新型照明显示器件用铝酸盐荧光粉的优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着照明、显示技术的迅速发展,作为大部分照明、显示器件关键之一的荧光材料科学和技术又步入一个新的活跃期。新型器件对荧光粉提出了新的要求,如等离子平板显示器件(Plasma Display Panels,PDPs)已成为高清晰度大屏幕显示的佼佼者,具有易于实现大屏幕、厚度薄、重量轻、视角宽、图像质量高和工作在全数字化模式等优点,是发达国家竞相发展的高新技术产业,其要求荧光粉在真空紫外激发下发光效率高、色纯度好、热稳定性强、荧光寿命适当,对荧光粉的粒度、颗粒形貌及分散性也有比传统荧光粉更高的要求。白光LED(Light Emitting Diode,简称LED)具有体积小、发热量低、无热辐射、耗电量少、寿命长、反应速度快、环保无污染等优点,因此被认为将成为在全球半导体和照明领域的第四代固态照明光源。目前实现白光LED的主流方法是利用发光LED和相关荧光粉组合产生白光,需要荧光粉能够被近紫外-可见光有效激发产生高效的可见光发射和优良的温度淬灭特性。
     铝酸盐基发光材料已得到了广泛应用,但大部分存在很多不足,特别是在新型照明、显示器件上。如目前性能最好的BaMgAl_(10)O_(17):Eu~(2+)(BAM)蓝粉的稳定性较差,而PDP优良候选绿粉BaAl_(12)O_(19):Mn~(2+)(BHA)的发光效率与余辉时间有待改进。针对PDP与LED等照明显示器件的发展需要,本论文实现了通过Si-N键取代来优化铝酸盐荧光粉的光学性能和稳定性能。选取了两种典型的铝酸盐荧光粉BAM蓝粉和BHA绿粉,对Si-N掺杂前后的性质展开了一系列的分析,进一步深入分析其合成工艺、材料的晶体结构、光学性能、稳定性以及机理的优化,希望在研究其光学性能的基础上,以推动它在PDP与LED等新型照明、显示器件上的应用。
     本文第一章主要介绍了照明发展的历史,并简短介绍了相关文献,如固体发光材料、稀土离子光学特性、白光LED和PDP的原理和应用,并对常用荧光粉,特别是铝酸盐荧光粉的晶体结构、光学特性、优缺点等进行了介绍,最后提出了本论文的主要思路。
     第二章为实验部分。介绍起始原料、合成设备、合成工艺流程、性能表征方法等。
     第三章中通过高温固相反应合成Eu~(2+)掺杂的BaMgAl_(10)O_(17)蓝粉(BAM),并研究其光学性能和稳定性能,结果表明:在紫外-可见光谱中,BAM的激发主要来源于Eu~(2+)离子中4f-5d的电子跃迁,波段位于220-450nm;在真空紫外光谱中,BAM的激发主要来源于基质晶格的吸收,有两个主要吸收波段,分别对应于晶体结构中的尖晶石层和镜面层,然后发生能量从基质晶格向Eu~(2+)离子的转移。两种激发下的发射光谱范围都为400nm~600nm,发射峰值约为450nm,对应于激发态的5d能级向4f能级的电子跃迁。
     第四章探讨了首先通过一般的高温固相反应实现了Si-N在BAM荧光粉中的少量掺杂,少量的掺杂不影响晶体结构,只是小幅降低了晶胞参数;Si-N掺杂后,不管是真空紫外激发,还是紫外-可见激发,BAM的激发-发射峰形基本没有变化,除了峰位发生少量红移;最有意义的一点是,少量掺杂后,不管是原位荧光粉,还是高温热处理后的发光强度都得到了大幅度的提高。利用XANES图谱等发现,原位性能的提高是由于Si-N掺杂降低了发光离子周围的缺陷密度,而热处理后稳定性能的提高则是因为Si-N掺杂稳定了Eu~(2+)离子。同时,我们发现,利用一般的高温固相反应所能实现的Si-N掺杂量很小,如果用分子式BaMgAl_(10-x)Si_xO_(17-x)N_x:Eu~(2+)表示,获得最佳光学性能和稳定性能时的x=0.03,认为是由于热力学和动力学的影响,取代可能只是在表面发生,因而引入了高能球磨工艺,希望借助于高能球磨工艺实现较大量的Si-N键掺杂。通过对起始粉料进行高能球磨,实现了起始粉末的均匀非晶化,达到了原子级别的混合,从而将最佳光学性能和稳定性能时的x=0.25,说明高能球磨可以有效地提高固熔度,所得荧光粉具有更好的长期稳定性。最后,通过理论计算,发现Mg更容易取代尖晶石层中四面体位置的Al,而且分布在不同的尖晶石层中,而Si趋向于掺在导电层旁边的四面体位置,而N则趋向于掺在与Si相连的尖晶石层边缘的位置。同时发现,在最稳定取代情况下,金属离子和N之间的配位距离下降,说明取代的N和金属离子间的键能增加,可以有效抑制金属离子在镜面层中的移动,进而解释了少量的掺杂可以有效地稳定低价的Eu~(2+)离子。
     第五章中通过高温固相反应合成BaAl_(12)O_(19):Mn~(2+)。研究紫外-可见光谱发现,样品的发射主峰位于517nm,归属Mn~(2+)的~4T_1→~6A_1跃迁发射;而Mn~(2+)的激发光谱则由多个谱峰组成,其峰值各为505nm,453nm,427nm,386nm,361nm,和280 nm,分别归属于~6A_1→~4T_1 (~4G),~6A_1→~4T_2 (~4G),~6A_1→~4E, ~4A_1(~4G),~6A_1→~4T_2 (4D),~6A_1→~4E(4D)和~6A_1→~4A_2(4F)的跃迁吸收。BHA中Mn~(2+)的发光与Mn~(2+)所处晶体场有关:当其处于八面体场中时发红光,处于四面体场中时发绿光。Mn~(2+)在此只发绿光,由此可以推测Mn~(2+)处于四面体场中。在真空紫外波段,BaAl_(12)O_(19)晶格可以有效地吸收能量,并转移给Mn~(2+),发射出明亮的绿光。
     第六章与第四章一样,分别通过高能球磨和固相反应法制备得到BaAl12-xSixO19-xNx:Mn~(2+)荧光材料,高能球磨也可以有效地增加Si-N的取代浓度。利用光谱研究了基质中Mn~(2+)的发光特性以及Si-N取代Al-O掺杂对其发光特性的影响。BaAl12-xSixO19-xNx:Mn~(2+)样品的发射光谱为宽谱,最强发射峰位于517nm,归属Mn~(2+)离子的~4T_1→~6A_1跃迁发射。而Mn~(2+)的激发光谱则由多个谱峰组成,其中两个强峰峰值为453nm和427nm的可见光区,归属于Mn~(2+)的~6A_1→~4T_2 (~4G)和~6A_1→~4E, ~4A_1(~4G)的电子跃迁。Si-N掺杂后的发光强度明显高于未掺杂的BHA,并引起发射波长的红移。在荧光粉BaAl_(12-x)Si_xO_(19-x)N_x: Mn~(2+)中,Mn~(2+)都占据四配位的Al3+格位,在BaAl_(12-x)Si_xO_(19-x)N_x:Mn~(2+)中配体N3-的电负性为3.04小于Mn~(2+)在BHA中配体O2-的电负性3.44。根据电子云扩散效应, Mn~(2+)在BaAl_(12-x)Si_xO_(19-x)N_x:Mn~(2+)中的共价性大于BHA中的共价性,且晶体场能量强于BHA,故掺杂Si-N后BHA的发光性能得到了有效的提高。
     第七章通过对全文进行总结,对利用Si-N取代铝酸盐荧光粉中的部分Al-O来优化铝酸盐荧光粉的前景进行了展望。
With the appearance of novel kinds of displays and lighting devices, such as plasma display panel (PDP), light emitting diodes (LED), field emission display (FED), inorganic solid-state fluorescent materials are still very promising and therefore in the focus of current research activities. The phosphors should meet the requirement of the different devices. For example, thanks to its many advantages, including large screen, high definition, light weight and thin wall, plasma display panels (PDPs) are promising for large screen size displays. The phosphors for PDPs should have good color purity, high luminescent efficiency under vacuum ultraviolet (VUV) excitation, moderate decay time and high thermal stability. They still have high requirement on the particle size, size distribution and particle morphology. White light-emitting diodes (pc-WLEDs) are emerging as an indispensable solid-state light source for the forth generation lighting industry and display systems due to their unique properties including small volume, low heat radiation, energy savings, long persistence, short response time and environment-friendliness. The white light is often produced by the combination of phosphors and light emitting diodes. The phosphors should be efficiently excitated by near ultraviolet or blue lights and have high thermal quenching temperature.
     Aluminate-based phosphors have been widely used, but most of them could not be directly used in the new lighting and display devices. For example, the most widely used blue BaMgAl10O17:Eu~(2+)(BAM) phosphors suffer from bad stability under thermal treatment or vacuum ultraviolet excitation. The PDP green phosphor candidate BaAl_(10)O_(17):Mn~(2+)(BHA) phosphors have low luminous efficiency and long decay time. To meet the requirements of PDPs and LEDs, we tried to optimize aluminate phosphors by substituting Si-N bonds for some Al-O bonds in aluminate phosphors. Systematical research has been done on the synthesis methods, crystal structure, photoluminescence properties, stabilities and optimization mechanisms of the aluminate phosphors before and after Si-N doping. After in-depth study on their luminescent properties, the aluminate phosphors are expected to find wide applications in novel lighting and display devices including PDP and LED.
     Chapter 1 starts with a brief description of the lighting history, followed by some related topics, such as solid state luminescent material, the optical properties of rare earth ions, the pricinples, the applications of white light LEDs and PDPs and some conventional phosphors. Then we especially reviewed the crystal structure, photoluminescence, advantages and disadvantages of aluminate phosphors. Finally, the main ideas of this doctoral dissertation were proposed. Chapter 2 is the experimental procedure, including the starting materials, synthesis equipments, the process synthesis, characterization methods, et al.
     In chapter 3, the Eu~(2+) doped BaMgAl10O17 (BAM) blue phosphors were prepared by high temperature solid state reaction method. The stability and optical properties of the obtained phosphors were studied. The results are shown as following: In the UV-visible spectrum, the excitation bands between 220 nm and 450 nm are orginted from the 4f-5d electronic transition of Eu~(2+) ions. In the vacuum ultraviolet spectrum, the energy was adsorbed by the BAM crystal lattice and transformed to Eu~(2+) ions, two excitation bands could be observed, which corresponding to the spinel crystal structure layers and mirror layers. The emission spectrum under either UV-visible or VUV lights consists of a broad emission band ranging from 400 nm to 600 nm with maximum at about 450 nm, which is characteristic of the 4f~65d~1→4f~7 transition of Eu~(2+).
     In chapter 4, first of all, a small amount of Si-N has been introduced into the the BAM crystal lattice through high temperature solid state reaction. A small amount of doping did not affect the crystal structure, only slightly reduced cell parameters. Excitation-emission bands of BAM phosphors did not change after the incorporation of Si-N bonds, except a small redshift of emission bands under the excitation of either VUV excitation or UV-visible excitation. It should be emphasized that Si-N incorporated BAM (SiN-BAM) phosphors have significantly increased photoluminescence intensities compared with that of pure BAM phosphors before and after heat treatment in air at 600oC. According the XANES spectra et al, the improvements were due to the lower defect density for as-received SiN-BAM phosphors and due to the stability of Eu~(2+) ions for thermal treated SiN-BAM phosphors. However, we found that the Si-N concentration was very small by the high temperature solid state reaction. If the formula of SiN-BAM is BaMgAl_(10-x)Si_xO_(17-x)N_x:Eu~(2+), then the optimized photoluminescence properties and thermal stability were achieved when x equaled to 0.03. This suggests that the substitution occurs only in the surface of the BAM phosphors due to the thermodynamic and kinetic effects, so we tried high-energy ball milling to achieve high Si-N incorporation. Mechanical milling mostly transformed the starting powder mixture into an amorphous phase and homogeneity of elements at atomic level was achieved in amorphous phase. Thus, the optimized photoluminescence properties and thermal stability with a better long-term stability were achieved when x equaled to 0.25, Finally, a theoretical calculation has been done to search the preferential site for Si-N doping and Mg~(2+) ions. Mg~(2+) ions prefer to occupy the tetrahedral Al position of the spinel layer, and locate in different spinel layer of one cell. Si tends to occupy the tetrahedral Al position and link to the O in the conductive layer, N tends to link to the Si and lie at the edge of the spinel layer. The coordination distance between the metal ions and N in the most stable SiN-BAM crystal decreased, indicating that the N could effectively inhibit the movement of metallic ions in the mirror layer. This could explain that why the Eu~(2+) ions were stabilized with the small amount of Si-N incorporation.
     In chapter 5, the BaAl_(10)O_(17):Mn~(2+) green phosphors were prepared by a high temperature solid state reaction method. Under UV-Visible excitation, each excitation spectrum consists of several narrow bands ranged from 270 to 515 nm. These bands are due to the spin-forbidden transitions in the 3d5 electron configuration of the Mn~(2+) ions. According to the Orgel diagram for divalent manganese, these bands peaking at about 505, 453, 427, 386, 361, and 280 nm are attributed to the transitions of ~6A_1→~4T_1 (~4G), ~6A_1→~4T_2 (~4G), ~6A_1→~4E, ~4A_1(~4G), ~6A_1→~4T_2 (~4D), ~6A_1→~4E(~4D), and ~6A_1→~4A_2(~4F), respectively. Each emission spectrum consists of a broad green emission band ranging from 480 nm to 620 nm with maximum at about 515~518 nm, which is characteristic of the transition from the lowest excited state to the ground state of the Mn~(2+) ions, i.e., the ~4T_1(~4G)→~6A_1(~6S) transition. The emission of Mn~(2+) ions is related to the coordinating environment of Mn~(2+) ions. They show green emission in tetrahedral sites, but red emission in octahedral sites, incating Mn~(2+) in BHA locate in tetrahedral sites. Under VUV excitation, BaAl_(10)O_(17) crystal lattice could efficiently adsorb energy and transfer to to Mn~(2+), and emit a bright green light.
     In Chapter 6, Si-N doped BHA (SiN-BHA) was obtained by high energy ball milling and solid state reaction, and the concentration of Si-N substitution could effectively increase by high-energy ball milling. The luminescence properties of Mn~(2+) were studied in terms of the Si-N incorporation. The emission spectra are dominated by a green emission band at about 517 nm, which is assigned to the transition from the lowest excited state to the ground state (~4T_1(~4G)→~6A_1(~6S)) of the Mn~(2+) ions. Each excitation spectrum consists of several narrow bands in the UV and visible regions, the two strong peaks of 453 and 427nm were attributed to the electronic transition from the ground state to the excited state ( ~6A_1→~4T_2 (~4G)和~6A_1→~4E, ~4A_1(~4G) ) of the Mn~(2+) ions. The emission intensity of SiN-BHA phosphor is higher than that of the BHA phosphor and the emission wavelength had a little red shift. Mn~(2+) in SiN-BHA is tetrahedrally coordinated with mixed O~(2-) and N~(3-) ions. Because nitrogen has a lower electronegativity (χ(N)≈3.04) than oxygen (χ(O)≈3.44), according to the electron diffusion effect, the covalence of Mn~(2+) in BaAl_(12-x)Si_xO_(19-x)N_x:Mn~(2+) was greater than that in BHA, and the crystal field energy was stronger than BHA, so the luminous performance of Si-N doped BHA was effectively improved.
     In chapter 7, a short conclusion has been made.
引文
[1] Lu X, Venugopalan S, Kim HJ et al. Doubly resonant Raman electron paramagnetic transitions of Cr3+ in ruby (Al2O3:Cr3+). Physical Review B 2009; 79:235204-1
    [2] Sotiriou GA, Schneider M, Pratsinis SE. Color-Tunable Nanophosphors by Codoping Flame-Made Y2O3 with Tb and Eu. Journal of Physical Chemistry C 2011; 115:1084-1089.
    [3]孙家跃,杜海燕,胡文祥,固体发光材料.北京:化学工业出版社, 2003, 1-100.
    [4] Huang CH, Kuo TW, Chen TM. Thermally stable green Ba3Y(PO4)3:Ce3+,Tb3+ and red Ca3Y(AlO)3(BO3)4:Eu3+ phosphors for white-light fluorescent lamps. Optics Express 2011; 19:A1-A6.
    [5] Marinkovic K, Mancic L, Gomez LS et al. Photoluminescent properties of nanostructured Y2O3:Eu3+ powders obtained through aerosol synthesis. Optical Materials 2010; 32:1606-1611.
    [6] Zhong SL, Chen JJ, Wang SP et al. Y2O3:Eu3+ hexagonal microprisms: Fast microwave synthesis and photoluminescence properties. Journal of Alloys and Compounds 2010; 493:322-325.
    [7] Feng ZY, Zhuang WD, Huang XW et al. Effect of MgF2-H3BO3 flux on the properties of (Ce,Tb)MgAl11O19 phosphor. Journal of Rare Earths 2010; 28:351-355.
    [8] Yang M, You HP, Liu K et al. Low-Temperature Coprecipitation Synthesis and Luminescent Properties of LaPO4:Ln3+ (Ln3+ =Ce3+, Tb3+) Nanowires and LaPO4:Ce3+,Tb3+/LaPO4 Core/Shell Nanowires. Inorganic Chemistry 2010; 49:4996-5002.
    [9] Fang J, Saunders M, Guo YL et al. Green light-emitting LaPO4:Ce3+:Tb3+ koosh nanoballs assembled by p-sulfonato-calix[6]arene coated superparamagnetic Fe3O4. Chemical Communications 2010; 46:3074-3076.
    [10] Lin CK, Yu M, Pang ML, Lin J. Photoluminescent properties of sol-gel derived (La, Gd)MgB5O10:Ce3+/Tb3+ nanocrystalline thin films. Optical Materials 2006; 28:913-918.
    [11] Wang LL, Hou ZY, Quan ZW et al. One-Dimensional Ce3+- and/or Tb3+-Doped X1-Y2SiO5 Nanofibers and Microbelts: Electrospinning Preparation and Luminescent Properties. Inorganic Chemistry 2009; 48:6731-6739.
    [12] Lin CK, Wang H, Kong DY et al. Silica supported submicron SiO2@Y2SiO5:Eu3+ and SiO2@Y2SiO5:Ce3+/Tb3+ spherical particles with a core-shell structure: Sol-gel synthesis and characterization. European Journal of Inorganic Chemistry 2006:3667-3675.
    [13] Chane-Ching JY, Martinet G, Panteix PJ et al. Size and Morphology Control of UltrafineRefractory Complex Oxide Crystals. Chemistry of Materials 2011; 23:1070-1077.
    [14] Wang ZF, Wang YH, Li YZ, Liu BT. Enhanced photoluminescence of BaMgAl10O17:Eu2+ nanophosphor for PDP application. Journal of Alloys and Compounds 2011; 509:343-346.
    [15] Wang YF, Xu X, Yin LJ, Hao LY. High Thermal Stability and Photoluminescence of Si-N-Codoped BaMgAl10O17:Eu2+Phosphors. Journal of the American Ceramic Society 2010; 93:1534-1536.
    [16] Guo CF, Xu Y, Ding X et al. Blue-emitting phosphor M2B5O9Cl:Eu2+ (M=Sr, Ca) for white LEDs. Journal of Alloys and Compounds 2011; 509:L38-L41.
    [17] Zhang XM, Chen H, Ding WJ et al. Ca2B5O9Cl:Eu2+, A Suitable Blue-Emitting Phosphor for n-UV Excited Solid-State Lighting. Journal of the American Ceramic Society 2009; 92:429-432.
    [18]解文杰,白光LED用硅基氧氮化物荧光粉的研究,中国科学技术大学博士学位论文,合肥(2010).
    [19]李建,稀土发光材料及其应用.北京:化学工业出版社. 2003, 14.
    [20] Alarcon-Llado E, Bin-Dolmanan S, Lin VKX et al. Temperature rise in InGaN/GaN vertical light emitting diode on copper transferred from silicon probed by Raman scattering. Journal of Applied Physics 2010; 108:114501-1
    [21] Wang JS, Tsai CC, Chen MH et al. Decay of Lumen and Chromaticity of High-Power Phosphor-Converted White-Light-Emitting Diodes in Thermal Aging. Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting Xiii 2009; 7231:1966-1977.
    [22] Hsu YC. An Optimum Design and Fabrication of Lens on Luminous Uniformity and Light Extraction of High-Power Light-Emitting Diode. Optical Review 2011; 18:27-33.
    [23] Ellens A, Jermann F, Zwaschka F, Kummer F, Ostertag M, LED-based White-light Emitting Lighting Unit, International Patent Application. No. WO2001093342.
    [24] Jang HS, Kano LH, Won YH et al. Origin of the discrepancy between photoluminescence brightness of TAG:Ce and electroluminescence brightness of TAG:Ce-based white LED expected from phosphor brightness. Optics Letters 2008; 33:2140-2142.
    [25] Setlur AA, Heward WJ, Hannah ME, Happek U. Incorporation of Si4+-N3- into Ce3+ -Doped Garnets for Warm White LED Phosphors. Chemistry of Materials 2008; 20:6277-6283.
    [26] Sun WY, Li XT, Ma LT, Yen TS, Solubility of Si in YAG, Journal of Solid State Chemistry,
    [27] Zhang XM, Liang LF, Zhang JH, Su Q. Luminescence properties of (Ca1-xSrx)Se:Eu2+ phosphors for white LEDs application. Materials Letters 2005; 59:749-753.
    [28] Withnall R, Silver J, Fern GR et al. Experimental and theoretical luminous efficacies of phosphors used in combination with blue-emitting LEDs for lighting and backlighting.Journal of the Society for Information Display 2008; 16:359-366.
    [29] Kim JS, Park YH, Kim SM et al. Temperature-dependent emission spectra of M2SiO4:Eu2+ (M = Ca, Sr, Ba) phosphors for green and greenish white LEDs. Solid State Communications 2005; 133:445-448.
    [30] Kim JS, Jeon PE, Choi JC, Park HL. Emission color variation of M2SiO4:Eu2+ (M=Ba, Sr, Ca) phosphors for light-emitting diode. Solid State Communications 2005; 133:187-190.
    [31] Qiu ZF, Zhou YY, Lu MK et al. Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+,R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research. Acta Materialia 2007; 55:2615-2620.
    [32] Ko KY, Huh YD, Do YR. Cathodolumineseence and longevity properties of potential Sr1-xMxGa2S4:Eu (M = Ba or Ca) green phosphors for field emission displays. Bulletin of the Korean Chemical Society 2008; 29:822-826.
    [33] Xie MB, Huang Y, Tao Y et al. Improving the BAM VUV-Irradiation Degradation with a UV-Blue Emitting Phosphor CLPF-Tm. Journal of the Electrochemical Society 2010; 157:J401-J404.
    [34] Won CW, Nersisyan HH, Won HI et al. Synthesis of nano-size BaMgAl10O17:Eu2+ blue phosphor by a rapid exothermic reaction. Journal of Luminescence 2010; 130:678-681.
    [35] Lee SM, Choi KC. Enhanced emission from BaMgAl10O17:Eu2+ by localized surface plasmon resonance of silver particles. Optics Express 2010; 18:12144-12152.
    [36] Zhang SH, Hu JF, Wang JJ, Li YY. Effects of Zn2+ doping on the structural and luminescent properties of Sr4Si3O8Cl4:Eu2+ phosphors. Materials Letters 2010; 64:1376-1378.
    [37] Xia ZG, Sun JY, Du HY. Study on luminescence properties and crystal-lattice environment of Eu2+ in Sr4-xMgxSi3O8Cl4 : Eu2+ phosphor. Journal of Rare Earths 2004; 22:370-374.
    [38] Zhang XG, Zhou FX, Shi JX, Gong ML. Sr3.5Mg0.5Si3O8Cl4:Eu2+ bluish-green-emitting phosphor for NUV-based LED. Materials Letters 2009; 63:852-854.
    [39] Jang HS, Won YH, Vaidyanathan S et al. Emission Band Change of (Sr1-xMx)3SiO5:Eu2+ (M=Ca, Ba) Phosphor for White Light Sources Using Blue/Near-Ultraviolet LEDs. Journal of the Electrochemical Society 2009; 156:J138-J142.
    [40] Chang CK, Chen TM. White light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7:Eu,Mn through energy transfer. Applied Physics Letters 2007; 90:161901-1.
    [41] Aitasalo T, Hietikko A, Hreniak D et al. Luminescence properties of BaMg2Si2O7:Eu2+,Mn2+. Journal of Alloys and Compounds 2008; 451:229-231.
    [42] Ye S, Zhang JH, Zhang X et al. Mn2+ concentration manipulated red emission inBaMg2Si2O7:Eu2+,Mn2+. Journal of Applied Physics 2007; 101: 033513-1.
    [43] Yao GQ, Lin JH, Zhang L et al. Luminescent properties of BaMg2Si2O7:Eu2+,Mn2+. Journal of Materials Chemistry 1998; 8:585-588.
    [44] Xin M, Cao WH, Luo XX. Hydrothermal Synthesis and Optical Properties of Full-Color-Emission ZnS:Cu,Al Nanocrystals. Spectroscopy and Spectral Analysis 2010; 30:2451-2455.
    [45] Chang CH, Chiou BS, Chen KS et al. The effect of In2O3 conductive coating on the luminescence and zeta potential of ZnS:Cu,Al phosphors. Ceramics International 2005; 31:635-640.
    [46] Ishizumi A, White CW, Kanemitsu Y. Space-resolved photoluminescence of ZnS:Cu,Al nanocrystals fabricated by sequential ion implantation. Applied Physics Letters 2004; 84:2397-2399.
    [47] Ma XY. Study of the P-Type Doping Properties of ZnS Nanocrystals. Journal of Nanomaterials 2011, 2011:1-5.
    [48] Kajiwara K, Hida T, Tanaka K. Blue-emitting ZnS:Ag,Al phosphors with low defect density, for high-voltage field-emission displays. Journal of Vacuum Science & Technology B 2003; 21:515-518.
    [49] Raue R, Shiiki M, Matsukiyo H et al. Saturation of Zns-Ag,Al under Cathode-Ray Excitation. Journal of Applied Physics 1994; 75:481-488.
    [50] Hara K, Yamasaki M, Ouchi Y et al. Red emitting Ba2ZnS3:Mn thin film electroluminescent devices prepared by electron-beam evaporation. Idw/Ad '05: Proceedings of the 12th International Display Workshops in Conjunction with Asia Display 2005, Vols 1 and 2 2005:1609-1612
    [51] Hamaguchi S, Yamamoto T, Kobayashi M. Synthesis of Ternary Compound Sulfide Nanoparticles. Japanese Journal of Applied Physics 2009; 48:04C131.
    [52] Lin YF, Chang YH, Tsai BS. The influence of processing parameters on photoluminescent properties of Ba2ZnS3:Mn phosphors by double-crucible method. New Materials for Microphotonics 2004; 817:243-248
    [53] Li HL, Xie RJ, Hirosaki N et al. Synthesis and Luminescence Properties of Orange-Red-Emitting M2Si5N8:Eu2+(M= Ca, Sr, Ba) Light-Emitting Diode Conversion Phosphors by a Simple Nitridation of MSi2. International Journal of Applied Ceramic Technology 2009; 6:459-464.
    [54] Zeuner M, Hintze F, Schnick W. Low Temperature Precursor Route for Highly Efficient Spherically Shaped LED-Phosphors M2Si5N8:Eu2+(M =Eu, Sr, Ba). Chemistry of Materials2009; 21:336-342.
    [55] Duan CJ, Otten WM, Delsing ACA, Hintzen HT. Preparation and photoluminescence properties of Mn2+-activated M2Si5N8(M=Ca, Sr, Ba) phosphors. Journal of Solid State Chemistry 2008; 181:751-757.
    [56] Li YQ, van Steen JEJ, van Krevel JWH et al. Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors. Journal of Alloys and Compounds 2006; 417:273-279.
    [57] Li YQ, de With G, Hintzen HT. Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8(M=Ca,Sr,Ba) materials. Journal of Luminescence 2006; 116:107-116.
    [58] Fang CM, Hintzen HT, de With G, de Groot RA. Electronic structure of the alkaline-earth silicon nitrides M2Si5N8(M =Ca and Sr) obtained from first-principles calculations and optical reflectance spectra. Journal of Physics-Condensed Matter 2001; 13:67-76.
    [59] Lei B, Machida K, Horikawa T et al. Reddish-Orange Long-Lasting Phosphorescence of Ca2Si5N8:Eu2+,Tm3+ Phosphor. Journal of the Electrochemical Society 2010; 157:J196-J201.
    [60] Wei XD, Cai LY, Lu FC et al. Structure and luminescence of Ca2Si5N8:Eu2+ phosphor for warm white light-emitting diodes. Chinese Physics B 2009; 18:3555-3562.
    [61] Jang BY, Park JS. Luminescence properties of Eu2O3-doped Ca2Si5N8 phosphors. Journal of Ceramic Processing Research 2009; 10:844-847.
    [62] Sohn KS, Lee B, Xie RJ, Hirosaki N. Rate-equation model for energy transfer between activators at different crystallographic sites in Sr2Si5N8:Eu2+. Optics Letters 2009; 34:3427-3429.
    [63] Xie RJ, Hirosaki N, Kimura N et al. 2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors. Applied Physics Letters 2007; 90:191101-1.
    [64] Xie RJ, Hirosaki N, Suehiro T et al. A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes. Chemistry of Materials 2006; 18:5578-5583.
    [65] Li HL, Xie RJ, Hirosaki N, Yajima Y. Synthesis and Photoluminescence Properties of Sr2Si5N8:Eu2+ Red Phosphor by a Gas-Reduction and Nitridation Method. Journal of the Electrochemical Society 2008; 155:J378-J381.
    [66] Piao X, Machida KI, Horikawa T, Hanzawa H. Self-propagating high temperature synthesis of yellow-emitting Ba2Si5N8:Eu2+ phosphors for white light-emitting diodes. Applied Physics Letters 2007; 91:041908-1.
    [67] Lei BF, Machida K, Horikawa T, Hanzawa H. Synthesis and Photoluminescence Properties of CaAlSiN3:Eu2+ Nanocrystals. Chemistry Letters 2010; 39:104-105.
    [68] Lee S, Sohn KS. Effect of inhomogeneous broadening on time-resolved photoluminescencein CaAlSiN3:Eu2+. Optics Letters 2010; 35:1004-1006.
    [69] Jung YW, Lee B, Singh SP, Sohn KS. Particle-swarm-optimization-assisted rate equation modeling of the two-peak emission behavior of non-stoichiometric CaAlxSi(7-3x)/4N3:Eu2+ phosphors. Optics Express 2010; 18:17805-17818.
    [70] Li JW, Watanabe T, Wada H et al. Synthesis of Eu-Doped CaAlSiN3 from Ammonometallates: Effects of Sodium Content and Pressure. Journal of the American Ceramic Society 2009; 92:344-349.
    [71] Li YQ, Hirosaki N, Xie RJ et al. Yellow-Orange-Emitting CaAlSiN3:Ce3+ Phosphor: Structure, Photoluminescence, and Application in White LEDs. Chemistry of Materials 2008; 20:6704-6714.
    [72] Piao X, Machida K, Horikawa T et al. Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chemistry of Materials 2007; 19:4592-4599.
    [73] Li JW, Watanabe T, Wada H et al. Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy-derived ammonometallates. Chemistry of Materials 2007; 19:3592-3594.
    [74] Uheda K, Hirosaki N, Yamamoto Y et al. Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochemical and Solid State Letters 2006; 9:H22-H25.
    [75] Bachmann V, Ronda C, Oeckler O et al. Color Point Tuning for (Sr,Ca,Ba)Si2O2N2:Eu2+ for White Light LEDs. Chemistry of Materials 2009; 21:316-325.
    [76] Fu RL, Agathopoulos S, Song XF et al. Influence of energy transfer from Ce3+ to Eu2+ on luminescence properties of CaSi2O2N2:Ce3+,Eu2+ phosphors. Optical Materials 2010; 33:99-102.
    [77] Gu YX, Zhang QH, Li YG, Wang HZ. Synthesis of CaSi2O2N2:Eu LED-Phosphors from Reactive Spherical Templates with Hollow Structures. Journal of the Electrochemical Society 2010; 157:B388-B391.
    [78] Song XF, Fu RL, Agathopoulos S et al. Photoluminescence properties of Eu2+-activated CaSi2O2N2: Redshift and concentration quenching. Journal of Applied Physics 2009; 106:-.
    [79] Gu YX, Zhang QH, Li YG et al. Enhanced emission from CaSi2O2N2:Eu2+ phosphors by doping with Y3+ ions. Materials Letters 2009; 63:1448-1450.
    [80] Yang XF, Song HL, Yang LX, Xu X. Reaction Mechanism of SrSi2O2N2:Eu2+ Phosphor Prepared by a Direct Silicon Nitridation Method. Journal of the American Ceramic Society 2011; 94:28-35.
    [81] Song YH, Park WJ, Yoon DH. Photoluminescence properties of Sr1-xSi2O2N2: Eux2+ as green to yellow-emitting phosphor for blue pumped white LEDs. Journal of Physics and Chemistry of Solids 2010; 71:473-475.
    [82] Yun BG, Machida KI, Yamamoto H. Preparation and luminescence properties of SrSi2O2N2:Eu2+ phosphors for white LEDs. Journal of the Ceramic Society of Japan 2007; 115:619-622.
    [83] Bachmann V, Justel T, Meijerink A et al. Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions. Journal of Luminescence 2006; 121:441-449.
    [84] Zhu XW, Masubuchi Y, Motohashi T, Kikkawa S. The z value dependence of photoluminescence in Eu2+-doped beta-SiAlON (Si6-zAlzOzN8-z) with 1≤z≤4. Journal of Alloys and Compounds 2010; 489:157-161.
    [85] Ye F, Liu LM, Zhang HJ et al. Novel mixed alpha/beta-SiAlONs with both elongated alpha and beta grains. Scripta Materialia 2009; 60:471-474.
    [86] Kurama S, Schulz I, Herrmann M. Wear properties of alpha- and alpha/beta-SiAlON ceramics obtained by gas pressure sintering and spark plasma sintering. Journal of the European Ceramic Society 2011; 31:921-930.
    [87] Xu X, Tang JY, Nishimura T, Hao LY. Synthesis of Ca-alpha-SiAlON phosphors by a mechanochemical activation route. Acta Materialia 2011; 59:1570-1576.
    [88] Kim CH, Kwon IE, Park CH et al. Phosphors for plasma display panels. Journal of Alloys and Compounds 2000; 311:33-39.
    [89] Verstegen JMPJ, Stevels ALN. The relation between crystal structure and luminescence inβ-alumina and magnetoplumbite phases. Journal of Luminescence 1974; 9:406-414.
    [90]罗岚,钆铝酸盐基发光材料的组合芯片法研究,南昌大学博士学位论文,南昌(2008).
    [91]王得印,七类稀土铝酸盐的真空紫外发光特性及三类磷酸盐中量子剪裁现象研究,兰州大学博士学位论文,兰州(2010).
    [92] Collongues R, Gourier D, Kahn A, et al. b-alumina, a typical solid electrolyte: Latest developments in fundamental approach and in battery utilization. Journal of Physics and Chemistry of Solids 1984; 45:981-1013.
    [93]李峰,六铝酸盐基发光材料的合成及其发光性能的研究,兰州大学博士学位论文,兰州(2007).
    [94] Chen Z, Yan YW. Crystallinity and luminescent properties of citrate sol-gel derived BAM phosphor. Materials Letters 2007; 61:3927-3930.
    [95] Lee SH, Koo HY, Jung DS et al. Fine-sized BaMgAl10O17:Eu2+ phosphor powders prepared by spray pyrolysis from the spray solution with BaF2 flux. Ceramics International 2009;35:2651-2657.
    [96] Koo HY, Han JM, Kang YC. Blue-emitting Eu-doped (Sr, Mg)5(PO4)3Cl phosphor particles prepared by spray pyrolysis from the spray solution containing ammonium chloride. Journal of the Ceramic Society of Japan 2007; 115:955-959.
    [97] Chen Z, Yan YW, Liu JM et al. Microwave induced solution combustion synthesis of nano-sized phosphors. Journal of Alloys and Compounds 2009; 473:L13-L16.
    [98] Mahakhode JG, Dhoble SJ, Joshi CP, Moharil SV. Combustion synthesis of phosphors for plasma display panels. Journal of Alloys and Compounds 2007; 438:293-297.
    [99] Park S, Kang SH. Combustion synthesis of Eu2+-activated BaMgAl10O17 phosphor. Journal of Materials Science-Materials in Electronics 2003; 14:223-228.
    [100] Niu N, Yang PP, Wang Y et al. LaPO4:Eu3+, LaPO4:Ce3+, and LaPO4:Ce3+,Tb3+ nanocrystals: Oleic acid assisted solvothermal synthesis, characterization, and luminescent properties. Journal of Alloys and Compounds 2011; 509:3096-3102.
    [101] Yan B, Gu JF, Xiao XZ. LnPO4: RE3+ (La = La, Gd; RE = Eu, Tb) nanocrystals: solvo-thermal synthesis, microstructure and photoluminescence. Journal of Nanoparticle Research 2010; 12:2145-2152.
    [102] Wiglusz RJ, Grzyb T, Lis S, Strek W. Hydrothermal preparation and photoluminescent properties of MgAl2O4:Eu3+ spinel nanocrystals. Journal of Luminescence 2010; 130:434-441.
    [103] Ma MX, Zhu CK, Zhu DC, Tu MJ. Coprecipitation Synthesis of BaMgAl10O17:Eu2+ Phosphor. Rare Metal Materials and Engineering 2010; 39:300-303.
    [1]周玉,材料分析方法(第二版).北京:机械工业出版社, 2004
    [2]唐伟忠,薄膜材料制备原理,技术及应用(第二版).北京:冶金工业出版社, 2003
    [3]周玉,武高辉,材料分析测试技术.哈尔滨:哈尔滨工业大学出版社.
    [4] Sayers DE, and Bunker BA, X-ray Absorption, Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, P.211, edited by Koningsberger DC, and Prins R., John Wiley and Sons, Inc. (1988).
    [5] Crozier ED. A review of the current status of XAFS spectroscopy. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 1997; 133:134-144.
    [6]韦世强,谢亚宁,徐法强等,同步辐射XAFS实验站及其应用,物理, 2002; 31:40-44
    [7]钟文杰,贺博,李征等, USTCXAFS 2.0软件包,中国科学技术大学学报, 2001, 31:328-333.
    [1] Boolchand P, Mishra KC, Raukas M, et al. Occupancy and site distribution of europium in barium magnesium aluminate by 151Eu m?ssbauer spectroscopy. Physical Review B, 2002, 66: 134429-1.
    [2] Mishra KC, Raukas M, Ellens A, et al. A scattered wave model of electronic structure of Eu2+ in BaMgAl10Ol7 and associated excitation processes. Journal of Luminescence, 2002, 96: 95-105.
    [3] Ellens A, Zwaschka E, Kummer F, et al. Sm2+ in BAM: fluorescent probe for the number of luminescencing sites of Eu2+ in BAM. Journal of Luminescence, 2001, 93: 147-153.
    [4] Kimura N, Sakuma K, Hirafune S, et al. Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode. Applied Physics Letters, 2007, 90: 051109-1.
    [5] Wu ZC, Gong ML, Shi JX, et al. Dibarium magnesium diphosphate yellow phosphor applied in InGaN-based LEDs. Chemistry Letters, 2007, 36: 410-411.
    [6] Xie RJ, Hirosaki N, Mitomo M, et al. Wavelength-tunable and thermally stable Li-α-sialon:Eu2+ oxynitride phosphors for white light-emitting diodes. Applied Physics Letters, 2006, 89: 241103.
    [7] Zhang HC, Horikawa T, Hanzawa H, et al. Photoluminescence properties ofα-SiAlON:Eu2+ prepared by carbothermal reduction and nitridation method. Journal of the Electrochemical Society, 2007, 154: J59-J61.
    [8] Zhang M, Wang J, Ding W, et al. A novel white light-emitting diode(W-LED) fabricated with Sr6BP5O20:Eu2+ phosphor. Applied Physics B: Lasers and Optics, 2007, 86: 647-651.
    [9] Holland TJB, Redfern SAT, Unit Cell Refinement from Powder Diffraction Data: The Use of Regression Diagnostics, Mineralogical Magazine, 1997, 61: 65–77.
    [10] Liu BT, Wang YH, Zhang F, et al. Thermal stability and photoluminescence of S-doped BaMgAl10O17:Eu2+ phosphors for plasma display panels, Optics Letters, 2010, 35: 3072-3074.
    [11] Jung KY, Kang YC, Preparation of BaMgAl10O17:Eu blue phosphor by flame-assisted spray pyrolysis: photoluminescence properties of powder and film under VUV excitation, Materials Letters, 2004, 58: 2161-2165.
    [12] Yokota K, Zhang SX, Kimura K, et al.. Eu2+-activated barium magnesium aluminatephosphor for plasma displays–Phase relation and mechanism of thermal degradation, Journal of Luminescence, 2001, 92: 223-227.
    [13]曹仕秀,马明星,朱达川等,Eu2+掺杂量及碳还原温度对BaMgAl10O17:Eu2+蓝色荧光粉的影响,稀有金属材料与工程,2009,38:92-94.
    [14] Kim KB, Kim YI, Chun HG, et al. Structural and optical properties of BaMgAl10O17:Eu2+ phosphor, Chemistry of Materials, 2002, 14: 5045–5052.
    [15]林惠红,稀土离子激活的碱土(氟)硼酸盐真空紫外-可见发光性质的研究,中山大学博士学位论文,广州(2009).
    [16] Dorenbos P. f→d transition energies of divalent lanthanides in inorganic compounds. Journal of Physics-Condensed Matter 2003; 15:575-594.
    [17] Dorenbos P. Relation between Eu2+ and Ce3+ f-d-transition energies in inorganic compounds. Journal of Physics-Condensed Matter 2003; 15:4797-4807.
    [18] Krupa JC, Queffelec M. UV and VUV optical excitations in wide band gap materials doped with rare earth ions: 4f-5d transitions. Journal of Alloys and Compounds, 1997; 250:287-292.
    [19]沈常宇,高显色白光LED用荧光粉的合成和光谱研究,浙江大学博士学位论文,杭州(2009).
    [20] Zhang JY, Zhang ZT, Tang ZL, et al. Luminescent properties of the BaMgAl10O17:Eu2+,M3+(M—Nd,Er)phosphor in the VUV region. Chemistry of Materials, 2002, 14: 3005-3008.
    [21] Moon T, Hong GY, Lee HC et al. Effects of Eu2+ Co-Doping on VUV Photoluminescence Properties of BaMgAl10O17:Mn2+ Phosphors for Plasma Display Panels. Electrochemical and Solid State Letters 2009; 12:J61-J63.
    [22] Zhang SX, Kono T, Ito A, et al. Degradation mechanisms of the blue emitting phosphor BaMgAl10O17:Eu2+ under baking and VUV-irradiating treatments. Journal of Luminescence, 2004, 106: 39-46.
    [23] Wu ZS, Dong Y, Jiang JQ. Thermal treatment effects on degradation of BaMgAl10O17:Eu2+ phosphor for PDP. Materials Science and Engineering: B, 2008, 150: 151-1567.
    [24] Oshio S, Matsuoka B, Tanaka S, et al. Mechanism of luminance decrease in BaMgAl10O17:Eu2+ phosphor by oxidation, Journal of the Electrochemical Society, 1998, 145: 3903-3907.
    [25] Howe B, Diaz AL. Characterization of host-lattice emission and energy transfer in BaMgAl10O17:Eu2+. Journal of Luminescence, 2004, 109: 51-59.
    [26] Bizarri G, Moine B. On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects, Journal of Luminescence, 2005, 113: 199-213.
    [27]周波,余兴海,黄京根.BaMgAl10O17:Eu(BAM)蓝粉热劣化机理研究.发光学报,2000,21:345-348.
    [28] Kim KB, Koo KW, Cho TY, et al. Effect of heat treatment on photoluminescence behavior of BaMgAl10O17:Eu phosphors. Materials Chemistry and Physics, 2003, 80: 682-689.
    [29]沈静飞,黄如喜,朱月华等,BaMgAl10O17:Eu2+稳定性的机理及提高方法,材料导报,2007,21:121-124.
    [30]吴直森,仇华兴,董岩,蒋建清. BaMgAl10O17:Eu2+蓝色荧光粉热劣化中色坐标y值漂移,东南大学学报(自然科学版), 2008, 384: 72-476.
    [31] Hu ZW, Kaindl G, Meyer G. X-ray absorption near-edge structure at the LI–III thresholds of Pr, Nd, Sm, and Dy compounds with unusual valences. Journal of Alloys and Compounds, 1997, 246: 186-192.
    [32] Liang HB, Su Q, Tao Y, et al. VUV Excited Luminescence of Europium Activated Calcium Borophosphate Prepared in Air. Journal of Alloys and Compounds, 2002, 334: 293-298.
    [1] Kim Y, Kang S. Multi-functional colored coating of BaMgAl10O17:Eu phosphors with cobalt-doped Al2O3 thin films. Applied Physics a-Materials Science & Processing 2010; 98:245-248.
    [2] Liu BT, Wang YH, Zhou J et al. The reduction of Eu3+ to Eu2+ in BaMgAl10O17:Eu and the photoluminescence properties of BaMgAl10O17:Eu2+ phosphor. Journal of Applied Physics 2009; 106:-.
    [3] Wu ZS, Dong Y, Jiang JQ. Thermal treatment effects on degradation of BaMgAl10O17:Eu2+ phosphor for PDP. Materials Science and Engineering B-Advanced Functional Solid-State Materials 2008; 150:151-156.
    [4] Oshio S, Matsuoka B, Tanaka S, Kobayashi H. Mechanism of luminance decrease in BaMgAl10O17:Eu2+ phosphor by oxidation. Journal of the Electrochemical Society 1998; 145:3903-3907.
    [5]陈哲,严有为.纳米BaMgAl10017:Eu2+蓝色荧光粉的表面包覆研究,功能材料, 2007, 38:101-104.
    [6] Sohn SH, Lee JH, Lee SM. Effects of the surface coating of BaMgAl10O17:Eu2+ phosphor with SiO2 nano-particles. Journal of Luminescence 2009; 129:478-481.
    [7] Yang H, Wang XJ, Duan GH et al. Luminescent properties of BaMgAl10O17:Eu2+ phosphors modified with MgF2. Materials Letters 2004; 58:2374-2376.
    [8]梁超,何锦华,蒋建清等. PDP用BaMgAl10017:Eu蓝粉的表面包覆研究,中国稀土学报, 2007, 25:360-363.
    [9] Li YQ, de With G, Hintzen HT. Luminescence properties of Eu2+-doped MAl2-xSixO4-xNx (M=Ca, Sr, Ba) conversion phosphor for white LED applications. Journal of the Electrochemical Society 2006; 153:G278-G282.
    [10] Setlur AA, Heward WJ, Hannah ME, Happek U. Incorporation of Si4+-N3- into Ce3+ -Doped Garnets for Warm White LED Phosphors. Chemistry of Materials 2008; 20:6277-6283.
    [11] Boolchand P, Mishra KC, Raukas M et al. Occupancy and site distribution of europium in barium magnesium aluminate by Eu-151 Mossbauer spectroscopy. Physical Review B 2002; 66:.
    [12] Kim KB, Koo KW, Cho TY, Chun HG. Effect of heat treatment on photoluminescence behavior of BaMgAl10O17:Eu phosphors. Materials Chemistry and Physics 2003;80:682-689.
    [13] Sohn KS, Kim SS, Park HD. Luminescence quenching in thermally-treated barium magnesium aluminate phosphor. Applied Physics Letters 2002; 81:1759-1761.
    [14] Bizarri G, Moine B. On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects. Journal of Luminescence 2005; 113:199-213.
    [15] Zhang ZH, Wang YH. Enhanced emission and improved thermal stability of BaMgAl10O17 : Eu2+ phosphor via additional Mg2+ doping. Materials Letters 2007; 61:4128-4130.
    [16]机械合金化制备超细硬质材料取得长足进展--国营河南重型矿山机械厂, http://www.hnpsjx.cn/new1.htm, 2010.
    [17]庄稼,机械力固相化学反应合成纳米氧化物研究,四川大学博士学位论文,重庆(2004).
    [18] Stevels ALN, Schrama-de Pauw ADM. Eu2+ Luminescence in Hexagonal Aluminates Containing Large Divalent or Trivalent Cations. Journal of the Electrochemical Society 1976; 123:691-697.
    [19] Zhang JY, Zhang ZT, Tang ZL et al. Luminescent properties of the BaMgAl10O17:Eu2+,M3+ (M = Nd, Er) phosphor in the VUV region. Chemistry of Materials 2002; 14:3005-3008.
    [20] Zhang SX. Vacuum-ultraviolet/visible conversion phosphors for plasma display panels. Ieee Transactions on Plasma Science 2006; 34:294-304.
    [21]沈常宇,高显色白光LED用荧光粉的合成和光谱研究,浙江大学博士学位论文,杭州(2009).
    [22] Park S, Kang SH. Combustion synthesis of Eu2+-activated BaMgAl10O17 phosphor. Journal of Materials Science-Materials in Electronics 2003; 14:223-228.
    [23] Kubota S, Shimada M. Sr3Al10SiO20:Eu2+ as a blue luminescent material for plasma displays. Applied Physics Letters 2002; 81:2749-2751.
    [24] Zhang JY, Zhang L, Tang ZL et al. Luminescent properties of (Ce0.67Tb0.33)MnxMg1-xAl11O19 phosphor in VUV region. Ceramics International 2003; 29:583-586.
    [25] Mishra KC, Raukas M, Ellens A, Johnson KH. A scattered wave model of electronic structure of Eu2+ in BaMgAl10O17 and associated excitation processes. Journal of Luminescence 2002; 96:95-105.
    [26] Ellens A, Zwaschka F, Kummer F et al. Sm2+ in BAM: fluorescent probe for the number of luminescing sites of Eu2+ in BAM. Journal of Luminescence 2001; 93:147-153.
    [27] Wu Z, Cormack AN. Defects in BaMgAl10O17:Eu2+ blue phosphor. Journal of Electroceramics 2003; 10:179-191.
    [28] Kim YI, Kim KB, Jung MJ, Hong JS. Combined Rietveld refinement of BaMgAl10O17:Eu2+ using X-ray and neutron powder diffraction data. Journal of Luminescence 2002;99:91-100.
    [29] Hohenberg C, Kohn W. Inhomogeneous electron gas, Physical Review B, 1964, 136:864-871.
    [30] Kohn W, Sham LJ, Quantum density oscillations in an inhomogeneous electron gas, Physical Review, 1965, 137: A1697-A1705.
    [31] Kohn W, Highlights of condensed matter theory. North Holland, 1985.
    [32] Sham L, Density function theory and computational materials physics. Kluwer Academic Publishers, 1996.
    [33]孙宏刚,宽禁带半导体In2O3的结构与性能的第一性原理研究,山东大学硕士学位论文,济南(2009).
    [34] Beck AD, Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 1988, 38:3098-310.0
    [1] Zhang QH, Wang J, Yeh CW et al. Structure, composition, morphology, photoluminescence and cathodoluminescence properties of ZnGeN2 and ZnGeN2:Mn2+ for field emission displays. Acta Materialia 2010; 58:6728-6735.
    [2] Huang CH, Kuo TW, Chen TM. Novel Red-Emitting Phosphor Ca9Y(PO4)7:Ce3+,Mn2+ with Energy Transfer for Fluorescent Lamp Application. Acs Applied Materials & Interfaces 2010; 2:1395-1399.
    [3] Duan CJ, Delsing ACA, Hintzen HT. Photoluminescence Properties of Novel Red-Emitting Mn2+-Activated MZnOS(M= Ca, Ba) Phosphors. Chemistry of Materials 2009; 21:1010-1016.
    [4] Wang YF, Xu X, Yin LJ, Hao LY. High Photoluminescence of Si-N-Co-Doped BaAl12O19:Mn2+ Green Phosphors. Electrochemical and Solid State Letters 2010; 13:J119-J121.
    [5] Liang XL, Xing ZW, Yang YX et al. Luminescence Properties of Eu2+/Mn2+ Codoped Borophosphate Glasses. Journal of the American Ceramic Society 2011; 94:849-853.
    [6] Kim KN, Jung HK, Park HD, Kim D. High luminance of new green emitting phosphor, Mg2SnO4:Mn. Journal of Luminescence 2002; 99:169-173.
    [7] Iyi N, Inoue Z, Takekawa S, Kimura S. The crystal structure of barium hexaaluminate phase I ( barium b-alumina). Journal of Solid State Chemistry, 1984, 52: 66-72.
    [8] Park JG, Cormack AN. Crystal/defect structures and phase stability in Ba hexaaluminates. Journal of Solid State Chemistry, 1996, 121: 278-290.
    [9] Singh V, Chakradhar RPS, Rao JL, Kwak HY. Investigations on green-emitting, Mn2+: BaAl12O19 phosphors obtained by solution combustion process. Journal of Materials Science 2011; 46:3928-3934.
    [10] Wi?niewski K, Zorenko YU, Gorbenko V, et al. High pressure spectroscopy study of SCF Tb3Al5O12:Mn. Journal of Physics: Conference Series 2010, 249:1-8.
    [11] Lee DY, Kang YC, Park HD, Ryu SK. VUV characteristics of BaAl12O19:Mn2+ phosphor particles prepared from aluminum polycation solutions by spray pyrolysis. Journal of Alloys and Compounds 2003; 353:252-256.
    [12] Tamatani M. Fluorescence in b-Al2O3-like materials of K, Ba and La activated with Eu2+ and Mn2+. Japanese Journal of Applied Physics, 1974, 13: 950~956.
    [13] Barthou C, Benoit J, Benalloul P et al. Mn2+ concentration effect on the optical properties of Zn2SiO4:Mn phosphors. Journal of the Electrochemical Society 1994, 141:524 -528.
    [14] Sohn KS, Park ES, Kim CH, Park HD. Photoluminescence behavior of BaAl12O19:Mn phosphor prepared by pseudocombinatorial chemistry method. Journal of the Electrochemical Society 2000; 147:4368-4373.
    [1] Wang WN, Iskandar F, Okuyama K, Shinomiya Y. Rapid synthesis of non-aggregated fine chloroapatite blue phosphor powders with high quantum efficiency. Advanced Materials 2008; 20:3422.
    [2] Jung KY, Lee HW, Kang YC et al. Luminescent properties of (Ba,Sr)MgAl10O17:Mn,Eu green phosphor prepared by spray pyrolysis under VUV excitation. Chemistry of Materials 2005; 17:2729-2734.
    [3] You HP, Zhang JL, Hong GY, Zhang HJ. Luminescent properties of Mn2+ in hexagonal aluminates under ultraviolet and vacuum ultraviolet excitation. Journal of Physical Chemistry C 2007; 111:10657-10661.
    [4] Zhou J, Wang YH, Liu BT, Lu YH. Effect of H3BO3 on structure and photoluminescence of BaAl12O19:Mn2+ phosphor under VUV excitation. Journal of Alloys and Compounds 2009; 484:439-443.
    [5] Lu SW, Copeland T, Lee BI et al. Synthesis and luminescent properties of Mn2+ doped Zn2SiO4 phosphors by a hydrothermal method. Journal of Physics and Chemistry of Solids 2001; 62:777-781.
    [6] Lee DY, Kang YC, Park HD, Ryu SK. VUV characteristics of BaAl12O19:Mn2+ phosphor particles prepared from aluminum polycation solutions by spray pyrolysis. Journal of Alloys and Compounds 2003; 353:252-256.
    [7] Sohn KS, Park ES, Kim CH, Park HD. Photoluminescence behavior of BaAl12O19:Mn phosphor prepared by pseudocombinatorial chemistry method. Journal of the Electrochemical Society 2000; 147:4368-4373.
    [8] Wang YH, Li F. Synthesis of BaAl12O19:Mn2+ nanophosphors by a reverse microemulsion method and its photoluminescence properties under VUV excitation. Journal of Luminescence 2007; 122:866-868.
    [9] Kim CH, Kwon IE, Park CH et al. Phosphors for plasma display panels. Journal of Alloys and Compounds 2000; 311:33-39.
    [10] Setlur AA, Heward WJ, Hannah ME, Happek U. Incorporation of Si4+-N3- into Ce3+ -Doped Garnets for Warm White LED Phosphors. Chemistry of Materials 2008; 20:6277-6283.
    [11] Li YQ, de With G, Hintzen HT. Luminescence properties of Eu2+-doped MAl2-xSixO4-xNx (M=Ca, Sr, Ba) conversion phosphor for white LED applications. Journal of the Electrochemical Society2006; 153:G278-G282.
    [12] Wang YF, Xu X, Yin LJ, Hao LY. High Thermal Stability and Photoluminescence of Si-N-Codoped BaMgAl10O17:Eu2+Phosphors. Journal of the American Ceramic Society 2010; 93:1534-1536.
    [13] Jansen SR, Hintzen HT, Metselaar R. Phase relations in the BaO-Al2O3-AlN system: Materials with the beta-alumina structure. Journal of Solid State Chemistry 1997; 129:66-73.
    [14] Jansen SR, Migchels JM, Hintzen HT, Metselaar R. Eu-Doped barium aluminum oxynitride with the beta-alumina-type structure as new blue-emitting phosphor. Journal of the Electrochemical Society 1999; 146:800-806.
    [15] NIST X-Ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 3.5, http://srdata.nist.gov/xps/Default.aspx, last accessed May 2007.
    [16] Barthou C, Benoit J, Benalloul P et al. Mn2+ concentration effect on the optical properties of Zn2SiO4:Mn phosphors. Journal of the Electrochemical Society 1994, 141:524 -528.
    [17] Duan CJ, Delsing ACA, Hintzen HT. Red emission from Mn2+ on a tetrahedral site in MgSiN2. Journal of Luminescence 2009; 129:645-649.
    [18] Stevels ALN, Schrama-de Pauw ADM. Eu2+ Luminescence in Hexagonal Aluminates Containing Large Divalent or Trivalent Cations. Journal of the Electrochemical Society 1976; 123:691-697.
    [19] Pitale SS, Kumar V, Nagpure IM et al. Luminescence characterization and electron beam induced chemical changes on the surface of ZnAl2O4:Mn nanocrystalline phosphor. Applied Surface Science 2011; 257:3298-3306.
    [20] Shinde KN, Dhoble SJ, Kumar A. Photoluminescence studies of NaCaPO4:RE (RE=Dy3+, Mn2+ or Gd3+). Physica B-Condensed Matter 2011; 406:94-99.
    [21] Liu JD, Wang YH, Yu X, Li J. Enhanced photoluminescence properties of Zn2SiO4:Mn2+ co-activated with Y3+/Li+ under VUV excitation. Journal of Luminescence 2010; 130:2171-2174.
    [22] Fu YB, Zhang GB, Qi ZM et al. Energy transfer in LaMgB5O10:Pr3+,Mn2+ under VUV excitation. Journal of Luminescence 2007; 124:370-374.
    [23] Wang J, Wang SB, Su Q. Synthesis, photoluminescence and thermostimulated-luminescence properties of novel red long-lasting phosphorescent materials beta-Zn3(PO4)2:Mn2+,M3+ (M = Al and Ga). Journal of Materials Chemistry 2004; 14:2569-2574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700