溶液燃烧合成WLED硅酸盐荧光粉及发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光发光二极管(White Light Emitting Diode,简称WLED)是继白炽灯、荧光灯和高压气体放电灯之后的第四代光源。由于具有节能、高效、绿色环保和寿命长等优点,WLED代表了未来照明产业的发展方向,得到了世界各国特别是发达国家的重点关注和加速研发。从WLED实现技术来看,单芯片LED搭配无机发光材料(即荧光粉)的组合方式相对于多芯片直接组合方式具有显色性好、设计简单及成本低等优势,是目前固态照明技术发展的主流。因此,开展新型、稳定、高效LED荧光粉的研制,对于WLED技术的发展具有重要的意义。
     硅酸盐荧光粉是近年来发展起来的一类能够较好满足WLED要求的新型无机发光材料。但是,硅酸盐荧光粉的基质成分、晶体结构、电子能带结构、激活剂匹配以及制备工艺与发光性能之间的关系等目前尚无系统深入的研究,而且该类荧光粉目前均采用高温固相法合成,存在能耗大、成本高、合成产物纯度低、颗粒粒径分布不均等不足。为此,本文采用溶液燃烧合成(Solution Combustion Synthesis,简称SCS)技术合成WLED硅酸盐荧光粉,并研究合成材料的晶体结构、基质电子能带结构及发光性能。通过系统研究,取得如下主要成果。
     采用SCS技术制备了Ba2MgSi2O7:Eu2+蓝绿色荧光粉。产物纯净,结晶完好,颗粒分布均匀。该荧光粉的激发光谱为宽激发带,能被紫外(Ultraviolet, UV)LED芯片有效激发。在353 nm的UV光激发下样品的发射峰波长为498 nm,归属于Eu2+的4f65d1→4f7(8S7/2)宽带允许跃迁,色度坐标(x,y)=(0.14,0.41)。
     研究了Ba1.95(Mg1-y, Zny)Si2O7:Eu0.052+系列荧光粉的发光性能。结果表明,Zn2+的掺杂明显提高了Ba2MgSi2O7:Eu2+在UV光区域的发光性能;随着y值的增加,导致基质的晶体场增强和电子云膨胀效应的发生,致使Eu2+发射主峰红移5 nm。
     采用正交实验法研究了Ba2ZnSi2O7:Eu2+荧光粉的发光特性。研究结果表明,在1000℃煅烧3 h,助熔剂H3BO3的加入量为0.06 mol,激活剂Eu2+为0.05 mol时,所制备的荧光粉发光性能最佳。激活剂Eu2+在荧光粉基质中浓度猝灭为0.05 mol,浓度猝灭机理为电子偶极-电子偶极相互作用。该荧光粉能被UV-LED有效激发,色度坐标为(x,y)=(0.16,0.45)。
     为了与SCS法进行对比分析,采用优选原料,通过Sol-gel法在还原气氛下制备了Ba2ZnSi2O7: Eu2+荧光粉。制备产物的发射峰与SCS相比,其发射峰蓝移3 nm,归因于发光离子受纳米尺寸效应使得晶体内部键之间震动频率升高,引起发射峰“蓝移”。同时,以NaOH为矿化剂,通过水热一步法制备了Eu掺杂Ba2ZnSi2O7荧光粉。结果表明,样品中Eu仍以Eu3+存在,荧光光谱与Eu3+光谱特征完全相符。其发射光谱主峰位于614 nm,属于晶格中占据非对称中心格位Eu3+的5D0→7F2的电偶极跃迁特征线性发射。经还原处理后,样品中Eu3+被全部还原成Eu2+,发射波长位于501 nm,归属于Eu2+的4f65d1→4f7宽带允许跃迁。SCS法与Sol-gel法,水热法制备的Ba2ZnSi2O7:Eu2+荧光粉经光谱测试表明,SCS法制备Ba2ZnSi2O7: Eu2+荧光粉发光性能更优,激发峰和发射峰强度都高于Sol-gel法和水热法。
     研究了基质阳离子Ba/Zn比值对硅酸盐荧光粉的晶体结构和发光性能的影响。采用溶液燃烧合成法制备了Ba/Zn比值分别为1:2和1:1的BaZn2Si2O7: Eu2+和BaZnSiO4: Eu2+荧光粉。结果表明,在BaZn2Si2O7: Eu2+荧光粉发射峰单一位于522 nm,呈Gaussian对称分布。但是在BaZnSiO4:Eu2+出现了403 nm和505 nm的发射峰。对505 nm发射峰进行Gaussian曲线拟合,得到了492和512 nm两个明显的发射峰。其中403,492和512 nm发射峰分别为Eu2+占据六配位(Ba(3))和九配位(Ba(2)和Ba(1))的Ba2+格位跃迁产生的。
     为了更好的理解Eu2+掺杂黄长石结构A2DSi2O7(A=Ba, Sr, Ca; D=Mg, Zn)的发光性质,分别对Ba2MgSi2O7、Ba2ZnSi2O7、Sr2ZnSi2O7、Ca2ZnSi2O7的硅酸盐基质晶体的电子能带结构进行了基于第一性原理的密度泛函理论的模拟计算。结果表明,黄长石结构硅酸盐晶体的价带顶主要由02p轨道组成,同时过渡金属元素轨道Zn3d轨道有显著贡献;其导带底则主要出Si的(3s+3p)轨道和基质晶体结构中的碱土金属元素轨道如Ca3d、Sr4d和Ba5d轨道构成。因此当稀土激活剂离子Eu2+占据黄长石晶体结构中碱土金属离子的晶格晶位时,由于其基质晶体能带结构不同,引起其发光特性不同。
     采用SCS法制备了新型硅钙钡石型BaCa2Si309:Eu2+蓝色荧光粉。结果表明,该荧光粉的激发波长是由260 nm-450 nm的宽激发带组成,能被UV-LED有效激发。在356nmUV光激发下,发射峰位于445 nm,归属于Eu2+的4f65d1→4f7跃迁,色度坐标为(x,y)=(0.16,0.11)。
     研究了系列锌黄长石结构M2ZnSi207:Eu3+(M=Ca, Sr, Ba)红色荧光粉的发光性能。结果表明,三种荧光粉的激发和发射光谱峰形状和位置基本没有改变。三种荧光粉的激发光谱中都存在320,362,383,394,416和465 nm的激发峰,分别对应于Eu3+的7F0→3H4,7F0→5D4,7F1→5F4,7F0→5L6,7F1→5L6和7F0→5D2的电子跃迁。发射光谱中都存在579,591,614,652,703nm的发射峰,分别对应于Eu3+的5D0→7Fo,5D0→7F1,5D0→7F2,5D0→7F3,5D0→7F4的跃迁。同时也证明了Eu3+的f-f跃迁基本不随基质的不同而改变。由于单斜晶系Ba2ZnSi207的晶体对称性在系列锌黄长石结构中最低,Eu3+占据Ba2+的晶格晶位时,5D0→7F2(电偶极跃迁)与5D0→7F1(磁偶极跃迁)的比值最大。合成的三种荧光粉都可以被395 nm UV和465 nm蓝光有效激发,发射614 nm的红光。激发波长与UV-LED和Blue LED芯片发光相符合,是潜在的WLED用红色荧光粉。
White light emitting diode (WLED) is believed to be the fourth generation of lamp-house after incandescent lamp, fluorescent lamp and discharge light and there are the futures of illumination. WLED represents the future direction of development of the lighting industry due to its attravive advantages of energy consumption saving, high-efficiency, environmental and lifetime long-lasting aspects, which has been focus of attention and speed up research and development in around the world especially developed countries. From the realization point of view with WLED technology, the single-chip LED with inorganic luminescent materials (phosphors) of the combination relative of the multi-chip direct combination with good color, simple design and low cost advantages, which is the mainstream development of solid-state lighting. Therefore, it is a great significance to make novel, stable and efficient development of LED phosphors for WLED technology.
     Silicate phosphor is a class developed in recent years to meet the requirements of the new WLED inorganic luminescent materials. However, there is no systematic study the current matrix of silicate phosphor composition, crystal structure, electronic band structure, activating agent and synthesis method matching between luminescent properties. The solid-state reaction process has been used intensively for silicates phosphors, but this approach is the need for high-temperature and long-time calcinations. The unreacted phases appeared easily which reduced greatly its luminescent brightness and intensities characteristic. In the present works, the silicates phosphors synthesized by the solution combustion synthesis (SCS) method and researched the crystal structure, electronic structures and luminescence properties of synthetic materials. The main results obtained are as follows.
     The Ba2MgSi2O7:Eu2+ blue-green phosphors were synthesized by combustion synthesis method and its luminescent properties were also investigated. The results of XRD and SEM analysis show the sample is nonophasic and well-crystallized. The excitation wavelength of these phosphors can be effectively excited by UV-LED chip. The emission wavelength lies at 498 nm upon excited by 353 nm UV light. The Commission International de l'Eclairage (CIE) of the optimized sample was calculated (x, y)=(0.14, 0.41).
     The luminescent properties of Ba1.95(Mg1-y, Zny)Si2O7:Eu0.052+ phosphors were researched. The results shown that the introduction of Zn2+ into Ba2MgSi2O7:Eu2+ effectively increased its emission with UV excitation. In addition, the emission spectra presented an emission position red shift of up to 5 nm with increasing y value, which due to the crystal field enhancing and electron cloud expansion effect.
     The hardystonite phosphor Ba2ZnSi2O7:Eu2+ researched by the orthogonal design method. The results shown that the postannealed temperature at 1000℃for 3 h, the quantity of flux H3BO3 was 0.06 mol and the activator ions of Eu2+ was 0.05 mol could get the optimized phosphors. The critical quenching concentration of Eu2+ in Ba2ZnSi2O7: Eu2+ phosphor is about 0.05. The corresponding concentration quenching mechanism is verified to be a dipole-dipole interaction. The excitation wavelength of these phosphors can be effectively excited by UV-LED chip. The CIE of the Ba1.95ZnSi2O7:Eu0.052+was calculated (x, y)=(0.16,0.45).
     The Ba2ZnSi2O7:Eu2+ phosphors have also been prepared by a modified Sol-gel method in the reducing atmosphere. A blue-green emission with a peak at 500 nm is observed, which show the Eu2+ typical emission. Compared with the products of combustion synthesis, its emission peak blue-shift 3 nm, mainly due to activators in nano-size effect makes the vibration frequency between the bonds internal the crystal increases. At the same time, NaOH used as mineralizer to prepare Ba2ZnSi2O7:Eu phosphors by hydrothermal method. The results indicate that, the sample emission prominent peak locates at 614 nm, being attribute to 5Do→7F2 electric-dipole transitions of Eu3+ ions lie in non-centrosysmetrical sites. After the sample is reduced in the reducing atmosphere, a blue-green emission with a peak at 501 nm is observed, which shows the Eu3+ ions has been completely reduced to Eu2+ Comparison analysis of the Ba2ZnSi2O7: Eu2+ phosphor fabricated by SCS method, Sol-gel method and hydrothermal method respectively indicates that the phosphors can be excited by UV irradiation. However, the combustion method to prepare Ba2ZnSi2O7:Eu2+ phosphor powders have more uniform leading to the better performance. The luminescent intensity is higher than the Sol-gel and hydrothermal method. The process of combustion synthesis method is simple and more energy-saving.
     Morever, the crystal structure and luminescent property of silicates phosphors are considerable influenced by Ba/Zn ratio. The green-emitting phosphors of the BaZn2Si2O7: Eu2+ and BaZnSiO4:Eu2+ was prepared by SCS method. The emission of BaZn2Si2O7: Eu2+ phosphor showed one Gaussian symmetric peak at 522 nm. But in the structure of BaZnSiO4:Eu2+ phosphor, Eu2+ ions occupy three different lattice sites by substitution for Ba2+. Eu2+ions on Ba(1) and Ba(2) sites gave emissions at about 512 nm and 492 nm, while Eu2+ ions on Ba(3) sites showed an emission band at 403 nm.
     To further understand the photoluminescence properties of the melilites phosphors, the electronic band structures calculation were performed on Ba2MgSi2O7, Ba2ZnSi2O7, Sr2ZnSi2O7 and Ca2ZnSi2O7 by the first principle of density functional theory. The calculated results shown that the valence band top of these melilites silicate crystals was mainly composed of the O2p orbitals, also the transition-metal-element orbitals such as Zn3d orbitals contributed significantly to the valence band top and contracted the band gap. The low conduction band contained the Si3s and Si3p orbitals, also included the alkaline-metallic element orbitals such as the Ca3d, Sr4d and Ba5d orbitals. So, the rare earth activator Eu2+ ions occupy the alkaline earth metal ions in the melilite crystal structure, the host crystal band structure caused the different luminescence characteristics.
     A blue emitting phosphor BaCa2Si3O9:Eu2+ was prepared by the combustion synthesis method. The excitation spectrum is a broad extending from 260 to 450 nm, which matches the emission of UV-LED. The emission spectrum shows a single intensive band centered at 445 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+. The CIE of the sample was calculated (x, y)= (0.16,0.11).
     Luminescent properties of hardystonite M2ZnSi2O7: Eu3+ (M=Ca, Sr, Ba) red phosphors have been systematically studied. The results showed that the excitation and emission spectra of phosphors did not change the shape and positions. The excitation peaks of these phosphors about 320, 362,383,394, 416 and 465 nm are assigned to correspond to 7F0→3H4,7F0→5D4,7F1→5F4,7F0→5L6,7F1→5L6 and 7F0←5D2 transitions of Eu3+, respectively. The spectrum exhibits five emission peaks at 579,591,614,652 and 703nm. These five emission peaks can be attributed to the 5D0→7F0,5D0→7F1,5D0→7F2, 5D0→7F3,5D0→7F4 transitions of Eu3+. These results show that the f-f transitions of Eu3+ basically dose not change with the different hosts. When the activator of Eu3+ codoped Ba2+, the ratio of the 5D0→7F2 (electric dipole transition) and 5D0→7F1 (magnetic dipole transition) is maximum. The experiment results show that the monoclinic Ba2ZnSi2O7 have the lowest crystal symmetry in the melilite structure. These phosphors have main excitation peaks located at 394 and 465 nm, which match the emission of UV and blue-LED, respectively. Thus, these luminescent materials could be used as red phosphors for WLED.
引文
[1]Zukauskas A, Shur M S, Gaska R. Introduction to Solid-State Lighting. Wiley-Blackwell:A Wiley-Interscience Publication.2002.
    [2]Steigerwald D A, Bhat J C, Collins D, et al. Illumintation with solid state lighting technology. IEEE Journal of Selected Topics in Quantum Electronics.2002,8 (2): 310-320.
    [3]Schubert E F, Kim J K. Solid-State Source Getting Smart. Science.2005,38(5726): 1274-1278.
    [4]Schubert E F, Kim J K, Luo H, et al. Solid-state lighting-a benevolent technology. Reports on Progress in Physics.2006,69 (12):3069-3099.
    [5]Tao J Y. Solid-state lighting: lamps, chips, and materials for tomorrow. IEEE Circuits and Devices Magazine.2004,20 (3):28-37.
    [6]Schubert E F. Light-emitting diodes. Cambridge:Cambridge University Press.2006.
    [7]黄可,刘清.各国半导体照明研究计划及我国的对策.中国科技论坛.2008,6:136-139.
    [8]方志烈.半导体发光材料和器件.上海:复旦大学出版社.1992.
    [9]Jr Honlonyak N, Bevacqua S F. Coherent (visible) light emission from Ga(As1-xPx) junctions. Applied Physics Letters.1962,1(4):82-83.
    [10]Nakamura S, Senoh M, Iwassa N, et al., High-power InGaN single-quantum-well-structure and violet light-emitting diodes. Applied Physics Letters.1995,67(13):1868-1870.
    [11]Nakamura S, Fasol G. The Blue Laser Diode. Berlin:Springer-Verlag,1997.
    [12]方志烈.发光二极管材料与器件的历史、现状和展望.物理.2003,32(5):295-301.
    [13]Kim J K, Schubert. Transcending the replacement paradigm of solid-sate lighting. Optics Express.2008,16 (26):21835-21842.
    [14]李晓丽,张忠义.稀土发光材料在节能照明领域中的发展概况.稀土,2008,29(2):69-71.
    [15]姚山山.白光二极管(WLED)硅酸盐、铝酸盐荧光粉的燃烧法制备及其发光性能的研究:[硕士学位论文].武汉:中南民族大学,2008.
    [16]Jiistel T, Nikol H, Ronda C. Neue Entwicklungen auf dem Gebiet lumineszierender Materilien fur Beleuchtungs-und Displayanwendungen. Angewandte Chemie International Edition.1998,110(22):3250-3271.
    [17]Hoppe H A. Recent development in the field of inorganic phosphors. Angewandte Chemie International Edition.2009,48(20):3572-3582.
    [18]刘树杰,关荣锋.用于白光掺杂Ce-YAG荧光玻璃的研制.电子元件与材料.2007,26(12):8-9.
    [19]陈大华.现代光源基础.上海:学林出版社,1987.
    [20]Ponce F A, Bour D P. Nitride-based semiconductors for blue and green light-emitting devices. Nature.1997,386(27):351-359.
    [21]Nishida T, Ban T, Kobayashi N. High-color-rendering light sources consisting of a 350 nm ultraviolet light-emitting diode and three-basal-color phosphors. Applied Physics Letters.2003,82(22):3817-3819.
    [22]王海波,朱宪总,任巨光.荧光粉涂敷法制白光LED前景广阔.中国照明电器,2004,5:1-4.
    [23]Wang X H, Jia H Q, Guo L W, et al. Whit light-emitting diodes based on a single InGaN emission layer. Applied Physics Letters.2007,91(16):161912-161914.
    [24]Borisov B, Nikishin S, Kuryatkov, et al. Enhanced deep ultraviolet luminescence from AlGaN quantum wells grown in the three-dimensional mode. Applied Physics Letters.2005,87(19):191902-191904.
    [25]Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/GaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters.1994, 64(13):1687-1689.
    [26]Schlotter P, Schmidt R, Schneider J. Luminescence conversion of blue light emitting diodes. Applied Physics A:Materials Science and Processing.1997,64(4): 417-418.
    [27]胡运生,庄卫东,叶信宇等.半导体照明用荧光粉的研究进展.新材料产业.2008,5:50-54.
    [28]李建宇.稀土发光材料及其应用.北京:化学工业出版社.2003.
    [29]张希艳,卢利平,柏朝晖.稀土发光材料.北京:国防工业出版社.2005.
    [30]张中太,张俊英.无机光致发光材料及应用.北京:化学工业出版社.2005.
    [31]印琰,杨宝东,朱月华等.白光LED用荧光粉的发展现状.中国照明电器.2009,3:6-10.
    [32]尹艳林,许春妹,徐柳陈.近紫外荧光材料研究进展.辽宁化工.2009,38(1):46-61.
    [33]Huh Y D, Cho Y S, Do Y R. The optical properties of (Y1-xGdx)3-z(Al1-yGay)5O12: Cez phosphors for white LED. Bulletin of the Korean Chemical Society.2002, 23(10):1435-1438.
    [34]Xie R J, Hirosaki N, Mitomo M. Wavelength-tunable and thermally stable Li-a-sialon:Eu2+ oxynitride phosphors for white light-emitting diodes. Applied Physics Letters.2006,89(24):241103/1-241103/3.
    [35]Jang H S, Yang H, Kim S W, et al. White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3Si05:Ce3+, Li+ phosphors. Advanced Materials.2008,20(14):2696-2702.
    [36]Xie J R, Hirosaki N, Mitomo M, et al. Strong green emission from activated by divalent ytterbium under blue light irradiation. The Journal of Physical Chemistry B.2005,109(19):9490-9494.
    [37]Hirosaki N, Xie J R, Kimoto K, et al. Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diode. Applied Physics Letter.2005,86(21):211905/1-211905/3.
    [38]Paio X Q, Horikawa T, Hanzawa H, et al. Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting diodes illumination. Applied Physics Letter.2006,88(16):161908/1-161908/3.
    [39]Hu Y, Zhang W, He H, et al. Preparation and luminescent properties of (Ca1-x, Srx)S: Eu2+ red-emitting phosphor for white LED. Journal of Luminescence.2005,111(3): 139-145.
    [40]刘霁,李万万,孙康.白光LED及其涂敷用荧光粉的研究进展.材料导报.2007,21(8):116-120.
    [41]徐修冬,许贵真,吴占超等.白色发光二极管用荧光粉研究进展(Ⅱ).中山大学学报(自然科学版).2007,46(6):125-130.
    [42]Wang H, Yang J, Zhang C M, et al. Synthesis and characterization of monodisperse spherical SiO2@Re2O3 (Re=rare earth elements) and SiO2@Gd2O3:Ln3+(Ln=Eu, Tb, Dy, Sm, Er, Ho) particles with core-shell structure. Journal of Solid State Chemistry.2009,182(10):2716-2724.
    [43]Hong S J, Kwak M G, Han J I. Optimization of solvent condition for highly luminescent Y2O3:Eu3+ nanophosphor. Current Applied Physics.2006,6, Supplement (1):e211-e215.
    [44]Faucher M D, Morlotti R, Moune O K. The effect of added foreign ions in Gd2O2S: Tb3+; crystal field calculations, lifetimes, photo-luminescence and absorption spectra. Journal of Luminescence.2002,96(1):37-49.
    [45]Luo X X, Cao W H. Ethanol-assistant solution combustion method to prepare La2O2S:Yb, Pr nanometer phosphor. Journal of Alloys and Compounds.2008, 460(1-2):529-534.
    [46]Thirumalai J, Chandramohan R, Auluck S, et al. Controlled synthesis, optical and electronic properties of Eu3+ doped yttrium oxysulfide (Y2O2S) nanostructures. Journal of Colloid and Interface Science.2009,336(2):889-897.
    [47]Wan Y H, Sun Y K, Zhang J C, et al. New red Y0.85Bi0.1Eu0.05V1-yMyO4 (M=Nb, P) phosphors for light-emitting diodes. Physica B:Condensed Matter.2008,403(12): 2071-2075.
    [48]Wang Y H, Zuo Y Y, Gao H. Luminescence properties of nanocrystalline YVO4: Eu3+ under UV and VUV excitation. Materials Research Bulletin.2006,41(11): 2147-2153.
    [49]Wu Z C, Shi J X, Wu H, et al. Synthesis and luminescent properties of SrAl2O4: Eu2+ green-emitting phosphors for white LEDs. Materials Letters.2006,60(29-30): 3499-3501.
    [50]Wu Z C, Gong M L, Shi J X, et al. Comparative investigation on synthesis and luminescence of Sr4Al14O25:Eu2+ applied in InGaN LEDs. Journal of Alloys and Compounds.2008,458(1-2):134-137.
    [51]Zych E, Goetz W, Harrit N, et al. Spectroscopic properties of sintered BaMgAl10O17:Eu2+(BAM) translucent pellets comparison to the commercial powder. Journal of Alloys and Compounds.2004,380(1-2):113-117.
    [52]Yang P, Yao G Q, Lin J H. Energy transfer and photoluminescence of BaMgAl10O17 co-doped with Eu2+ and Mn2+. Optical Materials.2004,26(3):327-331.
    [53]Ta N, Chen D H. Combustion synthesis of β-Ca1.95P2O7:0.05Eu2+ blue phosphor for near ultraviolet excitation. Journal of Alloys and Compounds.2009,484(1-2): 514-518.
    [54]Wu Z C, Shi J X, Wang J, et al. A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs. Journal of Solid State Chemistry.2006,179(8):2356-2360.
    [55]Liu J, Wu Z, Gong M. Thermally stable luminescence of blue LiSrPO4: Eu2+ phosphor. Applied Physics B:Lasers and Optics.2008,93(2-3):583-587.
    [56]Chang C K, Chen T M. Sr3B2O6: Ce3+, Eu2+:a potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diode. Applied Physics Letters.2007,91(8):081902/1-081902/3.
    [57]Yao S S, Li Y Y, Xue L H, et al. Nanostructure and luminescent properties of Sol-gel derived europium-doped Ba2Ca(BO3)2- The European Physical Journal Applied Physics.2010,51(3):30603/1-5.
    [58]Diaz A, Keszler D A. Red, green, and blue Eu2+ luminescence in solid-state borates: A structure-property relationship. Materials Research Bulletin.1996,31(2): 147-151.
    [59]Zhang Q Y, Yang C H, Pan Y X. Enhanced white light emission from GdAl3(BO3)4: Dy3+, Ce3+ nanorods. Nanotechnology.2007,18(14):145602/1-145602/5.
    [60]Zhang M, Wang J, Ding W J, et al. Luminescence properties of M2MgSi2O7:Eu2+ (M=Ca, Sr) phosphors and their effects on yellow and blue LEDs for solid state lighting. Optical Materials.2007,30(4):571-578.
    [61]Barry T L. Fluorescence of Eu2+-activated phases in binary alkaline earth orthosilicate systems. Journal of the Electrochemical Society.1968,115(11): 1181-1184.
    [62]Saradhi M P, Varadaraju U V. Photoluminescence studies on Eu2+-activated Li2SrSiO4-a potential orange-yellow phosphor for solid-state lighting. Chemistry of Materials.2006,18(22):5267-5272.
    [63]Ding W J, Wang J, Zhang M, et al. A novel orange phosphor of Eu2+-activated calcium chlorosilicate for white light-emitting diodes. Journal of Solid State Chemistry.2006,179(11):3582-3585.
    [64]Barry T L. Equilibria and Eu2+ luminescence of subsolidus phases bounded by Ba3MgSi2O8, Sr3MgSi2O8 and Ca3MgSi2O8. Journal of the Elecetrochemical Society.1968,115(7):733-738.
    [65]Yang J H, Yang L L, Liu W Y, et al. Luminescence behavior of Eu3+ in CaSiO3: Eu3+(Bi3+) and Sr2Si04:Eu3+(Bi3+). Journal of Alloys and Compounds.2008, 454(1-2):506-509.
    [66]Yang L Z, Fang M, Du L F, et al. Synthesis and photoluminescence properties of :Eu3+ spheres prepared by the reverse micelles soft template. Materials Research Bulletin.2008,43(10):2538-2542.
    [67]Liu J, Lian H Z, Shi C S. Improved optical photoluminescence by chary compensation in the phosphor system CaMoO4: Eu3+. Optical Materials.2007, 29(12):1591-1594.
    [68]Wang J G, Jing X P, Yan C H, et al. Ca2-xEuxLixMoO4:A novel red phosphor for solid-state lighting based on GaN LED. Journal of the Electrochemical Society. 2005,152(3):G186-G188.
    [69]Liu X M, Li C X, Quan Z W, et al. Tunable luminescence properties of CaIn2O4: Eu3+ phosphors. Journal of Physic and Chemistry C.2007,111(44):16601-16607.
    [70]Yang Z P, Tian J, Wang S L, et al. Combustion synthesis of SrIn2O4:Eu3+ red-emitting phosphor for white light-emitting diodes. Materials Letters.2008, 62(8-9):1369-1371.
    [71]Schmalzried H. Solid-state reactions. Angewandte Chemie International Edition in English.1963,2(5)251-254.
    [72]潘文.硅酸盐基磷光体的制备、表征及其性能研究:[博士学位论文].大连:大连理工大学.2008.
    [73]Reisfeld R. Prospects of Sol-gel technology towards luminescent materials. Optical Materials.2001,16(1-2):1-7.
    [74]Fu Z L, Yang H K, Moon B K, et al. Synthesis and luminescent properties of europium-activated Ca2SnO4 phosphors by Sol-gel method. Journal of Luminescence.2009,129(12):1669-1672.
    [75]Hsu W H, Sheng M H, Tsai M S. Preparation of Eu-activated strontium orthosilicate (Sr1.95SiO4:Eu0.05) phosphor by a Sol-gel method and its luminescent properties. Journal of Alloys and Compounds.2009,467(1-2):494-495.
    [76]Guo C F, Yang H K, Jeong J H. Preparation and luminescent properties of phosphor MGd2(MoO4):Eu3+(M=Ca, Sr and Ba). Journal of Luminescence.2010,130(8): 1390-1393.
    [77]赖华生.彩色PDP用新型稀土荧光粉制备及发光性能研究:[博士学位论文].长春:中科院研究生院.2006.
    [78]Yan B, Su X Q. In sit chemical coprecipitation composition of hybrid precursor to synthesize YPxV1-xO4:Eu3+ micro crystalline phosphors. Material Science and Engineering:B.2005,116(2):196-201.
    [79]Mindru I, Marinescu G, Gingasu D, et al. Doped aluminum based spinels synthesized by a soft chemistry method. Materials Science and Engineering:B. 2010,170(1-3):99-106.
    [80]Qin X P, Zhou G H, Yang H, et al. Synthesis and upconversion luminescence of monodisersed, submicron-sized Er3+:Y2O3 spherical phosphors. Journal of Alloys and Compounds.2010,493(1-2):672-677.
    [81]Hu Y S, Zhuang W D, Ye H Q, et al. Preparation and luminescent properties of (Ca1-x, Srx)S:Eu2+ red-emitting phosphor for white LED. Journal of Luminescence. 2005,111(3):139-145.
    [82]Zhang J G, Eklund P C, Hua Z 1, et al. Photoluminescence and optical absorption in CaS:Eu2+, Sm3+ thin films. Journal of Materials Research.1992,7(2):411-417.
    [83]Hsu C H, Jagannathan R, Lu C H. Luminescent enhancement with tunable emission in Sr2SiO4: Eu2+ phosphors for white LEDs. Materials Science and Engineering:B.2010,167(3):137-141.
    [84]Blasse G, Wanmaker W L, Vrugt J W, et al. Fluorescence of Eu2+ activated silicates. Philips Research Reports.1968,23:189-220.
    [85]Park J K, Choi K J, Kim K N, et al. Investigation of strontium silicate yellow phosphors for white light emitting diodes from a combinatorial chemistry. Applied Physics Letters.2005,87(3):031108/1-3.
    [86]Zhang M, Wang J, Zhang Q H, et al. Optical properties of Ba2SiO4: Eu2+ phosphor for green light-emitting diode (LED). Materials Research Bulletin.2007,42(1): 33-39.
    [87]Kim J S, Jeon P E, Choi J C, et al. Emission color variation of M2SiO4:Eu2+(M= Ba, Sr, Ca) phosphors for light-emitting diode. Solid State Communications.2005, 133(3):187-190.
    [88]Luo X X, Cao W H, Sun F. The development of silicate matrix phosphors with broad excitation band for phosphor-covered white LED. Chinese Science Bulletin. 2008,53(19):2923-2930.
    [89]Cheng G, Liu Q S, Cheng L Q, et al. Synthesis and luminescence property of Sr3Si05:Eu2+ phosphors for white LED. Journal of Rare Earths.2010,28(4): 526-528.
    [90]Park J K, Choi K J, Yeon J H, et al. Embodiment of the warm white light-emitting diodes by using a Ba2+ codoped Sr3SiO5:Eu phosphors. Applied Physics Letters. 2006,88(4):043511/1-043511/3.
    [91]李盼来,王志军,杨志平等.用于白光LED的Sr3Si05:Eu3+材料制备及发光特性.硅酸盐学报.2009,37(3):462-464.
    [92]Smith A L. Some new complex silicate phosphors containing calcium, magnesium, and beryllium. Journal of the Electrochemical Society.1949,96(5):287-296.
    [93]Blasse G, Bril A. Characteristic luminescence. Philips Technical Review.1970,71: 304-332.
    [94]Liebau F. Structural chemistry of silicates:structure, bonding, and classification. Sringer.1985.
    [95]Zhang X G, Zhang J L, Wang R, et al. Photo-physical behaviors of efficient green phosphor Ba2MgSi2O7:Eu2+ and its application in light-emitting diodes. Journal of the American Ceramic Society.2010,93(5):1368-1371.
    [96]Jiang L, Chang C K, Mao D L, et al. A new long persistent blue-emitting Sr2ZnSi207:Eu2+, Dy3+ prepared by Sol-gel method. Material Letters.2004, 58(12-13):1825-1829.
    [97]Zhang Z Y, Wang Y H, Wang H L, et al. Investigation on photoluminescence properties of Eu3+ doped Sr2Mg1-xZnxSi2O7 (0≤x≤1) in UV-VUV region. Journal of Physics:Conference Series.2009,152(1):012050/1-3.
    [98]Kamioka H, Yamaguchi T, Hirano M, et al. Structural and photo-induced properties of Eu2+-doped Ca2ZnSi2O7:A red phosphor for white light generation by blue ray excitation. Journal of Luminescence.2007,122-123:339-441.
    [99]Kamioka H, Hirano M, Hosono. Photo-induced charge state conversion of Eu2+ in Ca2ZnSi207. Journal of Applied Physics.2009,106(5):053105/1-5.
    [100]Joseph T, Sebastian Mt. Microwave dielectric properties of (Sr1-xAx)2(Zn1-xBx)Si2O7 ceramics (A=Ca, Ba and B=Co, Mg, Mn, Ni). Journal of the American Ceramic Society.2010,93(1):147-154.
    [101]印琰,杨宝东,朱月华等.白光LED用荧光粉的发展现状.中国照明电器.2009,3:6-10.
    [102]翟永清,冯仕华,王欣.白光LED用硅酸盐荧光粉的研究进展.河北化工2009,7(6):2-4.
    [103]张凯,刘河州,胡文彬.白光LED用荧光粉的研究进展.材料导报.2005,19(9):50-53.
    [104]Sheu J K, Chang S J, Kuo C H, et al. White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors. IEEE Photonics Technology Letters.2003,15 (1):18-20.
    [105]Narendran N, Gu Y, Freyssinier-Nova J P, et al. Extracting phosphor-scattered photons to improve white LED efficiency. Physica Status Solidi (a):Applications and Materials Science.2005,202(6):R60-R62.
    [106]史艳宁,何大伟,梁忠益. Ba2MgSi207:Re荧光粉发光性能的研究.光谱学与光谱分析.2006,26(5):809-811.
    [107]Akira K, Kenji T, Mineo S. VUV properties of Eu-doped alkaline earth silicate. Rare Earths.2004,44:158-159.
    [108]Yao S S, Li Y Y, Xue L H, Yan Y W. Photoluminescent properties of the monoclinic Ba2MgSi2O7:Eu2+ phosphors prepared by the combustion-assisted synthesis method. Physica Status Solidi (a):applications and materials science.2010,207(9): 2164-2169.
    [109]王喜贵,赵慧,张强,吴红英.正硅酸乙酯水解过程的研究进展.内蒙古石汕化工.2001,27(3)17-19.
    [110]Santa-Cruz P A, Teles F S. Spectra Lux Software v.2.0 Beta, Photo. Quanticao Nanodispositivos, Renami,2003.
    [111]Hu Q D, Luo P, Yan Y W. Microstructure, densification and mechanical properties of TiC-Al2O3-Al composite by field-activated combustion synthesis. Materials Science and Engineering:A,2008,486(1-2):215-221.
    [112]Hu Q D, Luo P, Qiao D, et al., Self-propagation high-temperature synthesis and casing of Cu-MoSi2 composite. Journal of Alloys and Compounds.2008,464(1-2): 157-161.
    [113]严有为,李小敏,程箴等.利用SHS熔铸工艺制备Cu-Cr复合材料.华中科技大学学报(自然科学版).2004,32(12):60-62.
    [114]郑幕周.灯用荧光粉的燃烧合成法.中国照明电器.2003,9:1-4.
    [115]Varma A, Lebrat J P. Combustion synthesis of advanced materials. Chemical Engineering Science.1992,47(9-11):2179-2194.
    [116]乔月PC Ed,刘殿求,宋心琦翻译.化学动力学与传递.北京:清华大学出版社.1985.
    [117]Ashmore P G. In photochemistry and reaction kinetics. Ashmore P G, Dainton F S, Sugden T M, eds. Cambridge:Cambridge University Press,1967.
    [118]Semenov N N. Some problems in chemical kinetics and reactivity, translation by Boudar M. Princeton, N. J.:Princeton University Press,1959.
    [119]Gray B F. In reaction kinetics. Ashmore P G, ed. London:Chemical Society,1975.
    [120]郑幕周.灯用荧光粉的燃烧合成法.照明工程学报.2002,13(4):1-4.
    [121]Jain S R, Adiga K C, Pai Verneker V R. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combustion and Flame.1981,40: 71-79.
    [122]陈哲.PDP纳米BaMgAl10O17:Eu2+蓝色荧光粉的制备、表面修饰及光谱特性研究:[博士学位论文].武汉:华中科技大学.2006.
    [123]谢鸿,陈哲,严有为等.硼酸对纳米BaMgAl10O17:Eu2+发光材料制备、晶体结构及其发光性能的影响.功能材料.2006,37(9):1372-1374.
    [124]Abanti N, T. R. N. Kutty. Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4: Eu, Dy. Journal of Alloys and Compounds.2003, 354(1-2):221-231.
    [125]Yao S S, Chen D H. Combustion synthesis and luminescent properties of a new material Li2(Ba0.99, Eu0.01)SiO4:B3+ for ultraviolet light emitting diodes. Optics & Laser Technology.2008,40(3):466-471.
    [126]Yu Z J, Huang X W, Zhuang W D, et al. Crystal structure transformation and luminescent behavior of the red phosphor for plasma display panels. Journal of Alloys and Compounds.2005,390(1-2):220-222.
    [127]天津大学无机化学教研室.无机化学(第二版)下册.北京:高等教育出版社,1992.
    [128]Xu Y C, Chen D H. Combustion synthesis and photoluminescence of Sr2MgSi2O7: Eu, Dy long lasting phosphor nanoparticles. Ceramics International.2008,34(8): 2117-2120.
    [129]Aitasalo T, Holsa J, Laamanen T, et al. Crystal structure of the monoclinic Ba2MgSi2O7 persistent luminescence material. Zeitschrift fur Kristallographie Supplements.2006,23:481-486.
    [130]Aitasalo T, Holsa J, Laamanen T, et al. Luminescence properties of Eu2+ doped dibarium magnesium disilicate, Ba2MgSi2O7:Eu2+. Ceramics-Silikaty.2005,49(1): 58-62.
    [131]Komeno A, Toda K, Sato M. VUV properties of Eu-doped alkaline earth silicate. Rare Earths.2004,44:158-159.
    [132]Kaiser J W, Jeitschko W. Crystal structure of the new barium zinc silicate Ba2ZnSi207. Zeitschrift fur Kristallographie:New Crystal structures.2002,217(1): 25-26.
    [133]张思远,毕宪章.稀土光谱理论.长春:吉林科学技术出版社.1991.
    [134]Srivastava A M, Beers W W. Green-light emitting phosphors and light sources using the same. US Patent 0062781 B1.2001.
    [135]陈魁.试验设计与分析.北京:清华大学学出版社.2005.
    [136]Pires A M, Davilos M R. Luminescence of europium (Ⅱ) and manganese (Ⅱ) in barium and zinc orthosilicate. Chemistry of Materials.2001,13(1):21-27.
    [137]Blasse G. Energy transfer between inequivalent Eu2+ ions. Journal of Solid State Chemistry.1986,62(2):207-211.
    [138]Blasee G. Energy transfer in oxidic phosphors. Phyiscs Letter A.1968,28(6): 444-445.
    [139]Dexter D L. A theory of sensitized luminescence in solids. The Journal of Chemical Physics.1953,21(5):836-850.
    [140]Justel T, Nikol H. Optimization of luminescent materials for plasma display panels. Advanced Materials.2000,12(7):527-530.
    [141]Qiang R F, Xiao S G, Ding J W, et al. Red emission in B3+ and Li+ doped SrAl2O4: Eu3+ phosphors under UV excitation. Journal of Luminescence.2009,129(8): 826-828.
    [142]Lo C L, Duh J G, Chiou B S,et al. Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method. Materials Chemistry and Physics.2001,71(2): 179-189.
    [143]陈栋华,韦秀华,姚山山.助熔剂H3BO3对白光发光二极管用Li2BaSi04:Eu2+蓝绿色荧光粉材料性能的影响.中南民族大学学报(自然科学版).2009,28(3): 14-18.
    [144]Yao S S, Li Y Y, Xue L H, et al. Synthesis and luminescent properties of a novel bluish green emitting phosphors (Ba1.95, Eu0.05)ZnSi207:B3+ for ultraviolet light emitting diodes. Central European Journal of Physics.2009,7(4):800-805.
    [145]Tang W J, Chen D H. Photoluminescent properties of ABaPO4:Eu (A=Na, K) phosphors prepared by the combustion-assisted synthesis method. Journal of the American Ceramic Society.2009,92(5):1059-1061.
    [146]Moulder J F. Handbook of x-ray photoelectron spectroscopy:a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics.1995.
    [147]王建祺.电子能谱学.北京:国防工业出版社.1992.
    [148]曾明刚,陈松岩,林爱清等.用XPS法研究硅基硫化锌薄膜.半导体技术.2005,30(2):18-20.
    [149]Jung K Y, Lee H W, Kang Y C, et al. Luminescent properties of (Ba, Sr)MgAl10O17: Mn, Eu green phosphor prepared by spry pyrolysis under VUV excitation. Chemistry of Materials.2005,17(10):2729-2734.
    [150]施而畏,陈之战,元如林等.水热结晶学.北京:科学出版社.2004.
    [151]Guo X K, Ma Q L, Guo X F, et al. Biomimetic synthesis of aluminophosphate nanorolls induced by mixed organoamines. Chemical Communications.2009,23: 3443-3445.
    [152]Wan J X, Wang Z H, Chen X Y, et al. Sharp-induced enhanced luminescent properties of red phosphors:Sr2MgSi2O7:Eu3+ nanotubes. European Journal of Inorganic Chemistry.2005,2005(20):4031-4034.
    [153]Zhang X G, Tang X P, Zhang J L, et al. Luminescent properties of Sr2MgSi2O7: Eu2+ as blue phosphor for NUV light-emitting diodes. Powder Technology.2010, 204(2-3):263-267.
    [154]Cullity B D. Elements of X-ray diffraction, Addision-Weley, London,1978.
    [155]李波,孙华君,陈文等.水热法可控制备铋铁系化合物材料.无机化学学报.2009,25(10):1848-1852.
    [156]Kepert D L. The early transition metals, London, Academic Press.1972.
    [157]Khodakovsky I L, Elkin A E. Experimental determination of znicite solubility in water and NaOH aqueous solutions at temperatures 100,150, and 200℃. Reviews in Mineralogy and Geochemistry.1975,10:1490-1497.
    [158]Laudise R A, Ballman A A. The solubility of quartz under hydrothermal conditions. Journal of Physics and Chemistry.1961,65(8):1396-1400.
    [159]中华人民共和国电子行业标准:半导体发光二极管用荧光粉.SJ/T 11397-2009.
    [160]Xia Z G, Sun J Y. Study on luminescence properties of Eu2+ in Sr4-xMgxSi3O8Cl4: Eu2+. Journal of Rare Earths.2004,22(3):370-374.
    [161]Ju S H. Determination of the solid solubility of SrAl2O4 in CaAl2O4 through crystal field-dependent Eu2+ signatures. Materials Research Bulletin.1999,34(12-13): 1905-1909.
    [162]Yao S S, Li Y Y, Xue L H, et al. Luminescence studies on Ba2ZnSi2O7:Eu2+ phosphors crystals. Luminescence.2010,25(5):399-402.
    [163]Yao S S, Li Y Y, Xue L H, et al. Concentration quenching of Eu2+ in a novel blue-green emitting phosphor:Ba2ZnSi2O7:Eu2+. Applied Physics B-Lasers and Optics.2009,96(1):39-42.
    [164]Yao S S, Li Y Y, Xue L H, et al. A promising blue-green emitting phosphor for white light-emitting diodes prepared by Sol-gel method. Journal of Alloys and Compounds.2010,491(1-2):264-267.
    [165]Lin J H, Lu G X, Du J, et al. Phase transition and crystal structures of BaZn2Si2O7. Journal of Physics and Chemistry of Solids.1999,60(7):975-983.
    [166]Pires A M, Davolos M R. Luminescence of europium (Ⅲ) and manganese (Ⅱ) in barium and zinc orthosilicate. Chemistry of Materials.2001,13(1):21-27.
    [167]Liu B, Barbier J. Structures of the stuffed tridymite derivatives, BaMSiO4 (M=Co, Zn, Mg). Journal of Solid State Chemistry.1999,102(1):115-125.
    [168]van Uitert L G. An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds. Journal of Luminescence. 1984,29(1):1-9.
    [169]许武亮,刘行仁. Ca8Zn(Si04)4Cl2中Eu2+的发射光谱和晶体学格位.中国稀土学报.1993,11(2):116-119.
    [170]谢希德,陈栋.固体能带理论.上海:复旦大学出版社,1998.
    [171]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Physical Review A.1965,140(4A):1133-1138.
    [172]Perdew J P, Zunger A. Self-interaction correction to density-functional approximations fro many-electron systems. Physical Review B.1981,23(10): 5048-5079.
    [173]Coperley D M, Alder B J. Ground state of the electron gas by a stochastic method. Physical Review Letters.1980,45(7):566-569.
    [174]Perdew J P, Wang Y. Pair-distribution functional and its coupling-constant average for the spin-polarized electron gas. Physical Review B.1992,46(20): 12947-12954.
    [175]G. Blasse, J.de Vries. A new family of lanthanide compounds:lithium lanthanide silicate and germinates. Journal of Inorganic and Nuclear Chemistry.1967,29(6): 1541-1542.
    [176]G. Blasse, A. Bril. Structure and Eu3+-fluoresence of lithium and sodium lanthanide silicates and germinates. Journal of Inorganic and Nuclear Chemistry 1967,29(9): 2231-2241.
    [177]Ardit M, Cruciani G, Dondi M. The crystal structure of Sr-hardystonite, Sr2ZnSi2O7. Zeitschrift fur Kristallographie.2010,225(7):298-301.
    [178]Louisnathan S J. Refinement of the crystal Structure of hardystonite, Ca2ZnSi2O7. Zeitschrift fur Kristallographie.1969,130(1-6):427-437.
    [179]李会亮,袁军林,王小军等. MBiO2Cl(M=Ca, Sr, Ba)材料的合成、能带计算及发光性能研究.物理学报.2008,57(12):7878-7884.
    [180]Goodenough J B, Loeb A L. Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Physical Review.1955,98(2): 391-408.
    [181]Weber M J. Handbook of Optical Materials. CRC Press:New York,2003.
    [182]Shimosaka T, Shirakawa Y, Ootsuki S. Substrate for flat panel display and thin film electroluminescence element. US Patent 6,914,023 B2.2005.
    [183]Boche J B. Investigation of glass-ceramic materials for the sealing in solid oxide fuel cells [D]. Fakultat fur Maschinenbau der Ruhr-Universitat Bochum,2009.
    [184]Glasser L S D, Glasser F P. The crystal structure of walstromite. American Mineralogist.1968,53:9-13.
    [185]李宗和,李奇,王艳等.结构化学.北京:北京师范大学出版社.1987.
    [186]Raju G S R, Buddhudu S. Emission analysis of Eu3+:MgLaLiSi2O7 powder phosphor. Physica B:Condensed Matter.2008,403(4):619-623.
    [187]Zhou L Y, Gong F Z, Shi J X, et al. A novel red phosphor Na2Ca4Mg2Si4O19:Eu3+ for plasma display panels. Materials Research Bulletin.2008,43(8-9):2295-2299.
    [188]翟永清,冯仕华,张张等.白光LED用橙红色荧光粉Sr2MgSi309:Eu3+的制备和光谱性质.河北大学学报(自然科学版).2009,29(6):60-613.
    [189]Wan J, Yao Y W, Tang G Y, et al. Hydrothermal synthesis and size-enhanced chromaticity of Sr2ZnSi2O7:Eu3+ nanoparticles. Journal of Nanoscience and Nanotechnology.2008,8(3):1449-1453.
    [190]Pei Z W, Su Q, Zhang J Y The valence change from Re3+ to Re2+(Re=Eu, Sm, Yb) in SrB4O7:Re prepared in air and the spectral properties of Re2. Journal of Alloys and Compounds.1998,198(1-2):51-53.
    [191]Vercasemst R, Poelman D, Fiermans L, et al. A detailed XPS study of the rare earth compounds EuS and EuF3- Journal of Electron Spectroscopy and Related Phenomens.1995,74(1):45-56.
    [192]黄彦林,王锡刚,肖国先.稀土离子掺杂钨酸铅晶体中的间隙氧.人工晶体学报.2007,36(6):1324-1329.
    [193]丁海燕,黄彦林,曹永刚.Eu3+掺杂SrZn2(PO4)2晶体的发光光谱和结构研究.人工晶体学报.2009,38(1):203-209.
    [194]张思远.稀土离子的光谱学-光谱性质和光谱理论.北京:科学出版社.2008.
    [195]梁忠益,何大为. MO-Y2O3-B2O3:Re (M=Mg, Sr, Re=Eu, Tb)的真空紫外光谱特性.光谱学与光谱分析.2006,26(7):1290-1293.
    [196]Chen L M, Liu Y N, Li Y D. Preparation and characterization of ZrO2:Eu3+ phosphors. Journal of Alloys and Compounds.2004,381(1-2):266-271.
    [197]江元生.结构化学.北京:高等教育出版社.1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700