2:rare earth (RE= Eu3+ and Sm3+) thin films, J. Appl. Phys.95 (2004) 8002.
    [30]K. Chakrabarti, V. K. Mathur, Joanne F. Rhodes, R. J. Abbundi, Stimulated luminescence in rare-earth-doped MgS, J. Appl. Phys.64 (1988) 1363.
    [31]R.T. Wegh, H. Donker, K.D. Oskam, A. Meijerink, Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion, J. Lumin.82 (1999) 93-104.
    [32]陈永虎,刘波,施朝淑,陶冶,巨新,Gd2SiO5:Eu3+中VUV激发的量子剪裁,中国科学(A辑),8(2002)711-715.
    [33]A. R. Zanatta, A. Khan, M. E. Kordesch, Red-green-blue light emission and energy transfer processes in amorphous SiN films doped with Sm and Tb, J. Phys.: Condens. Matter.19 (2007) 436230.
    [34]A. V. Sidorenko, P. Dorenbos, A. J. J. Bos, C. W. E. van Eijk, P. ARodnyi, Lanthanide level location and charge carrier trapping in LiLnSiO4:Ce3+,Sm3+(Ln= Y or Lu), J. Phys.:Condens. Matter.18 (2006) 4503-4514.
    [35]D. Dosev, I. M. Kennedy, et al, Fluorescence upconversion in Sm-doped Gd2O3, Appl. Phys. Lett.88 (2006) 011906.
    [36]H. Lin, E. Y. B. Pun, et al., Optical and luminescence properties of Sm3+-doped cadmium-aluminum-silicate glasses, Appl. Phys. Lett.80 (2002) 2642.
    [37]A. R. Zanatta, C. T. M. Ribeiro, U. Jahn, Visible luminescence from a-SiN films doped with Er and Sm, Appl. Phys. Lett.79 (2001) 488.
    [38]Nobuhiro Kodama, Tomoko Takahashi, Kazuyuki Hirao, Room-temperature persistent spectral hole burning in Sm-doped KLaF4 crystals, Appl. Phys. Lett.72 (1998) 1548.
    [39]Jiuping Zhong, Hongbin Liang, Huihong Lin, Bing Han, Qiang Su, Guobin Zhang, Effects of crystal structure on the luminescence properties and energy transfer between Gd3+and Ce3+ions in MGd(PO3)4:Ce3+(M= Li, Na, K, Cs), J. Mater. Chem. 17 (2007) 4679-4684.
    [40]R. T. Wegh, H. Donker, A. Meijerink, et al., Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4, Phys. Rev. B.56 (1997) 13841.
    [41]Bing Yan, Xiuzhen Xiao, Novel YNbO4:RE3+(RE= Sm, Dy, Er) microcrystalline phosphors:Chemical co-precipitation synthesis from hybrid precursor and photoluminescent properties, J. Alloys Compd.433 (2007) 251-255.
    [1]E.van der Kolk, P. Dorenbos and C. W. E. van Eijk, Vacuum ultraviolet excitation and quantum splitting of Pr3+ in LaZrF7 and a-LaZr3F15, Opt. Commun.197 (2001) 317.
    [2]F. T. You, S. H. Huang, C. X. Meng, D. W. Wang, J. H. Xu, Y. Huang and G. B. Zhang,4f5d configuration and photon cascade emission of Pr3+ in solids, J. Lumin. 122-123 (2007) 58-61.
    [3]I. Sokolska and S. Kuck, Observation of photon cascade emission in the Pr3+-doped perovskite KMgF3, Chem. Phys.270 (2001) 355.
    [4]A.M. Srivastava and S.J. Duclos, On the luminescence of YF3-Pr3+ under vacuum ultraviolet and X-ray excitation, Chem. Phys. Lett.275 (1997) 453.
    [5]A. Yoshikawa, K. Kamada, M. Nikl, K. Aoki, H. Sato, J. Pejchal and T. Fukuda, Growth and luminescent properties of Pr:KY3F10 single crystal, J. Cryst. Growth.285 (2005) 445.
    [6]N. Martin, R. Mahiou, P. Boutinaud and J.C. Cousseins, A spectroscopic study of K2YF5:Pr3+, J.Alloys. Compd.,323-324 (2001) 303.
    [7]D. W. Wang, S. H. Huang, F. T. You, S. Q. Qi, Y. B. Fu, G. B. Zhang, J. H. Xu and Y. Huang, Vacuum ultraviolet spectroscopic properties of Pr3+ in MYF4 (M= Li, Na, and K) and LiLuF4, J. Lumin.,122-123 (2007) 450-452.
    [8]A.P. Vink, E. van der Kolk, P. Dorenbos and C.W.E. van Eijk, J. Alloys. Compd. 341 (2002) 338.
    [9]Maarten L.H. ter Heerdt, E. van der Kolk, W. M. Yen and A. M. Srivastava, Vacuum ultraviolet spectroscopy of Pr3+ in CaAl4O7, LaMgAl11O19 and SrLaAlO4, J. Lumin.,100 (2002) 107.
    [10]A.M. Srivastava, A.A. Setlur, H.A. Comanzo, M.E. Hannah, P.A. Schmidt and U. Happek, J. Lumin.,129 (2009) 126.
    [11]F. T. You, S. H. Huang, C. X. Meng, D. W. Wang, J. H. Xu, Y. Huang and G. B. Zhang, J. Lumin.,122-123 (2007) 58.
    [12]X. J. Wang, S. H. Huang, L. Z. Lu and W. M. Yen, Measurement of quantum efficiency in Pr3+-doped CaAl4O7 and SrAl4O7 crystals, Appl. Phys. Lett.79 (2001) 14.
    [13]S. Okamoto and H. Kobayashi, Enhancement of characteristic red emission from SrTiO3:Pr3+ by Al addition, J. Appl. Phys.86 (1999) 5594.
    [14]A. M. Srivastava and W. W. Beers, Luminescence of Pr3+ in SrAl12O19: Observation of two photon luminescence in oxide lattice, J. Lumin.,71 (1997) 285.
    [15]E. Radzhabov, Photon cascade emission of Pr3+ ion in alkaline earth fluorides, J. Lumin.,04 (2009) 071.
    [16]A.M. Srivastava, Inter-and intraconfigurational optical transitions of the Pr3+ ion for application in lighting and scintillator technologies, J. Lumin.,4 (2009) 14.
    [17]V. N. Makhov, N. M. Khaidukov, D. Lo, M. Kirm and G Zimmerer, Spectroscopic properties of Pr3+ luminescence in complex fluoride crystals, J. Lumin., 102-103 (2003) 638.
    [18]W. Liang and Y. H. Wang, Mater. Chem. Phys.119 (2010) 214.
    [19]I. V. Ogorodnyk, I. V. Zatovsky, V. N. Baumer, N. S. Slobodyanik and O. V. Shishkin, Cryst. Res. Technol.42 (2007) 1076.
    [20]Y. H. Wang and D. Wang, J. Solid State Chem.180 (2007) 3450.
    [21]L. He, Y. H. Wang and H. Gao, J. Lumin.126 (2007) 182.
    [22]L. Pidola, B. Viana, A. Kahn-Harari, A. Bessiere and P. Dorenbos, Nucl. Instrum. Methods Phys. Res. A.537 (2005) 125.
    [23]S. Nicolas, E. Descroix, M.F. Joubert, Y. Guyot, M. Laroche, R. Moncorg, R.Yu. Abdulsabirov, A.K. Naumov, V.V. Semashko, A.M. Tkachuk and M. Malinowski, Potentiality of Pr3+-and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers, Opt. Mater.22 (2003) 139.
    [24]S. Kuck, I. Sokolska, M. Henke and Osiac, E., Quantum efficiency of 1So and 3Po,i levels of Pr3+ doped YF3, Chem. Phys.310 (2005) 139-144.
    [25]M. Guzik, T. Aitasalo, W. Szuszkiewicz, J. Holsa, B. Keller, J. Legendziewicz, Optical spectroscopy of yttrium double phosphates doped by cerium and praseodymium ions, J. Alloys.Compd.,380 (2004) 368-375.
    [26]P. Dorenbosa, E. V. D. van Loef, A. P. Vink, E. van der Kolk, C. W. E. van Eijk, K. W. Kramer, H. U. Gudel, W. M. Higgins, K. S. Shah, Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3, J. Lumin.,117 (2006) 147-155.
    [27]Hongbin Liang, Ye Tao, Jianhua Xu, Hong He, Hao Wu, Wenxuan Chen, Shubin Wang, Qiang Su, Photoluminescence of Ce3+, Pr3+ and Tb3+activated Sr3Ln(PO4)3 under VUV-UV excitation, J. Solid State Chem.,177 (2004) 901-908.
    [28]R. Piramidowicz, K. Lawniczuk, M. Nakielska, J. Sarnecki, M. Malinowski, UV emission properties of highly Pr3+-doped YAG epitaxial waveguides, J. Lumin.,128 (2008)708-711.
    [29]Xianmin Zhang, Jiahua Zhang, Meiyuan Wang, X. Zhang, H. Zhao, Xiao-Jun Wang, Investigation on the improvement of red phosphorescence in CaTiO3:Pr3+ nanoparticles, J. Lumin.,128 (2008) 818-820.
    [30]V. Babin, A. Krasnikov, Y. Maksimov, K. Nejezchleb, M. Nikl, T. Savikhina, S. Zazubovich, Luminescence of Pr3+-doped garnet single crystals, Opt. Mater.,30 (2007) 30-32.
    [31]A. Novoselov, H. Ogino, A. Yoshikawa, M. Nikl, J. Pejchal, A. Beitlerova, T. Fukuda, Crystal growth, optical and luminescence properties of Pr-doped Y2SiO5 single crystals, Opt. Mater.,39 (2007) 1381-1384.
    [32]Cz. Koepke, K. Wisniewski, D. Dyl, M. Grinberg, M. Malinowski, Evidence for existence of the trapped exciton states in Pr3+-doped LiNbO3 crystal, Opt. Mater.,28 (2006)137-142.
    [33]Philippe Boutinaud, Rachid Mahiou, Enrico Cavalli, Marco Bettinelli, Red luminescence induced by intervalence charge transfer in Pr3+-doped compounds, J. Lumin 122-123 (2007) 430-433.
    [34]Przemyslaw J. Deren, Spectroscopic characterization of LaALO3 crystal doped with Pr3+ ions, J. Lumin 122-123 (2007) 40-43.
    [35]M. Nikl, H. Ogino, A. Yoshikawa, E. Mihokova, J. Pejchal, A. Beitlerova,A. Novoselov, T. Fukuda, Fast 5d→4f luminescence of Pr3+ in Lu2SiO5 single crystal host, Chem. Phys. Lett.,410 (2005) 218-221.
    [36]A. Novoselov, H. Ogino, A. Yoshikawa, M. Nikl, J. Pejchal, J.A. Mares, A. Beitlerova, C. D'Ambrosio, T. Fukuda, Study on crystal growth and luminescence properties of Pr-doped RE2Si05 (RE= Y, Lu), J. Cryst. Growth.,287 (2006) 309-312.
    [37]S. Khiari, M. Velazquez, R. Moncorge, J.L. Doualan, P. Camy, A. Ferrier, M. Diaf, Red-luminescence analysis of Pr3+ doped fluoride crystals, J. Alloys Compd., 451(2008)128-131.
    [38]L. Macalik, M. Maczka, J. Hanuza, P. Godlewska, P. Solarz, W. Ryba-Romanowski, A. A. Kaminskii, Spectroscopic properties of the CaNb2O6:Pr3+ single crystal, J. Alloys Compd.,451 (2008) 232-235.
    [39]Gary W. Burdick, F.S. Richardson, Correlation-crystal-field delta-function analysis of 4f2 (Pr3+) energy-level structure, J. Alloys Compd.,275-277 (1998) 379-383.
    [40]孟春霞,黄世华,由芳田,常建军,彭洪尚,陶冶,张国斌,YAG:Pr3+的真空紫外光 谱分析及其4f5d能级的研究,,物理学报,54(2005)5468-5473.
    [41]王大伟,黄世华,由芳田,孟春霞,祁士群,张国斌,符义兵,徐建华,黄艳,真空紫外光激发下掺Pr3+铝酸盐的自陷激子对Pr3+发光的影响,物理学报,55(2006)2449-2453.
    [42]A. P. Vink, E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, Opposite parity 4fn"15d1 states of Ce3+ and Pr3+ in MSO4(M= Ca, Sr, Ba), J. Alloys Compd.,341 (2002) 338-341.
    [43]N. J. M. Le Masson, A. P. Vink, P. Dorenbos, A. J. J. Bos, C. W. E. VanEijk, J. P. Chaminade, Ce3+ and Pr3+5d-energy levels in the (pseudo) perovskites KMgF3 and NaMgF3, J. Lumin 101 (2003) 175-183.
    [44]G. Stryganyuk, G. Zimmerer, N. Shiran, V. Voronova, V. Nesterkin, A. Gektin, K. Shimamura, E. Villora, F. Jing, T. Shalapska, A. Voloshinovskii, Spectral-kinetic characteristics of Pr3+ luminescence in LiLuF4 host upon excitation in the UV-VUV range, J. Lumin.,128 (2008) 1937-1941.
    [45]A. M. Srivastava, A. A. Setlur, H. A. Comanzo, M. E. Hannah, P. A. Schmidt, U. Happek, LuminescencefromthePr3+4f15d1 and 1So statesinLiLaP4O12, J. Lumin.,129 (2009) 126-129.
    [46]R. S. Quimby P. A. Tick, N. F. Borrelli, L. K. Cornelius, Quantum efficiency of Pr3+ doped transparent glass ceramics, J. Appl. Phys.,83 (1998) 1649.
    [47]F. B. Xiong, X. H. Gong, Y. F. Lin, Y. J. Chen, Q. G. Tan, Z. D. Luo, Y. D. Huang, Spectroscopic characteristics of Pr3+ in biaxial La2(WO4)3 crystal, Appl. Phys. B.,86 (2007) 279-286.
    [1]E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, Luminescence excitation study of the higher energy states of Pr3+ and Mn2+in SrAlF5, CaAlF5, and NaMgF3, J. Appl. Phys.95 (2004) 7867.
    [2]Y. H. Chen, C. S. Shi, W. Z. Yan, Z. M. Qi, Y. B. Fu, Energy transfer between Pr3+ and Mn2+ in SrB4O7:Pr,Mn, Appl. Phys. Lett.,88 (2006) 061906.
    [3]W.W. Piper, J.A. DeLuca, F.S. Ham, J. Lumin.8 (1974) 344.
    [4]T. J. Lee, L. Y. Luo, B. M. Cheng, W. G. Diau, T. M. Chen, Appl. Phys. Lett.92 (2008)081106.
    [5]Y. H. Chen, W. Z. Yan, C. S. Shi, Energy transfer in Pr3+ and Mn2+co-doped SrB6O10 and SrB4O7, J. Lumin.122-123 (2007) 21.
    [6]Yi. B. Fu, G. B. Zhang, Z. M. Qi, W. Q. Wu, C. S. Shi, Energy transfer in LaMgB5O10:Pr3+,Mn2+ under VUV excitation, J. Lumin.124 (2007) 370.
    [7]Y. B. Fu, G. B. Zhang, W. Q. Wu, Z. M. Qi, Y. H. Chen, D. W. Wang, C. S. Shi, The energy transfer processes in LaMgB5O10:Pr3+, Mn2+, J. Phys. Chem. Solids.68 (2007) 1779.
    [8]Y. H. Chen, B. Liu, C. S. Shi, G. Zimmerer, J. Chin. Rare Earth. Soc.23 (2005) 429.
    [9]Y. H. Wang, C. F. Wu, J. Wei, J.Lumin.126 (2007) 503.
    [10]I. V. Ogorodnyk, I. V. Zatovsky, V. N. Baumer, N. S. Slobodyanik, O. V. Shishkin, Cryst. Res. Technol.42 (2007) 1076.
    [11]C. J. Duan, A. C. A. Delsing, H. T. Hintzen, Photoluminescence Properties of Novel Red-Emitting Mn2+-Activated MZnOS (M= Ca, Ba) Phosphors, Chem. Mater. 21(2009)1010-1016.
    [12]S. Linwood, J. Wegl, J. Opt. Soc. Am.42 (1952) 910.
    [13]陶怡,李岚等,Tb3+,Mn2+作为激活剂的PDP绿色荧光粉的研究,液晶与显示,20(2005)296-301.
    [14]张弓弓,施朝淑,刘波,Pr3+,Mn2+掺杂硼酸盐的双光子发射,第五届全国稀土发光材料科学学术研讨会论文摘要集(2005)
    [15]Y. Hao, Y. H. Wang, Synthesis and photoluminescence of new phosphors M2(Mg, Zn)Si2O7:Mn2+(M= Ca, Sr, Ba), Mater. Res. Bull.,42 (2007) 2219-2223.
    [16]陈永虎,施朝淑,闫武钊,戚泽明,符义兵,SrB4O7:Pr3+,Mn2+中的Pr→Mn能量传递,发光学报,27(2006)337-342.
    [1]Y. F. Li, M. Yin, H. Guo, V. N. Makhov and N. M. Khaidukov, J. C. Krupa, J. Phys.:Condens. Matter.,15 (2003) 7117.
    [2]R. P. Rao and D. J. Devine, J. Lumin.,87-89 (2000) 1260.
    [3]R. T. Wegh, H. Donker, E. V. D. van Loef, K. D. Oskam and A. Meijerink, J. Lumin.,87-89 (2000) 1017.
    [4]Y. R. Do and J. W. Bae, J. Appl. Phys.,88 (2000) 4660.
    [5]N. Murase and C. L. Li, J. Lumin.,128 (2008) 1896.
    [6]B. Moine, L. Beauzamy, P. Gredin, G. Wallez and J. Labeguerie, Opt. Mater.,30 (2008) 1083.
    [7]Q.Y. Zhang and X.Y. Huang, Prog. Mater Sci., In press (2009).
    [8]E. van der Kolk, P. Dorenbos, A. P. Vink, R. C. Perego, C. W. E. van Eijk and A. R. Lakshmanan, Phys. Rev. B.,64 (2001) 195129.
    [9]K. D. Oskam, R. T. Wegh, H. Donker, E. V. D. van Loef and A. Meijerink, J. Alloys. Compd.,300-301 (2000) 421.
    [10]T. Justel and H. Nikol,Adv. Mater.,12 (2000) 527.
    [11]I. V. Ogorodnyk, I. V. Zatovsky, V. N. Baumer, N. S. Slobodyanik and O. V. Shishkin, Cryst. Res. Technol.,42 (2007)1076.
    [12]R.T. Wegh, E.V.D. van Loef and A. Meijerink, Visible quantum cutting via downconversion in LiGdF4:Er3+, Tb3+upon Er3+4f11 →4f105d excitation,J. Lumin., 90(2000)111.
    [13]S. P. Feofilov, Y. Zhou, J. Y. Jeong, D. A. Keszler, R. S. Meltzer, Sensitization of Gd3+ and the dynamics of quantum splitting in GdF3:Pr,Eu, J. Lumin.,122-123 (2007)503-505.
    [14]Te-Ju Lee, Li-Yang Luo, Bing-Ming Cheng, Wei-Guang Diau, and Teng-Ming Chen, Investigation of Pr3+ as a sensitizer in quantum-cutting fluoride phosphors, Appl. Phys. Lett.,92 (2008) 081106.
    [15]N. Jaba, M. Ajroud, G. Panczer, M. Ferid and H. Maaref, Opt. Mater.,32 (2010) 479.
    [16]P. S. Peijzel and A. Meijerink, Chem. Phys. Lett.,401 (2005) 241.
    [17]T. J. Lee, L. Y. Luo, E. W. G. Diau, T. M. Chen, B. M. Cheng and C. Y. Tung, Appl. Phys. Lett.,89 (2006) 131121.
    [18]H. Y. Tzeng, B. M. Cheng and T. M. Chen, Visible quantum cutting in green-emitting BaGdF5:Tb3+ phosphors via downconversion, J. Lumin.,122-123 (2007) 917-920.
    [19]Q. Y. Zhang, C. H. Yang and Y. X. Pan, Appl. Phys. Lett.,90 (2007) 021107.
    [20]H. Kondo, T. Hirai and S. Hashimoto,J.Lumin.,102-103 (2003) 727.
    [21]W. Liang and Y. H. Wang, Mater. Chem. Phys.,119 (2010) 214.
    [22]J. Holsa, R. J. Lamminmak and P. Porcher, Simulation of the energy levels of Dy3+ in DyOCl, J. Alloys Compd.,275-277 (1998) 398-401.
    [23]L. Beauzamy, B. Moine and P. Gredin, Energy transfers between dysprosium and terbium in YF3, J.Lumin.127 (2007) 568-574.
    [24]G. S. R. Raju, J. Y. Park, H. C. Jung, B. K. Moon, J. H. Jeong and J. H. Kim, Luminescence properties of Dy3+:GdAl03 nanopowder phosphors, Curr. Appl. Phys., 9 (2009) e92-e95.
    [25]B. Moine, L. Beauzamy, P. Gredin and G. Wallez, J. Labeguerie, Research of green emitting rare-earth doped materials as potential quantum-cutter, Opt. Mater.30 (2008) 1083-1087.
    [26]X.H. Chuai, H. J. Zhang, F. Sh. Li, Sh. Z. Lu, J. Lin, Sh. B. Wang and Kou. Chi-Chou, Synthesis and luminescence properties of oxyapatite NaY9Si6O26 doped with Eu3+, Tb3+, Dy3+ and Pb2+, J. Alloys Compd.,334 (2002) 211-218.
    [27]Y. L. Huang, X. Q. Feng, W. L. Zhu and Z. Y. Man, Energy transfer and annealing behavior of luminescence in Dy3+-doped PbWO4 single crystal, J. Cryst. Growth.,250 (2003) 431-436.
    [28]A.N. Belsky, N.M. Khaidukov, J.C. Krupa, V.N. Makhov and A. Philippov, Luminescence of CsGd2F7:Er3+, Dy3+ under VUV excitation, J. Lumin.,94-95 (2001) 45-49.
    [29]B. Vengala Rao and S. Buddhudu, Emission analysis of RE3+(Dy3+or Tb3+):Ca3Ln (Y, Gd)(VO4)3 powder phosphors, Mater. Chem. Phys., 111 (2008) 65-68.
    [30]H. Lin, E. Y. B. Pun, X. J. Wang and X. R. Liu, Intense visible fluorescence and energy transfer in Dy3+, Tb3+, Sm3+ and Eu3+ doped rare-earth borate glasses, J. Alloys Compd.,390 (2005) 197-210.
    [31]Y. Fang, W. D. Zhuang, Y. S. Hu, X. Y. Ye and X. W. Huang, Luminescent properties of Dy3+ ion in Ca8Mg(Si04)4Cl2, J. Alloys Compd.455 (2008) 420-423.
    [32]E. Cavalli, A. Belletti, R. Mahiou and P. Boutinaud, Luminescence properties of Ba2NaNb5O15 crystals activated with Sm3+, Eu3+, Tb3+ or Dy3+ ions, J.Lumin., In press.
    [33]Y. C. Li, Y. S. Chang, Y. C. Lai, Y. J. Lin, C. H. Laing and Y. H. Chang, Luminescence and energy transfer properties of Gd3+ and Tb3+ in LaAlGe2O7, Mater. Sci. Eng., B.146 (2008) 225-230.
    [34]G. C. Han, Y. H. Wang, C. F. Wu and J. C. Zhang, Hydrothermal synthesis and vacuum ultraviolet-excited luminescence properties of novel Dy3+-doped LaPO4 white light phosphors, Mater. Res. Bull.44 (2009) 2255-2257.
    [35]X. Y. Sun, M. Gua, S. M. Huang, X. L. Liu, B. Liu and C. Ni, Enhancement of Tb3+ emission by non-radiative energy transfer from Dy3+ in silicate glass, Physica B., 404(2009)111-114.
    [36]B. V. Rao and S. Buddhudu, Emission analysis of Dy3+:Ca4GdO(BO3)3 powder phosphor, Spectrochim. Acta, Part A.71 (2008) 951-953.
    [37]K.K. Mahato, A. Rai and S.B. Rai, Optical properties of Dy3+ doped in oxyfluoroborate glass, Spectrochim. Acta, Part A.61 (2005) 431-436.
    [38]K. C. SOBHA and K. J. RAO, Luminescence of, and energy transfer between Dy3+ and Tb3+ in nasicon-type phosphate glasses, J. Phys. Chem. Solids.,57 (1996) 1263-1267.
    [39]I. V. Ogorodnyk, I. V. Zatovsky, V. N. Baumer, N. S. Slobodyanik and O. V. Shishkin, Cryst. Res. Technol.42 (2007), p.1076.
    [40]Q. H. Xu, B. C. Lin and Y. L. Mao,J. Lumin.,128 (2008) 1965.
    [41]Lena Beauzamy, Bernard Moine, Patrick Gredin, Energy transfers between dysprosium and terbium in YF3, J. Lumin.,127 (2007) 568-574.
    [42]L.Y. Zhou, J. S. Wei, J. X. Shi, M. L. Gong and H. B. Liang, J. Lumin.,128 (2008) 1262.
    [43]P. S. Peijzel, A. Meijerink, Visible photon cascade emission from the high energy levels of Er3+, Chem. Phys. Lett.,401 (2005) 241-245.
    [44]P. Vergeer, V. Babin, A. Meijerink, Quenching of Pr3+1S0 emission by Eu3+ and Yb3+, J. Lumin.,114 (2005) 267-274.
    [45]王志军,李盼来,杨志平,郭庆林,Dy3+激活的LiCaBO3材料发光特性研究,无机材料学报,24(2009)1069-1072.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700