白光LED用钼酸盐红色荧光粉的制备及发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光LED由于其具有节能、环保、长寿命、体积小等优异的特点而引起人们的广泛关注,被称为第四代照明光源。荧光粉涂敷光转变法获取白光LED已经成为了发展的主流,同时也给荧光粉的发展带来了新的空间。
     传统白光LED若要完全取代荧光灯成为新一代室内照明光源,除需要降低成本外,还需要白光LED具有更高的流明效率、更高的显色指数以及白光发射的色温具有更好的可调节性等。此外,已经商业化的由蓝光LED+黄色荧光粉组合发光的白光LED本身也存在一些缺陷,如:在高的电流下蓝光光谱的电光强度要比长波长的光即黄光增加得快,随着电流的改变就会导致光谱的不匹配从而很容易导致色温的改变和低的显色指数。而紫外和近紫外系统则不存在以上的情况,紫外和近紫外体系的白光LED有成本较低、颜色的控制较蓝光LED容易得多、色彩均匀度极佳、显色性好等优点。因此,紫外和近紫外体系的白光LED取代传统蓝光LED+黄色荧光粉系统也是白光LED发展的趋势。当前,用于近紫外InGaN基LED的三基色商用荧光粉主要是:红色荧光粉Y2O2S:Eu3+,绿色荧光粉ZnS:(Cu+,A13+)和蓝色荧光粉BaMgAl10O17:Eu2+。然而,红色荧光粉Y2O2S:Eu3+在近紫外范围不能有效的吸收,其相对发光亮度值只有商用蓝色荧光粉和绿色荧光粉发光亮度值的八分之一;为了合成理想的白光和形成较好的色纯度,所需要红、绿、蓝荧光粉的质量分别为8:1:1。此外,在近紫外光的激发下红色荧光粉Y2O2S:Eu3+性能不稳定、寿命不长。红色荧光粉Y2O2S:Eu3+这些不足已经成为制约白光LED发展的主要瓶颈。因此,研究新型的能与紫外(近紫外)LED相匹配的红色荧光粉具有重要的理论和现实意义。
     本论文系统的研究了现有红色荧光粉CaMoO4:Eu3+体系的制备方法和发光性能,并通过稀土离子共掺以及引进Si原子替代部分基质Mo原子来提高其发光强度;新合成了三种可被紫外(近紫外)或蓝光激发的新型钼酸盐红色荧光粉体系,较系统地研究了它们的制备方法和光谱性能等,并得出以下相关研究结论:
     1.红色荧光粉CaMoO4:Eu3+体系发光性能研究
     系统的研究了高温固相法制备CaMoO4:Eu3+体系的工艺条件,确定了CaMoO4:Eu3+制备的最佳条件是煅烧温度为900℃保温3小时,并确定了CaMoO4:Eu3+中Eu3+的最佳掺杂浓度为25at.%,把Eu3+的掺杂浓度从20at.%(业界普遍认为在CaMoO4中Eu3+的最大掺杂浓度是20at.%)提高到了25at.%具有重要的积极意义,即在钼酸钙体系中激活剂Eu3+的掺杂浓度提高发光强度随着增强。系统的探讨了电荷补偿剂(Li+,Na+,K+)对CaMoO4:Eu3+发光性能的影响,发现补偿剂对提高CaMoO4:Eu3+的发光强度是按Li+>Na+>K+顺序。虽然Li+作为电荷补偿剂时样品发光强度最大,但是样品硬度较高,所以综合考虑选择Na+作为电荷补偿剂为最佳。
     使用Bi3+作为共激活剂,成功合成了红色荧光粉系列Ca0.5MoO4:Eu0.25-x3+,Bix3+,Na0.25+。实验结果显示该系列荧光粉能被UV(396 nm)光和蓝光(467 nm)有效激发,发射出波峰位于615 nm的红光。在Eu3+-Bi3+共掺CaMoO4中,存在从Bi3+到Eu3+的能量传递,适量的Bi3+引进到Ca0.5MoO4:Eu0.253+,Na0.25+中能使得Eu3+(5D0→7F2)的发射强度提高43%。在本实验中同时发现激活剂离子Eu3+-Bi3+之间发生能量迁移的可能与Bi3+的掺杂浓度有很密切的关系。Bi3+的最佳掺杂浓度为1at.%。
     利用高温固相法制备了Eu3+和Sm3+共掺的钼酸钙(CaMoO4)荧光粉。研究发现该系列荧光粉在近紫外光范围内有很强的能量吸收,并发射出位于615 nm处的红光,非常合适白光LED制造。此外,通过引入少量的Sm3+可以增加406 nm处的激发光谱强度,同时可以加宽400 nm处的激发光谱。文章分别通过样品发光光谱和发光寿命证明了Sm3+对Eu3+的敏化作用;实验结果显示适量的Sm3+引进不但能提高样品发光强度而且可以提高色纯度,样品的最佳掺杂量是0.5at.%。
     在CaMoO4:Eu3+体系中首次引进Si取代部分Mo原子的位置来达到提高发光强度的目的,实验结果显示Si的加入并没有影响激发和发射光谱的形状和发射峰的位置。随着引入适量的Si4+样品发射强度明显提高,主要是因为改变了Eu3+发光中心的次晶格对称而释放了Eu3+的f-f跃迁。此外,实验还发现当Si4+的掺杂含量超过2at.%时,样品的颗粒度明显增大,这与基质含Si原子的荧光粉样品粒径偏大的现象相同。综合考虑当Si4+的掺杂含量为1at.%时,样品的发光强度达到最大值同时平均粒径2.15μm为最佳。样品Ca0.5Mo0.99Si0.01O4:Eu0.253+,Na0.25+色坐标值明显比未掺杂Si4+的样品Ca0.5MoO4:Eu0.253+,Na0.25+的色坐标值更加接近美国国家电视标准委员会(National Television System Committee,缩写为NTSC)标准值。所有实验结果显示该系列荧光粉非常适合于白光LED制造。
     2.一种新型白光LED用红色荧光粉Na0.5Gd0.5MoO4:Eu3+体系发光性能研究
     采用高温固相法成功合成了一种与CaMoO4同构的新型钼酸盐红色荧光粉Na0.5Gd0.5MoO4:Eu3+体系。实验结果显示在Eu3+激活的Na0.5Gd0.5MoO4体系中,不发生Eu3+浓度猝灭。即Na0.5Gd0.5-xMoO4:Eux3+的发光强度随着掺杂Eu3+浓度的增加而增强。当Gd3+完全被Eu3+取代时样品的发光强度达到最大值,此时样品的相对发光亮度分别是Ca0.80MoO4:Eu0.203+和传统商用红粉Y2O2S:Eu3+的2.26和6倍。
     引入适量的Li+取代部分的Na+在荧光粉Na0.5Eu0.5MoO4中能明显提高粉体发光强度。Li+的最佳掺杂浓度是25at.%,样品Na0.25Li0.25Eu0.5MoO4的发光强度比未掺杂Li+的样品的相对亮度提高了37%,其亮度值更是传统商用红粉Y2O2S:Eu3+发光亮度的8.2倍;同时其色坐标值(x=0.654,y=0.346)比商用红粉Y2O2S:Eu3+的色坐标值(x=0.631,y=0.350)更加接近NTSC标准值。主要原因是因为引入适量的Li+到Na0.5Eu0.5MoO4中是能够改变Eu3+发光中心的次晶格结构使得Eu3+远离反演对称中心而释放更多的电偶极跃迁来提高发光强度。此外,样品Na0.5Eu0.5MoO4和Na0.25Li0.25Eu0.5MoO4的荧光寿命τ值分别为0.375和0.416 ms,同时发现添加适量的Li+,样品的荧光寿命τ值也随着增加。所有实验结果表明Na0.25Li0.25Eu0.5MoO4是一种高效的红色荧光粉适用于三基色荧光粉系统白光LED制造或可以作为“蓝光LED+黄色荧光粉系统”的红光补偿粉。
     3.钼钨酸盐红色荧光粉的制备及光谱性能研究
     合成了钾铕双钼酸盐荧光粉KEu(MoO4)2并通过引进钨酸来提高发光强度,确定了钾铕双钼酸盐荧光粉KEu(MoO4)2制备的最佳工艺条件是煅烧温度为750℃保温5小时。在样品KEu(MoO4)2中,引入WO42-的最佳掺杂量是50at.%即摩尔量的比MoO42-/WO42-=3/1结构式表达为KEu(WO4)0.5(MoO4)1.5。系统的分析比较了荧光粉MEu(WO4)0.5(MoO4)1.5(M=Li, Na, K)的发光性能,发现样品的发射强度随着碱金属离子半径的增大而减小(碱金属离子半径排序:K+>Na+>Li+),综合各方面因素考虑碱金属和铕双钼钨酸盐的最佳结构表达式选择为:LiEu(WO4)0.5(MoO4)1.5。
     合成了一种新型白光LED用红色荧光粉LiEu1-xYx(WO4)0.5(MoO4)1.5(x=0,0.1,0.2,0.3,0.4,0.5,0.6,0.8)系列,确定了Y3+掺杂浓度最佳值x为0.5,同时研究表明该系列荧光粉可以被近紫外光(396 nm)和蓝光(466 nm)有效激发,发射峰值位于615 nm(Eu3+离子的5D0→7F2跃迁)的红光,并且证明了Eu3+离子在晶体结构中占据了非反演对称中心的位置,激发波长与目前广泛使用的蓝光和紫外光LED芯片相符合,适用于白光LED的制造。此外,研究了助熔剂对该体系荧光粉发光特性的影响。XRD的测量结果表明加入适量的助熔剂有利于LiEu1-xYx(WO4)0.5(MoO4)1.5荧光粉的结晶化,并且不引入杂相。适量的助熔剂的加入可增大该系列荧光粉的相对发光强度,并能有效降低荧光粉的平均粒径,确定了在制备LiEu0.5Y0.5(WO4)0.5(MoO4)1.5荧光粉的焙烧过程中按1:1添加占总质量1%的AlF3和H3B03作为助熔剂时荧光粉的相对发光强度最大,平均粒径较小综合效果最佳。
     合成了一系列新型红色荧光粉LiEu1-xBix(WO4)0.5(MoO4)1.5(x=0,0.1,0.2,0.3,0.4,0.5,0.6,0.8)并详细研究了它们的发光性能。样品的最强发射峰位于615 nm处对应于Eu3+的5D0→7F2跃迁;实验结果表明在LiEu(WO4)0.5(MoO4)1.5中加入适量的Bi3+,不但可以提高荧光粉的发光强度,而且有利于改善样品的色纯度。Bi3+的最佳掺杂浓度为10at.%,当Bi3+浓度超过最佳值时,Bi3+-Bi3+之间形成团聚且吸收的能量也通过非辐射跃迁损失,导致Bi3+对Eu3+的敏化作用明显减小。计算出不同Bi3+浓度x=0.05,0.1,0.15,0.2,0.3,0.4,0.5时Eu3+-Bi3+之间的能量传递平均距离RBi→Eu分别为22.3,23.7,24.9,26.1,28.1,29.9,31.4A。并确定了能量传递的临界距离(Rc)约为27.1 A。
     4.一种新型白光LED用三钼酸盐红色荧光粉LiKGd2(MoO4)4:Eu3+体系发光性能研究
     采用高温固相法成功合成了一系列新型三铝酸盐红色荧光粉LiKGd2-xEux(MoO4)4。确定了三铝酸盐红色荧光粉LiKGd2(MoO4)4:Eu3+制备的最佳工艺条件是煅烧温度为850℃保温5小时。采用“绝热法”对目标样品做了半定量分析,计算出物相质量分数证明了所制备样品为纯相。为半定量分析样品相纯度提供了一种新的实用的方法。
     荧光粉LiKGd2(MoO4)4:Eu3+在紫外(396 nm)和蓝光(466 nm)区域有两个很强的吸引峰分别能与近紫外光LED芯片和蓝光LED芯片发射很好的匹配,并发射出峰值位于615 nm的红光。实验结果显示:Eu3+掺杂LiKGd2(MoO4)4基质的最佳浓度值x为1.1,经比较发现样品LiKGd0.9(MoO4)4:Eu1.13+的发光强度分别是Ca0.80MoO4:Eu0.203+和商用红粉Y2O2S:Eu3+发光强度的1.40和3.68倍。而且荧光粉LiKGd0.9(MoO4)4:Eu1.13+的色坐标值比传统商用红粉Y2O2S:Eu3+的色坐标值更加接近NTSC标准值。基于Dexter的多极相互作用能量传递公式和Reisfeld提供的近似值原理,详细分析了荧光粉LiKGd2-xEux(MoO4)4系列中Eu3+离子之间的能量传递是电偶极-偶极相互作用,并按临界无辐射能量传递距离公式计算得出Eu3+离子之间能量传递临界距离Rc=8.24A。所有实验结果表明三钼酸盐LiKGd0.9(MoO4)4:Eu1.13+是一种高效的红色荧光粉,适用于三基色荧光粉系统白光LED制造或可以作为“蓝光LED+黄色荧光粉系统”的红光补偿粉。
White light-emitting diodes (LEDs), known as the fourth generation solid-state lighting, have many advantages over the existing incandescent and halogen lamps in reliability, energy saving, long life, small size, maintenance and safety, and therefore are gaining lots of attentions. Today, the white LEDs market is dominated by phosphor-converted LEDs (pcLEDs), which brings new prospect to the development of phosphors.
     To completely replace fluorescent lamp to be a new generation indoor illumination source, it is necessary that the traditional white LED lighting possesses lower costs, higher luminous efficiency and color rendering index and better adjustability in color temperature of white light emitting and so on. There exist some defect in the commercialized white LEDs by using pcLEDs comprising a blue emitting InGaN semiconductor (420-480 nm) coated with yellow phosphor (YAG:Ce), such as electro-optical intensity of blue spectra increases faster than that of yellow light at high current, the current changes can engender spectrum mismatch, consequently result in the changes of color temperature and low color rendering index. The above circumstances are absent in the ultraviolet (UV) and near-UV LEDs systems. Since the conversion of UV and near-UV LEDs has the virtue of relative lower cost, more easily controlling color than the blue LED, excellent color uniformity, good color rendering etc, it is also a development tendency of white LEDs that UV and near-UV LEDs systems supplant the traditional white pcLEDs operating on the basis of blue InGaN dies. The current commercially applicable red phosphor for UV InGaN-based LEDs is Y2O2S:Eu3+ However, the Y2O2S:Eu3+ red phosphor cannot efficiently absorb in near-UV region and its brightness is about eight times less than that of the blue (BaMgAl10O17:Eu2+) and green (ZnS:(Cu+, Al3+)) phosphors. In addition, the lifetime of the Y2O2S:Eu3+is inadequate under near-UV irradiation for its instability. The drawback of red emitting phosphors has been the main obstacle for the development of white LEDs. Therefore, the study on the red phosphors matching to UV (near-UV) LED is of great significance in theory and practice.
     In this work, the preparation methods and luminescent properties of the existing red emitting phosphors CaMoO4:Eu3+ systems were systematically investigated, and their light-emitting properties were improved by co-doping rare earth ions. Three types of novel molybdate red emitting phosphors excited by near-UV or blue light were synthesized, whose synthesis method and spectral characteristics were researched in detail. The major research contents and appropriate conclusions are as following:
     1. Synthesis and photoluminescence properties of red emitting phosphors CaMoO4:Eu3+ for
     white LEDs
     The technological conditions for preparation of red emitting phosphors CaMoO4:Eu3+ by traditional solid state reaction were investigated. The optimum calcination temperature and the holding time were determined to be 900℃and 3 hours, respectively. And the superlative Eu3+-doped concentration in red phosphors CaMoO4:Eu3+ was concluded to be 25at.%. It was important and positive to improve doping concentration of Eu3+ from 20at.% to 25at.%. Namely, the luminescence intensity increased with the increase of doping concentration of Eu3+ in the molybdenum calcium system. The effect of charge compensator (Li+, Na+, K+) on the luminescence behavior of Eu3+ activated CaMoO4 phosphor was discussed in detail. The relative intensity decreases with the increases of the ionic radii of alkali metal ions, which are as charge compensator (the ionic radii in the order of Li+     Through the use of Bi as a co-activator, red emitting phosphors Cao.5Mo04:Eu3+0.25-x, Bi3+x, Na+0.25 were synthesized by conventional solid state reaction method. The photo-luminescent results show that all samples can be excited efficiently by UV (396 nm) and blue (467 nm) light and emit the red light at 615nm with line spectra, In the Eu3+-Bi3+ co-doped system, there is an efficient energy transfer from Bi3+ to Eu3+ ions, leading to that the emission intensity (5D0→7F2) is enhanced by 1.43 times and even more when Bi3+ ions are introduced into Cao.5Mo04:Eu3+ 0.25, Na+0.25.The energy transfer probability is strongly dependent upon the Bi3+ doping concentrations. The optimum doping concentration of Bi3+ is found to be 1 at.%
     The Eu3+ and Sm3+ co-doped calcium molybdenum (CaMoO4) phosphors were prepared by solid state reaction. The results show that the series phosphors can strongly absorb energy in the range of near UV and emit red light at 615 nm, nicely fitting in with the widely applied output wavelengths of ultraviolet or blue LED chips. In addition, the introduction of a small amount of Sm3+ can enhance the absorption intensity of excitation spectra at 406 nm and the excitation spectra locating near 400 nm become broader. The sensitization effect of Sm3+ on Eu3+ was proved through emission spectroscopy and luminescence lifetime in our paper, respectively. The experimental results indicate that the introduction of appropriate amount of Sm3+ can not only enhance emission intensity but also improve the color purity. The optimal doping volume was 0.5at.%.
     For the first time, introducing Si atoms replaced part of the location of Mo to achieve the purpose of improving luminous intensity in CaMoO4:Eu3+. The results show that the addition of Si does not affect the shapes of excitation and emission spectra and the position of emission peak. With the introduction of appropriate amount of Si4+, the emission intensity of samples obviously increases. It was the reason that the sub-lattice symmetry of Eu3+luminescence center was changed and the f-f transitions of Eu3+ were further released. Moreover, it can be found that when the doping content of Si4+ was beyond 2at.%, the particle size of the samples increased significantly, which was the same to the large size phenomenon of silicate phosphors. Given consideration to every aspect, the optimum content of Si4+ is 1at.%, when the luminous intensity of the sample reached the maximum and the average diameter was 2.15μm. The color coordinate values of Ca0.5Mo0.99Si0.01O4:Eu3+0.25, Na+0.25 were closer to the standard value of the U.S. National Television Standards Committee (National Television System Committee, abbreviated as NTSC) than that of Ca0.5MoO4:Eu3+0.25, Na+0.25.All the experimental results showed that this series phosphors were very suitable for white LED manufacturing.
     2. Luminescent properties of a novel red phosphor Na0.5Gd0.5Mo04:Eu3+ for white LEDs
     The novel red phosphors Na0.5Gd0.5MoO4:Eu3+ with the similar crystal structure to CaMoO4 was successfully synthesized by the high temperature solid phase reaction. The results show that concentration quenching does not occur in the Eu3+-activated Na0.5Gd0.5MoO4 system, namely the luminous intensity of Na0.5Gd0.5-xMoO4:Eu3+ increases with the increase of the doping concentration of Eu3+. When the Gd3+ was completely replaced by Eu3+, luminescence intensity of the samples reached the maximum, at this time, the relative brightness of samples was 2.26 and 6 time higher than that of Ca0.80MoO4:Eu3+0.20 and traditional commercial Y2O2S:Eu3+ respectively.
     The introduction of appropriate amount of Li+ replacing part of the Na+ in the phosphor Na0.5Eu0.5MoO4 can markedly improve the luminous intensity. The optimal doping concentration of Li+ is 25at.%, when the relative luminous intensity of Na0.25Li0.25Eu0.5MoO4 increased by 37% of Na0.5Eu0.5MoO4, the brightness value is 8.2 times bigger than that of traditional commercial red phosphors Y2O2S:Eu3+. In the meantime, the color coordinates (x=0.654, y= 0.346) were closer to the NTSC standard values than those of commercial red phosphors Y2O2S: Eu3+(x=0.631, y=0.350). The chief reason is that the introduction of appropriate amount of Li+ into the Na0.5Eu0.5MoO4 is able to alter the sub-lattice structure of Eu3+ luminescence centers and make the Eu3+ far away from the inversion center of symmetry, so that more electric dipole transitions are released to enhance the luminous intensity. Also, the fluorescence lifetimeτvalues of Na0.5Eu0.5MoO4 and Na0.25Li0.25Eu0.5MoO4 were 0.375 and 0.416 ms respectively. With the introducing appropriate Li+ content, the samples lifetimeτvalues increase. All experimental results showed that Na0.25Li0.25Eu0.5MoO4 was a high efficient red phosphor and suited to the 'UV chip+ tri basic color' system or the complement light phosphors in the'blue chip+ yellow phosphor' system.
     3. Preparation and spectral properties of molybdenum-tungstate red emitting phosphors
     The red phosphors KEu(MoO4)2 were synthesized and its luminous intensity was enhanced through the introduction of tungstate radical. The optimum technological condition of preparation of KEu(MoO4)2 was calcination at 750℃for 5 hours. The best doping amount of WO42- was 50at.%, namely molar ratio of MoO42-/WO42- was 3/1, and the structural formula is KEu(WO4)0.5(MoO4)1.5. Comparison and analysis of luminescence properties of MEu(WO4)0.5(MoO4)1.5(M=Li, Na, K) had been done, the result indicated that the emission intensity of phosphor MEu(WO4)0.5(MoO4)1.5 (M=Li, Na, K) decreased with increasing radius of alkali metal ions (alkali metal ions radius sort:K+> Na+> Li+). Taking all factors into account, the best expression was LiEu(WO4)0.5(MoO4)1.5.
     A series novel red phosphors LiEu1-xYx (WO4)0.5 (MoO4)1.5 (x=0,0.1,0.2,0.3,0.4,0.5,0.6, 0.8) were prepared, and the best doping concentration of Y3+ was determined to be 0.5mol. The series phosphor can be excited by near-UV(396 nm) and blue (466 nm) and emit red light at 615 nm (5D0→7F2 transition of Eu3+), nicely fitting in with the widely applied output wavelengths of ultraviolet or blue LED chips. Our reserach also proves that the Eu3+ occupies the lattice site of noncentrosymmetric environment in the scheelite phases. All the results indicate that the red phosphor is a suitable candidate of red emitting phosphor for the fabrication of white LEDs.
     In addition, the effects of the flux on the luminescent properties were studied. The results of the XRD patterns indicated that the proper flux was beneficial to the crystallization of the phosphor, and no other phases were formed. Proper addition amount of flux could improve the relative luminosity and decrease the particle size. Experiments confirmed that the phosphor had the optimal comprehensive properties when the addition amount of flux (WAlF3/WH3BO3=1/1) was 1%.
     A series of novel red phosphor LiEu1-xBix(WO4)0.5(MoO4)1.5 (x=0,0.1,0.2,0.3,0.4,0.5,0.6, 0.8) were synthesized and their luminescence properties were studied in detail. The emission spectra show the most intense peak is located at 615 nm, which corresponds to the 5D0→7F2 transition of Eu3+. The experimental results show that adding appropriate amount of Bi3+ in the LiEu(WO4)0.5(MoO4)1.5 can not only increase the luminescence intensity of phosphor but also improve the color purity. The optimum doping concentration of Bi3+ was found to be 10at.%. For higher concentration of Bi3+, the absorbed energy is nonradiatively dissipated due to the formation of Bi3+ aggregates, which results in an evident reduction of the sensitized effectiveness of Bi3+ ions on Eu3+ ions. The average separation RBi→Eu (in A) of energy transfer is determined to be 22.3,23.7,24.9,26.1,28.1,29.9, and 31.4 for Bi3+ concentration x=0.05,0.1,0.15,0.2, 0.3,0.4 and 0.5, respectively, in LiEu1-xBix(WO4)0.5(MoO4)1.5. The critical concentration xc, at which the luminescence intensity of Eu3+ is half that in the sample in the absence of Bi3+, is 0.45. Therefore, the critical distance (Rc) of energy transfer was calculated to be about 27.1 A.
     4. A potential red emitting phosphors scheelite-like triple molybdates LiKGd2(MoO4)4:Eu3+ for white LEDs applications
     A series of novel triple molybdates red emitting phosphors LiKGd2-xEux:(MoO4)4 were successfully synthesized through solid state reaction. The optimum condition was calcination at 850℃for 5 hours. A semi-quantitative estimation of the sample was investigated by adiabatic method. The mass fraction of phase was calculated, which proved that the prepared samples were pure phase. A new practical approach was provided to semi-quantitative analysis of phase purity of the sample.
     Phosphor LiKGd2(MoO4)4:Eu3+ has two strong peaks in the UV (396 nm) and blue (466nm) region, which match to the near-UV LED chip and blue LED chip well, and emit red light at 615 nm. The results show the optimum doped concentration of Eu3+ in LiKGd2(MoO4)4 is 1.1. Comparing with Ca0.80MoO4:Eu3+0.20 and commercial red phosphors Y2O2S:Eu3+, the luminous intensity of LiKGdo.9(Mo04)4:Eu3+1.1 are 1.40 and 3.68 time higher, respectively. The color coordinates values of the phosphor LiKGdo.9(Mo04)4:Eu3+1.1 are closer to the NTSC standard values than those of the traditional commercial red phosphors Y2O2S:Eu3+. Based on Dexter's energy transfer formula of multipolar interaction and Reisfeld's approximation, the energy transfer among Eu3+ ions in the phosphor LiKGd2-xEux(MoO4)4 is governed by electric dipole-dipole interaction. The critical distance of energy transfer among Eu3+ ions was calculated to be Rc=8.24 A according to the distance formula of critical non-radiative energy transfer. All results show that the triple molybdate phosphors LiKGd0.9(MoO4)4:Eu3+1.1 is highly efficient red phosphors for the'UV chip+tri basic color' system or the complement light phosphors in the 'blue chip+yellow phosphor' system.
引文
[1]Holonyak J N, Bevacqua S F. Coherent (Visible) light emission from Ga(As1-xPx) junctions[J]. Appl. Phys. Lett, 1962,1(6):82-83.
    [2]Yam F K, Hassan Z. Innovative advances in LED technology. Microelectr J,2005,36(2):129-137.
    [3]Tamura T, Setomoto T, Taguchi T. Illumination characteristics of lighting array using 10 candela-class white LEDs under AC 100 V operation [J]. J Lumin,2000,87-89:1180-1182.
    [4]Haitz R.LED半导体的又一次革命.见:第九届国际电光源科技研讨会译文集(2001,8)重庆《灯与照明》杂志社出版,2002,385-389.
    [5]刘行仁.照明光源用白光LED的发展方向.见:中国照明学会,台湾区照明灯具输出业同业公会编,海峡两岸第九届照明科技与营销研究会(LED)专题报告文集.2002,12,南京,202-209.
    [6]顾洪洪.人类照明领域的第三次革命-半导体照明[J].道路交通管理,2004(11):44-46.
    [7]刘梅.半导体照明:引发照明领域的第三次技术革命[J].天津科技,2007(2):18-19.
    [8]王占庆,石瑞林.发光二极管(LED)将引发照明领域的革命.灯与照明[J].2005,29(3):48-51.
    [9]Galginaitis S V, Fenner G E. A visible light source utilizing a GaAs LED chips [J]. Inst. Phys. conf.,1968, ser.7:131-138.
    [10]Nakamura S, Fasol G. The blue laser diode:GaN based light emitters and lasers[J]. Springer,1997,11(2):373-380.
    [11]刘行仁,薛胜薛,黄德森.白光LED现状和问题[J].光源与照明,2003,(3):4-8.
    [12]Werner K. Higher Visibility for LEDs [J]. IEEE Spectrum,1994,31 (7):30-34.
    [13]Kish F A, Steranka FM, Fevere D C, et al. Very high efficiency semiconductor wafer bonded transparent substrate (AlxGa1-x)0.5In0.5P/GaP light emitting diodes [J]. Appl. Phys. Lett,1994,64 (21):2839-2841.
    [14]Sugawara H, Itaya K, Nozaki H, et al. High brightness InGaAP green light emitting diodes [J]. Appl. Phys. Lett,1992,61 (15):1775-1779.
    [15]Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes [J]. Appl. Phys. Lett,1994,64 (13):1687-1689.
    [16]Nakamura S, Mukai T, Senoh M. High-brightness InGaN /AlGaN Double heterostructure blue-green -light-emitting diodes [J].Appl. Phys.1994,76 (12):8189-8191.
    [17]Kovac J, Peternai L, Lengyel O. Advanced light emitting diodes structures for op to electronic applicatns[J]. Thin solid Films,2003,433(1-2):22-26.
    [18]Narendaran N, Gu Y, Freyssinier J P, et al. Solid state lighting:failure analysis of White LEDs[J]. Cryst.Growth,2004,268:449-456.
    [19]Bogner G, Debray A, Heidel G, et al. White LED [C]. Proc. SPIE,1999,3621:143-150.
    [20]印琰,杨宝东,朱月华,等.白光LED用荧光粉的发展现状[J].中国照明电器,2009,(3):6-10.
    [21]Nakamura S, Fasol G. The blue laser diodes, GaN based light emitters and laser[J]. Berlin:Springer-Verlag. 1997,3(4):216-219.
    [22]Mueller-Mach R, Mueller G, Krames M R, et al. Highly efficient all-nitride phosphor-converted white light emitting diode[J].Phys.Stat.Sol.(a).2005,202(9):1727-1732.
    [23]Justel T, Bechtel H, Schmidt P J. European Patent EP 05107759,2005.
    [24]Setlur A A, Shiang J, Comanzo HA, et al. World Patent 2005/083036,2005.
    [25]Radkov E V, Grigorov L S, Setlur A A, et al. US Patent 2006/0169998,2006.
    [26]Bando K. Symp. Proc. of the 8th Int. Symp. on the Sci. & Tech. of Light Sources,80,1998.
    [27]Shionoya M, Yen W M. Phosphor Handbook [M]. CRC Press, Boca Raton, FL,1999.
    [28]Hu Y, Zhuang W, Ye H, et al. A novel red phosphor for white light emitting diodes [J]. J. Alloy. Compd.2005, 390(1-2):226-229.
    [29]Zhang K, Liu H, Hu W. Progress in the preparation of phosphor for white light emitting diode [J].Chin. Mater. Rev.2005,19 (9):50-53.
    [30]Sun X J, Zhang J H, Zhang X, et al. A single white phosphor suitable for near ultraviolet excitation applied to new generation white LED lighting [J]. Chin. J. Lumin.2005,26 (3):404-406.
    [31]Wu H, Pan Y X, Guo C F, et al. Fabrication and properties of rare earth phosphors and their applications in white-light LEDs [J]. Chin. J. Lumin,2006,27 (2):201-205.
    [32]Neeraj S, Kijima N, Cheetham A K. Novel red phosphors for solid-state lighting:the system NaM(WO4)2-x(MoO4)x:Eu3+(M=Gd, Y, Bi)[J]. Chem. Phy. Lett,2004,387(1-3):2-6.
    [33]Rajamohan Reddy K, Annapurna K, Buddhudu S. Fluorescence spectra of Ln2O2S:Eu3+(Ln=Y, La, Gd) powder phosphors [J]. Materials Research Bulletin,1996,31(11):1355-1359.
    [34]曾立华,刘利民,朱小娟,等.Y2O2S:Eu3+红色荧光粉的合成与光谱性质[J].湖南医学高等专科学校学报,1999,1(1):3-4.
    [35]袁剑辉,袁红辉,张振华,等.痕量双掺Sm3+和Gd3+对Y2O2S:Eu3+发光特性的影响[J].中国稀土学报,2005,23(4):421-424.
    [36]罗昔贤,曹望和.纳米Y2O2S:Eu的燃烧法合成和Eu3+离子荧光探针物相分析[J].功能材料,2007,38(12):2064-2068.
    [37]姜正伟,李怀祥,夏荣花,等.Y2O2S:Eu3+红色荧光粉的SnO2:Sb包覆研究[J].纳米材料与应用,2008,5(1):6-9.
    [38]Li X, Yang Z P, Guan L, et al. Fabrication and luminescence properties of red emitting phosphor Y2O2S:Sm3+ for white LED by combustion method[J]. Journal of Alloys and Compounds,2008,464(3):565-568.
    [39]王治龙,王育华.红色蓄光材料Y202S:Eu3+的硫熔法制备及其发光性能[J].功能材料,2005,9(36):1328-1330.
    [40]李沅英,戚濂,崔俊锋,等.微波辐射法合成的Y2O2S:Eu3+荧光体的定量相分析[J].稀土,1998,19(3):18-21.
    [41]成建波,李军建,祁康成.射频溅射法制作Y2O2S:Eu发光薄膜[J].真空科学与技术,2002,22(3):202-204.
    [42]李光大.一种夜光粉[P].中国专利:CN 88105093.
    [43]Mao X H, Wu Z G, Lian S X. The new synthesis method and application of the red CaS:Eu phosphor [J]. J. Bare Earths,1995,2(1):290-295.
    [44]贾冬冬,姜联合,刘玉龙,等.CaxSr1-xS:Bi, Tm, Cu和CaS:Eu荧光材料的研究[J].发光学报,1998,19(4):312-316.
    [45]胡运生,叶红齐,庄卫东,等.Sr/Ca比变化对红色荧光粉的Ca1-xSrxS:Eu2+[J].中国稀土学报,2004,22(6):854-858.
    [46]Hu Y S, Zhuang W D, Ye H Q, et al. Preparation and luminescent properties of (Ca1-xSrxS:Eu2+ red-Emitting phosphor for White LED[J]. Journal of Luminescence,2005,111(3):139-145.
    [47]Guo C F, Huang D X, Su Q. Methods to improve the fluorescence intensity of CaS:Eu2+red-emitting phosphor for white LED[J]. Mater Sci Eng B,2006,130(1-3):189-193.
    [48]Jia D D, Wang X J. Alkali earth sulfide phosphors doped with Eu2+ and Ce3+ for LEDs[J]. Optical Materials, 2007,30(3):375-379.
    [49]庄卫东.半导体照明用稀土荧光粉.2004年中国(上海)国际半导休照明论坛,上海,2004,9.
    [50]张国有,赵晓霞.白光LED用红色荧光粉Gd2Mo3O9:Eu3+的制备及表征[J].发光学报,2007,28(1):57-61.
    [51]赵晓霞,王晓君,陈宝玖,等.白光LED用红色荧光粉a-2Gd2(MoO4)3:Eu的制备及其发光性能研究[J].光谱学与光谱分析,2007,27(4):629-633.
    [52]Wang Z L, Liang H B, Gong M L, et al. Novel red phosphor of Bi3+, Sm3+co-activated NaEu(MoO4)2[J]. Optical Materials,2007,29(3):896-900.
    [53]Wang Z L, Liang H B, Zhou L Y, et al. Luminescence of (Li0.333Na0.334K0.333) Eu (MoO4)2and its application in near UV InGaN-based light-emitting diode [J]. Chemical Physics Letters,2005,412(2):313-316.
    [54]Wang Z L, Liang H B, Gong M L, et al. Luminescence investigation of Eu3+activated double molybdates red phosphors with scheelite structure [J]. Journal of Alloys and Compounds,2007,432(1):308-312.
    [55]廖勇,朱伟,黎学明,等.溶胶-凝胶法制备Li(MoO4)2:Eu及表征[J].材料导报,2007,21(8):321-324.
    [56]Zaushitsyn A V, Mikhailin V V, Romanenko A Y, et al. Luminescence study of LiY1-xEux(MoO4)2[J]. Inorg. Mater,2005,41(7):766-770.
    [57]Wang X X, Xian Y L, Wang G, et al. Luminescence investigation of Eu3+-Sm3+ co-doped Gd2-x-yEuxSmy(MoO4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode [J]. Optical Materials,2007,30(7):521-526.
    [58]Li X, Yang Z P, Guan L, et al. Luminescent properties of Eu3+-doped La2Mo2O9 red phosphor by the flux method[J]. Journal of Crystal Growth,2008,310(3):3117-3120.
    [59]Wang J G, Jing X P, Yan C H, et al. Influence of fluoride on f-f transitions of Eu3+ in LiEuM2O8 (M=Mo, W) [J]. Journal of Luminescence,2006,121(2):57-61.
    [60]郭崇峰,陈涛,栾林,等.溶胶-凝胶法合成LED用红色发光材料R2-xEux(MoO4)3 (R=Gd,Y,La)及其性能研究[J].功能材料,2007,增刊(38):226-229.
    [61]Hu Y S, Zhuang W D, Ye H Q, et al. A novel red phosphor for white light emitting diodes [J].Journal of Alloys and Compounds,2005,390(1):226-229.
    [62]Liu J, Lian H Z, Shi C S. Improved optical photoluminescence by charge compensationin the phosphor system CaMoO4:Eu3+[J]. Opt. Mater.2007,29(3):1591-1594.
    [63]杨志平,韩勇,李旭.一种新型的白光LED用红色荧光粉SrMoO4:Eu3+[J].河北工业大学成人教育学院学报,2006,21(2):13-15.
    [64]韩勇.白光LED用红色荧光粉的性能和制备[D].河北工业大学,2006(6).
    [65]Kaminskii A A. Laser Crystal:Their Physics and Properties [M]. Springer Verlag, Berlin, Heidelberg, New York,1981:19-20.
    [66]Macalik L. The Phonon Properties of KEu(MoO4)2 and KEu(WO4)2 Crystals[J]. Pol. J. Chem.1995,69(2): 286-295.
    [67]Hanuza J, Macalik L, Macalik B. Spectroscopic Properties of Eu3+ Ion in KEu(MoO4)2[J]. Acta Phys. Pol. A, 1993,84(5):895-898.
    [68]Hanuza J, Macalik L, Macalik B. Electron Absorption and Emission Spectra of Eu3+ in KEu(WO4)2. Acta Phys. Pol. A,1993,84 (5):899-902.
    [69]Macalik L, Macalik B, Strek W, et al. Comparative studies of optical properties of Eu(III) in KEu(MoO4)2 and KEu(WO4)2 crystals[J]. European Journal of Solid State and Inorganic Chemistry,1996,33(5):397-410.
    [70]Khatsko E N. Low dimensional double molybdates and tungstates-strongly anisotropic magnetic materials [C].E-MRS Fall Meeting,2005 Symposium B.
    [71]Neeraj S, Kijima N, Cheetham A K. Novel red phosphors for solid-state lighting:the system NaM(WO4)2-x (MoO4)x:Eu3+(M=Gd, Y, Bi)[J].Chem. Phys. Lett.2004,378(1-3):2-6.
    [72]Sivakumar V, Varadaraju U V. Intense red-emitting phosphors for white light emitting diodes [J]. J. Electrochem. Soc.2005,152(10):H168-H172.
    [73]Chiu C H, Wang M F, et al. Structural, spectroscopic and photoluminescence studies of LiEu(WO4)2-x(MoO4)x as a near-UV convertible phosphor[J]. J. Solid State Chem.2007,180(2):619-627.
    [74]杨水金.各类钨酸盐材料的合成、表征及性质研究[J].黄淮学刊,1997,13(4):40-42.
    [75]Piao X Q, Horikawa T, Hanzawa H, et al. Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting-diodeillumination[J]. Appl. Phys. Lett,2006,88:1619-1623.
    [76]Liy Q, Steen J E, Krevel J W, et al. Luminescence properties of red-emitting M2Si5N8:Eu2+(M=Ca, Sr, Ba) LED conversion phosphors[J]. J Alloys Compd,2006,417(1-2):273-279.
    [77]Nakamura S, Mukai T, Senoh M. Candela-class High-brightness InGaN/AlGaN Double- heterostructure blue-light -emitting Diodes [J]. Appl. Phys. Lett.1994,64 (13):1687-1689.
    [78]贺香红.LED用红色荧光粉SrZnO2:Sm3+, Li+的合成与发光性能[J].稀有金属材料与工程,2007,36(9):1574-1577.
    [79]康明,谢克难,卢忠远,等.溶胶-凝胶法制备纳米ZnO:Eu,Li红色荧光材料[J].四川大学学报,2005,37(1):65-68.
    [80]Setlura A A, Heward W J, Gao Y, et al. Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting[J]. Chem Mater,2006,18:3314-3312.
    [81]刘行仁,张晓,黄立辉,等.A3M2Ge3012石榴石体系k中Cr3+离子的宽带发射光谱[J].光谱学与光谱分析,1999,19(4):550-554.
    [82]山田健一(日),姜伟(译).Ca(Eu1-xLax)4Si3O13红色荧光粉的研究及其在三基色白光LED上的应用[J].中国照明电器,2005,3(8):24-29.
    [83]刘阁,梁家和,邓兆祥,等.新型红色荧光粉Sr3Al2O6的合成和发光性能研究[J].无机化学学报,2002,18(11):1135-1137.
    [84]Narendran N, Maliyagoda N, Deng L, et al.2001 Characterizing LEDs for general illumination applications: Mixed-color and phosphor-based white sources. Proc. SPIE-Int. Soc. Opt. Eng,2001,4445:137-147.
    [85]Muthu B, Schuurmans F, Pashley M. Red, green, and blue LEDs for white light illumination[J]. IEEE J. Selected Topics in Quantum Electronics,2002,8(2):333-338.
    [86]Pan Y X, Zhang Q Y. White upconverted luminescence of rare earth ions codoped Gd2(MoO4)3 nanocrystals[J]. Materials Science and Engineering B,2007,138 (7):90-94.
    [87]李同锴,张变芳,乔治,等.高亮度低成本红色荧光粉的研制[J].河北师范大学学报(自然科学版),2008,32(1):46-48.
    [88]井艳军,沈静飞,王海波,等.碱金属、稀土元素掺杂对LiEu(SiO2)1/6W2O8荧光粉发光性能的影响[J].化工进展,2008,27(6):892-899.
    [89]Lei F, Yan B. Hydrothermal synthesis and luminescence of CaMO4:RE3+(M=W, Mo; RE=Eu, Tb) submicro-phosphors[J]. Journal of Solid State Chemistry,2008,181(3):855-862.
    [90]Jin Y, Zhang J H, Lu S Z, et al. Fabrication of Eu3+ and Sm3+ codoped Micro/Nanosized MMoO4 (M=Ca, Ba, and Sr) via facile hydrothermal method and their photoluminescence properties through energy transfer[J]. J. Phys. Chem. C,2008,112(4):5860-5864.
    [91]Marrero-Lo'pez D, Nunez P, Abril M, et al. Synthesis, electrical properties, and optical characterization of Eu3+-doped La2Mo2O9 nanocrystalline phosphors[J]. Journal of Non-Crystalline Solids,2004,345-346:377-381.
    [92]Pan Y X, Zhang Q Y, Zhao C, et al. Luminescent properties of novel Ho3+ and Tm3+ doped gadolinium molybdate nanocrystals synthesized by the Pechini method[J]. Solid State Communications,2007,142 (11): 24-27.
    [93]张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社,2005,68-88.
    [94]BP辽夫申.液体和固体的光致发光[M].许少鸿,张志山译.北京:科学出版社,1958,195-199.
    [95]Hoefdraad H E. The charge-transfer absorption band of Eu3+ in oxides[J]. J. Solid state chem.1975,15(2): 175-177.
    [96]Ci Z, Wang Y, Zhang J, et al. Ca1-xMo1-y,SiyO4:Eur3+:A novel red phosphor for white light emitting diodes[J]. Physica B,2008,403(4):670-674.
    [97]杨志平,郭智,朱胜超,等.Eu3+摩尔浓度对Y2O2 S:Eu3+, Mg2+, Ti4+红色长余辉材料光谱的影响[J].光谱学与光谱分析,2004,24(12):1506-1510.
    [98]Wang J, Jing X, Yan C, et al. Ca1-2xEuxLixMoO4 A novel red phosphor for solid-state lighting based on a GaN LED [J]. J Electrochem. Soc,2005,152(3):G186-188.
    [99]Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Cryst A.1976,32(5):751-767.
    [100]Vliet JP, Blasse G, Brixner L. A comparison between the Gd3+ emission in the scheelite structure and the M-YTaO4 structure [J]. J. Solid State Chem,1988,76:160-166.
    [101]Kodaira C A, Brito H F, Malta O L, et al. Luminescence and energy transfer of the europium (Ⅲ) tungstate obtained via the Pechini method [J]. J. Lumin,2003,101(1-2):11-21.
    [102]Arizmendi L, Cabrera J M. Optical absorption, excitation, and emission spectra of Eu3+ in LiNbO3[J]. Phys. Rev. B,31(11):7138-7145.
    [103]Butler K H. Fluorescent lamp phosphors technology and theory [M]. The Pennsylvania State University Press:University Park, PA,1980; 207-215.
    [104]Blasse Q Grabmarier B C. Luminescent Materials[M]. Springer-Verlag:Berlin, Germany,1994:96-99.
    [105]Kato A, Oishi S, Shishido T, et al. Evaluation of stoichiometric rare-earth molybdate and tungstate compounds as laser materials[J]. J. Phys. Chem. Solids,2005,66(11):2079-2081.
    [106]Zhou L Y, Yi L H, Sun R F, et al. A potential red phosphor Na0.5Gd0.5MoO4:Eu3+ for light-emitting diode application [J]. J. Am. Ceram. Soc,2008,91(10):3416-3418.
    [107]Ci Z P, Wang Y H, Zhang J C, et al. Ca1-xMo1-ySiyO4Eux3+:A novel red phosphor for white light[J]. Phys. B, 2008,403(4):670-674.
    [108]Kaminskii A A. Laser Crystals, Their Physics and Properties[M]. Springer, Berlin, Heidelberg, New York,
    [109]Hanuza J, Macalik L, Macalik B. Acta Phys. Pol. A 84 (1993) 895.
    [110]Hanuza J, Macalik L, Macalik B. Acta Phys. Pol. A 84 (1993) 899.
    [111]Klevtsova R F, Kozeeva LP. Preparation and structure of KEu(MoO4)[J]. Journal of Structural Chemistry, 1974,18 (3):339-355.
    [112]Wang Z L, Liang H B, Zhou L Y, et al. Luminescence of (Li0.333Na0·334K0.333) Eu (MoO4)2and its application in near UV InGaN-based light-emitting diode[J]. Chem Phys Lett,2005,412(4-6):313-316.
    [113]Sun X J, Zhang J H, Zhang X, et al. A single white phosphor suitable for near ultraviolet excitation applied to new generation white LED lighting [J]. Chin. J. Lumin,2005,26 (3):404-406.
    [114]Neeraj S, Kijima N, Cheetham A K. Novel red phosphors for solid state lighting:the system BixLn1-xVO4:Eu3+/Sm3+(Ln=Y, Gd) [J]. Solid State Commun,2004,131(1):65-69.
    [115]Toma S Z, Mikus F F, Mathers J E. Energy transfer and fluorescence processes in Bi3+ and Eu3+ activated YVO4[J]. J. Electrochem. Soc,1967,114(9):953-955.
    [116]Datta P K. Bismuth in yttrium vanadate and yttrium europium vanadate phosphors [J]. J. Electrochem. Soc. 1967,114(10):1057-1063.
    [117]Yan B, Su X Q. Chemical co-precipitation synthesis of luminescent BixY1-xVO4:RE (RE=Eu3+, Dy3+, Er3+) phosphors from hybrid precursors [J]. J. Non-Cryst Solids,2006,352(30-31):3275-3279.
    [118]Qiang S, Barthou C, Denis J P, et al. Luminescence and energy transfer in Y2O3 CO-doped with Bi3+ and Eu3+[J]. J. Lumin,1983,28(1):1-11.
    [119]Chi L S, Liu R S, Lee B J. Synthesis of Y2O3:Eu, Bi red phosphors by homogeneous coprecipitation and their photoluminescence behaviors[J] J. Electrochem. Soc.2005,152(8):J93-98.
    [120]Park W J, Yoon S G, Yoon D H. Photoluminescence properties of Y2O3 co-doped with Eu and Bi compounds as red-emitting phosphor for white LED[J]. J. Electroceram.2006,17(1):41-44.
    [121]Chan T S, Kang C C, Liu R S, et al. Combinatorial study of the optimization of Y2O3:Bi,Eu red phosphors[J]. J. Comb. Chem.2007,9(3):343-346.
    [122]Pode R B, Dhoble S J. Photoluminescence in CaWO4:Bi3+, Eu3+ material [J]. Phys. Stat. Sol. (b),1997, 203(2):571-577.
    [123]Zhou J G, Zhao F Y, Li Z Q, et al. Synthesis of single-phase nanocrystalline garnet phosphor derived from gel-network-coprecipitation[J]. J. Mater. Sci,2004,39(14):4711-4713.
    [124]Zeng X, Wang Y A, Wu X A, et al. Alkyloxy-s-triazine derivatives with and without fluorine-containing substituents as lubricants for steel-steel contact[J]. J. Lumin,2006,23(1):1-10.
    [125]Li B, Tian Y, Bai Y. Studies on the luminescence properties of CaO·Gd2O3·SiO2:Eu, Bi luminophors [J]. Mater. Res. Bull,1989,24 (8):961-966.
    [126]Zeng X Q, Im S J, Jang S H, et al. Luminescent properties of (Y, Gd)BO3:Bi3+, RE3+(RE=Eu, Tb) phosphor under VUV/UV excitation[J]. J. Lumin,2006,121(9):1-6.
    [127]Liu X M, Lin J. Enhanced luminescence of gadolinium niobates by Bi3+ doping for field emission displays[J]. J. Lumin.2007,122(23):700-703.
    [128]Wang M, Fan X, Xiong G. Luminescence of Bi3+ ions and energy transfer from Bi3+ ions to Eu3+ ions in silica glasses prepared by the sol-gel process[J]. J. Phys. Chem. Solids,1995,56(2):859-863.
    [129]Rao R P. Preparation and characterization of fine-grain yttrium-based phosphors by sol-gel process [J]. J. Electrochem. Soc.1996,143(1):189-197.
    [130]Pode R B, Dhoble S J. Photoluminescence in CaWO4:Bi3+, Eu3+ Material [J]. Phys. Status Solidi (b),1997, 203(7):571-577.
    [131]Yun N S, Wang M Q, Yan F X, et al. Luminescence Properties and Energy Transfer of Mg3(PO4)2:Bi3+, Eu3+ Nanocrystal[J]. Journal of Liaoning Normal University (Natural Science Edition).2005,28(4):433-435.
    [132]Yang Z P, Li X N, Yang G W, et al. Luminescence Properties of Eu3+ and Energy Transfer of Eu3+ and Bi3+ in SrZnP2O7[J]. J. Rare earth,2008,26(2):249-252.
    [133]Tan Y, Shi C. Ce3+→Eu2+ energy transfer in BaLiF3 phosphor [J]. J. Phys. Chem. Solids,1999,60(11): 1805-1810.
    [134]Blasse G. Energy transfer in oxidic phosphors [J]. Philips Res. Rep,1969,24(2):131-144.
    [135]Dexter D L, Schulman J A. Theory of concentration quenching in inorganic phosphors [J]. J. Chem. Phys. 1954,22(6):1063-1070.
    [136]Mahalley B N, Dhoble S J, Podel R B, et al. Photoluminescence in GdVO4:Bi3+, Eu3+ red phosphor[J]. Appl. Phys. A,2000,70(5):39-45.
    [137]Basovich O M, Khaikina E G Crystal structural study of ternary molybdate LiRbBi2(MoO4)4 Russian Journal of Inorganic Chemistry[J].2006,51(7):1082-1086.
    [138]Klevtsova R F, Solodovnikov S F, Glinskaya L A, et al. Synthesis and crystal structure of the binary molybdate Li8Bi2(MoO4)7 [J]. Journal of Structural Chemistry,2007,38(1):89-95.
    [139]Bazarov B G, Klevtsova R F, Tsyrendorzhieva A D, et al. Crystal structure of ternary molybdate Rb5FeHf(MoO4)6-a new phase in the Rb2MoO4-Fe2(MoO4)3-Hf(MoO4)2 System[J]. Zurnal strukturnoj himii,2004,45(6):1038-1043.
    [140]Morozov V A, Lazoryak B I, Smirnov V A. Crystal structures and luminescence properties of ternary molybdates LiMNd2(MoO4)4 (M=K, Rb, T1) [J]. Russian Journal of Inorganic Chemistry,2001,46(6): 873-879.
    [141]Basovich O M, Khaikina E G, Solodovnikov S F. Phase formation in the systems Li2MoO4-K2MoO4-Ln2(MoO4)3 (Ln=La, Nd, Dy, Er) and properties of triple molybdates LiKLn2(MoO4)4[J]. J. Solid State Chem, 2005,178(5):1580-1588.
    [142]Balakireva T P, Briskina CH M, Vakulyuk V V, et al. Luminescence and stimulated emission from BaGd2-xNdx(MoO4)4 single crystals[J]. Soviet journal of quantum electronics,1981,11(3):398-400.
    [143]Solodovnikov S F, Khaikina E G, Solodovnikova Z A. New families of lithium-containing triple molybdates and the stabilizing role of lithium in their structure formation[J]. Doklady Chemistry,2007,416(1):207-212.
    [144]Khal'baeva K M, Khaikina E G, Basovich 0 M. Phase equilibria in lithium-silver(sodium)-bismuth molybdate systems[J]. Russian Journal of Inorganic Chemistry,2005,50(8):1282-1284.
    [145]Kiseleva 11, Sirota M I, Ozerov R P, et al. Kristallografiya,1979,24 (6):1277-1280.
    [146]Klevtsova R F, Vasil'ev A D, Glinskaya L A, et al. Crystal structure investigation of ternary molybdates Li3Ba2Ln3(MoO4)3 (Ln=Gd, Tm)[J]. Journal of Structural Chemistry,1992,33(3):126-130.
    [147]Popovic S, Grzeta-Plenkovic B, Balic-Zunic T. The doping method in quantitative X-ray diffraction phase analysis addendum [J]. J Appl Cryst,1983,16 (5):505-507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700