小鼠神经干细胞移植治疗去神经节巨结肠实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:新生小鼠神经干细胞分离培养、鉴定及分化
     目的:探讨从新生小鼠大脑皮质分离培养出神经干细胞并在体外大量扩增的方法,为进一步研究神经干细胞移植治疗先天性巨结肠症提供可靠的细胞供体。
     方法:用机械吹打法从新生小鼠大脑皮质分离出神经干细胞,台酚蓝计数活细胞,应用添加B27、bFGF和EGF的无血清培养基进行原代及传代培养,MTT法测定神经干细胞增殖情况,取原代培养形成的神经球采用有限稀释法进行神经干细胞的单克隆培养,并将所获得的单克隆细胞传代培养。利用10%胎牛血清自然诱导神经干细胞分化,利用添加NGF的培养基研究神经干细胞向胆碱能神经元定向分化,倒置显微镜下观察其分化情况。运用SABC免疫细胞化学技术对原代、传2代及单克隆神经球行Nestin抗原检测,鉴定神经干细胞;对自然分化后的细胞行NF-200、GFAP和MBP检测,鉴定分化细胞的类型,并计算各型细胞的阳性率;对NGF定向诱导后的细胞行ChAT检测,并计算各组ChAT阳性细胞率。
     结果:原代培养成功得到悬浮生长的细胞球克隆,免疫组化检测显示该细胞克隆Nestin抗原表达强阳性,传代后可得到具有相同生物学特性的细胞群。通过有限稀释法可以培养出单克隆来源的细胞群,且该单克隆细胞同样Nestin抗原表达强阳性。原代、传代及单克隆来源的细胞群均具有持续增殖的能力,经胎牛血清诱导后均可分化为NF-200、GFAP和MBP表达阳性的神经元、星形胶质细胞和少突胶质细胞。NGF定向诱导可显著提高分化细胞中ChAT阳性细胞率(15.48%),与FBS组(4.49%)相比差异有统计学意义。
     结论:利用无血清培养技术成功从新生小鼠大脑皮质分离培养出神经干细胞,并通过单克隆培养获得大量纯化可作为细胞移植供体的神经干细胞,NGF在体外培养环境中可显著提高神经干细胞向胆碱能神经元分化的比例。
     第二部分:JetPEI介导GDNF及EDNRB共转染神经干细胞实验研究
     目的:探讨神经干细胞转染的新方法,并观察转染后目的基因在神经干细胞内的表达情况,为联合基因导入神经干细胞移植治疗先天性巨结肠症奠定实验基础。
     方法:原代培养新生小鼠大脑皮质源性神经干细胞,运用JetPEI转染试剂将目的基因GDNF和EDNRB共转染至神经干细胞内,免疫荧光显微镜观察、流式细胞仪检测绿色荧光蛋白(GFP)表达情况,测定转染效率,RT-PCR检测目的基因mRNA表达情况。
     结果:成功培养扩增出可用于基因转染的神经干细胞,转染后24小时即可在免疫荧光显微镜下观察到GFP的表达,流式细胞仪检测显示24、48、72小时转染效率分别为17.56%、26.38%,27.53%。RT-PCR显示目的基因在神经干细胞内成功表达,48和72小时mRNA表达量较高。
     结论:运用JetPEI成功将目的基因转染至神经干细胞内,且目的基因可以在神经干细胞内有效表达,为相关神经相关性疾病的基因治疗奠定了实验基础。
     第三部分:小鼠去神经节巨结肠模型的构建及鉴定
     目的:探索建立适于神经干细胞移植的巨结肠动物模型的方法,并观察研究该模型的的病理组织学特征。
     方法:90只雄性昆明小鼠随机分为正常对照组、生理盐水组(NS组)和苯扎氯铵组(BAC组)3组,BAC组以0.5%苯扎氯铵(BAC)处理降结肠浆膜层15min,NS组以生理盐水代替,正常对照组不做任何处理。术后通过大体解剖观察各组对象结肠变化,HE染色观察处理段结肠壁组织学改变,计数每mm肠管神经元数目。乙酰胆碱酯酶组织化学染色及NF-200免疫组织化学染色检测肌间神经丛消除情况。RT-PCR检测NF-200、GFAP、ChAT、nNOS mRNA表达水平。
     结果:大体解剖见正常对照组无异常;NS组腹腔内有轻微粘连,无肠腔狭窄;BAC组处理段结肠狭窄梗阻,近段结肠大量粪便堆积,呈不同程度的扩张。组织学检测见正常对照组及NS处理组结肠壁肠肌层排列有序,粘膜层及粘膜下层无损伤,肠神经节存在。BAC组粘膜及粘膜下层无明显病理性改变,平滑肌层增厚,肌间神经元数目明显减少,与正常对照组和NS组相比差异有统计学意义。乙酰胆碱酯酶组织化学染色见正常对照组及NS组肠肌间及部分粘膜下神经元及神经纤维染为棕黄色,BAC组AChE表达明显降低,肠肌间无阳性表达,粘膜下可见轻微着色。免疫组织化学染色显示BAC组肌间NF-200表达阴性,正常对照组及NS组NF-200表达阳性。半定量RT-PCR检测显示BAC组NF-200、GFAP、ChAT、nNOS mRNA表达量均明显下调,与其它两组相比差异有统计学意义。
     结论:运用0.5%苯扎氯铵成功选择性去除了小鼠结肠肌间神经丛,构建成与先天性巨结肠症具有相似病理特征的小鼠巨结肠模型,为下一步的神经干细胞移植治疗先天性巨结肠症奠定实验基础。
     第四部分:神经干细胞在巨结肠小鼠结肠壁内存活分化研究
     目的:研究神经干细胞在去神经节小鼠结肠壁内的存活分化情况,探讨神经干细胞移植治疗结肠无神经节细胞症的可行性。
     方法:0.5%苯扎氯铵(BAC)处理8周龄昆明小鼠结肠浆膜层选择性去除结肠壁神经节制作巨结肠模型,原代培养新生小鼠大脑皮质来源神经干细胞,Hoechst33342标记传代纯化后的神经干细胞。运用微量注射器将标记后的神经干细胞移植入模型鼠病变肠段,分别于术后第7、14、21、28天行大体观察,HE染色,免疫组织荧光检测,RT-PCR检测,观察小鼠生物学特性和神经干细胞存活分化情况。
     结果:原代培养神经干细胞Nestin表达阳性,体外培养可分化为神经元和神经胶质细胞。BAC处理后,HE染色及免疫组织化学染色显示小鼠结肠肌间神经从消失。神经干细胞移植后各观测时间点可见Hoechst33342标记阳性细胞,免疫组织荧光检测显示NSCs组术后第7天结肠壁存在Nestin表达阳性细胞,21天后可见NSE及GFAP表达阳性细胞,NS组有少量阳性细胞,神经元计数显示NSCs组神经元平均数目为137.50个/mm,明显高于NS组,差异有统计学意义。NSCs组ChAT、nNOS mRNA相对表达量明显高于NS组,差异有统计学意义。
     结论:移植后的神经干细胞可以在去神经节小鼠结肠壁内存活并分化为神经元及胶质细胞,部分恢复肠道神经的调节作用,为神经干细胞移植治疗先天性巨结肠症提供了实验依据。
PartⅠ: Culture and identification of neural stem cells derived from new born mouse
     Objective: To isolate and culture the purified monoclonal neural stem cells from the cerebral cortex of new born mice. To offer an ideal cell donor for the treatment of Hirschsprung disease with neural stem cells graft.
     Method: The cerebral cortex of new born mice was isolated and dissociated to single-cell suspension by mechanical trituration. The dissociated single cells were cultured in serum-free medium with B27, bFGF and EGF after trypan-blue dye exclusion test. The growth curve of neural stem cells was draw with MTT assay. After the formation of neurospheres, single-cell clone culture was performed by limiting dilution and the proliferated single-cell clones were harvested for subculture. To evaluate the potential differentiation ability of neural stem cells, the cells were cultured in medium containing 10%fetal bovine serum (FBS). NGF was supplemented into the culture medium to induce the differentiation of the neural stem cells into cholinergic neurone. Immunocytochemistry was used to detect the specific marker of neural stem cells—Nestin of the primary, passage culture and monoclonal neurospheres. The specific antigens NF-200, GFAP and MBP were detected to identify the neurons, astrocyte and oligodendrocyte. The ChAT was detected to identify the positive rate of cholinergic neurone.
     Results: The dissociated cells formed floating neuraspheres in suspension cultures. The primary and passaged neurospheres expressed Nestin antigen positively. By limiting dilution, we cultured the cell lines from single-cell clone and the monoclonal neurospheres expressed Nestin too. All the neurospheres had capabilities of self-renew, proliferation and the potentiality of differentiation into NF-200, GFAP and MBP positive cells. NGF can induce 15.48% of neural stem cells into cholinergic neurone. The difference between FBS and NGF group had statistical significance.
     Conclusion: Monoclonal neural stem cells which have the ability of proliferation and multi-directional differentiation can be isolated and cultured from the cerebral cortex of new born mice by limiting dilution. The positive rate of cholinergic neurone can significantly increased by adding NGF into the culture medium.
     PartⅡ: Study on cotransfection of GDNF and EDNRB into neural stem cells mediated by JetPEI
     Objective: To investigate the optimizing method for neural stem cells (NSCs) transfection and the expression of extrinsic genes in neural stem cells.
     Method: neural stem cells derived from new born mouse was cultured in Vitro.Extrinsic genes GDNF and EDNRB were cotransfected into primary cultured neural stem cells by using JetPEI. The expression of green fluorescent protein (GFP) was measured with fluorescence microscope and flow cytometer. The relative expression of GDNF and EDNRB mRNA was detected by RT-PCR.
     Results: Bright green fluorescence of the transfected cells could be observed underfluorescence microscope after 24h of transfection. Flow cytometer analysis showed that the efficiency of cotransfection was 17.56%、26.38%, 27.53 % in 24h, 48h, 72h respectively. Semi-quantitative RT-PCR confirmed that GDNF and EDNRB mRNA expressed successfully in the neural stem cells.
     Conclusions: The tartet genes were successfully cotransfected into neural stem cellsby using JetPEI. This provides a feasible technological platform for the polygene therapy of neural degenerative diseases.
     PartⅢ: Establishment and identification of aganglionosis mouse model
     Objective: To establish an aganglionosis mouse model suitable for neural stem cells transplantation study and explore its histopathologic characteristics.
     Method: 90 male Kunming mice were randomly divided into normal control group, Normal saline (NS) group and benzalkonium chloride (BAC) group. In BAC group, 0.5% benzalkonium chloride was applied onto the serous layer of colon descendens for 15 minutes and normal saline was used instead of BAC in NS group. No treatment was applied to the normal control group. The change of colon in each group was observed by gross anatomy. The observation of histologic characteristics and neuron count was performed by HE staining. Acetylcholinesterase histochemical stain and Immunohistos-taining for NF-200 was used to evaluate the denervation of myenteric nerve plexus. The mRNA expression of NF-200、GFAP、ChAT and nNOS was analyze by semiquantitative RT-PCR.
     Results: Gross anatomy observation showed that there was no abnormality in normal control group, little conglutination and no stenosis of colon in NS group. In BAC group, the treated segment was presented as stenosis and obstruction. The Proximal part was presented as compensatory enlargement with the retention of excrement. HE staining showed no visible change in normal control group and NS group. No pathological change was observed in the mucous membrane and submucous layer of BAC group. The number of myenteric neurons decreased obviously compared with the other groups and the differences had statistical significance. Immunohistochemical staining showed that there were no NF-200 positive cells in the myenteron. Semiquantitative RT-PCR showed the down regulation of mRNA expression of NF-200、GFAP、ChAT and nNOS in BAC group compared with the other groups and the differences had statistical significance.
     Conclusion: The aganglionosis mouse model was established by selective chemical ablation of the myenteric nerve plexus of colon descendens. The chemically-induced colonic aganglionosis in this model provides the basis for future studies of neural stem cell transplantation therapy for HD.
     PartⅣ: Study on the survival and differentiation of neural stem cells in the colonic myenteron of aganglionic mice
     Objective: To study the survival and differentiation of neural stem cells in the colonic myenteron of aganglionic mice. To elucidate the possibility and the biological significance of intracolonic grafting of neural stem cells (NSCs) as a therapeutic strategy for aganglionosis.
     Methods: The descending colon serous layer of Kunming mice, 8 weeks old, was treated by 0.5% benzalkonium chloride (BAC) to selectively ablate the myenteric nerve plexus. Neural stem cells derived from the cerebral cortex of neonatal mice was cultured and labeled by Hoechst33342. The labeled NSCs were transplanted into the denervated colon by using the microinjector. The biocharacteristics of mice and the survival and differentiation of grafted cells was observed by gross anatomy, HE staining, immunohistofluorescence and RT-PCR.
     Results: The primary cultured NSCs were characterized as Nestin positive and can differentiate into neurons and glial cells. HE and immunohistochemistry staining showed that the myenteric plexuses of colon disappeared after treated by 0.5% BAC. The grafted cells were visualized in colon sections under fluorescence microscope. Immunohistofluorescence assay showed that there were Nestin positive cells 7 days after transplantation and NSE, GFAP positive cells 21 days after transplantation. Neurons count showed that there were 137.50 neurons per mm in NSCs group and only 54.00 neurons per mm in NS group. The differences had statistical significance. Semiquantitative RT-PCR showed the up-regulation of mRNA expression of ChAT and nNOS in NSCs group compared with the NS group and the differences had statistical significance.
     Conclusions: Neural stem cells can survive and differentiate into neurons and glial cells after transplanted into the colonic myenteron of aganglionic mice and partially regulate the neuromuscular modulation of colon. This provides the experimental basis for further studies of neural stem cell transplantation therapy for HD.
引文
1. Hirschsprung, H. Stuhltragheit neugeborener infolge von dilatation und hypertrophic des colons. Jb. Kinderheilk 27, 1 (1888). 2. Puri P, Shinkai T. Pathogenesis of Hirschsprung's disease and its variants: recent progress. Semin Pediatr Surg. 2004 Feb;13(1):18-24.
    3. Swenson O. Early history of the therapy of Hirschsprung's disease: facts and personal observations over 50 years. J Pediatr Surg 1996;31:1003-8.
    4. Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung' s disease: advances in genetic and stem cell studies. Nat Rev Neurosci. 2007 Jun;8(6):466-79.
    5. Amiel J, Sproat-Emison E, Garcia-Barcelo M, et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008 Jan;45(1):l-14.
    6. Romeo G, Ronchetto P, Luo Y, et al. Point mutations affecting the tyrosine kinase domain of the RET proto- oncogene in Hirschsprung's disease. Nature 1994;367:377-8.
    7. Pichel JG, Shen L, Sheng HZ, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996;382:73-6.
    8. Shepherd I. T, Pietsch J, Elworthy S, et al. Roles for GFRctl receptors in zebrafish enteric nervous system development. Development 131, 241 - 249 (2004)
    9. Sakurai T, Yanagisawa M, Masaki T. Molecular characterization of endothelin receptors. Trends Pharmacol Sci 1992; 13:103-8.
    10. Ro S, Hwang SJ, Muto M, et al. Anatomic modifications in the enteric nervous system of piebald mice and physiological consequences to colonic motor activity. Am J Physiol Gastrointest Liver Physiol. 2006 Apr;290(4):G710-8.
    11. Gage FH. Mammalian neural stem cells. Science. 2000 Feb 25;287(5457):1433-8.
    12. Gobbel GT, Choi SJ, Beier S, et al. Long-term cultivation of multipotential neural stem cells from adult rat subependyma. Brain Res. 2003 Aug 8;980(2):221-32.
    13. Temple S. The development of neural stem cells. Nature. 2001 Nov 1;414(6859):112-7.
    14. Amar AP, Zlokovic BV, Apuzzo ML. Endovascular restorative neurosurgery: a novel concept for molecular and cellular therapy of the nervous system. Neurosurgery. 2003 Feb;52(2):402-12.
    15. Modo M, Rezaie P, Heuschling P, et al. Transplantation of neural stem cells in a rat model of stroke: assessment of short-term graft survival and acute host immunological response. Brain Res. 2002 Dec 20;958(1):70-82.
    16. O'Keeffe FE, Scott SA, Tyers P, et al. Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson's disease. Brain. 2008 Mar;131(Pt 3):630-41.
    17. Kim SU. Genetically engineered human neural stem cells for brain repair in neurological diseases. Brain Dev. 2007 May;29(4): 193-201.
    1.Temple S.The development of neural stem cells.Nature.2001 Nov 1;414(6859):112-7.
    2. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992 Mar 27;255(5052):1707-10.
    3. Svendsen CN, Caldwell MA, Ostenfeld T. Human neural stem cells: isolation, expansion and transplantation.Brain Pathol. 1999 Jul;9(3):499-513.
    4. Altmna J. Are new neurons formed in the brains of adult malmmals? Scineee.1962 Mar 30;135:1127-8.
    5. Temple S. Division and differentiation of isolated CNS blast cells in microculture. Nature. 1989 Aug 10;340(6233):471-3.
    6. Gage FH. Mammalian neural stem cells. Science. 2000 Feb 25;287(5457): 1433-8. 7. Gobbel GT, Choi SJ, Beier S, et al. Long-term cultivation of multipotential neural stem cells from adult rat subependyma. Brain Res. 2003 Aug 8;980(2):221-32.
    8. Palmer TD, Markakis EA, Willhoite AR, et al. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS.J Neurosci. 1999 Oct 1;19(19):8487-97.
    9. Wolff JA, Fisher LJ, Xu L, et al. Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease. Proc Natl Acad Sci U S A. 1989 Nov; 86(22):9011-4.
    10. Johansson CB, Momma S, Clarke DL, et al. Identification of a neural stem cell in the adult mammalian central nervous system.Cell. 1999 Jan 8;96(1):25-34.
    11. Kalyani AJ, Piper D, Mujtaba T, et al. Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture.J Neurosci. 1998 Oct 1;18(19):7856-68.
    12. Davis AA, Temple S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex.Nature. 1994 Nov 17;372(6503):263-6.
    13. Gage FH, Coates PW, Palmer TD, et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain.Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11879-83.
    14. Villa A, Snyder EY, Vescovi A, et al. Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS.Exp Neurol. 2000 Jan;161(1):67-84.
    15. Weiss S, Dunne C, Hewson J, et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci. 1996 Dec1;16(23): 7599-609.
    16. Temple S, Alvarez-Buylla A. Stem cells in the adult mammalian central nervous system.Curr Opin Neurobiol. 1999 Feb;9(1):13 5-41.
    17. Gage FH. Mammalian neural stem cells. Science. 2000 Feb 25;287(5457):1433-8.
    18. Stemple DL, Anderson DJ. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell. 1992 Dec 11;71(6):973-85.
    19. Shah NM. Glial growth factor restricts mammalian neural crest stem cells to a glialfate. Cell, 1994.77(3):p.349-60.
    20. Morrison SJ. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell, 1999.96(5): p.737-49.
    21. Tropepe V. Retinal stem cells in the adult mammalian eye. Science, 2000.287 (5460): p.2032-6.
    22. Johansson CB. Identification of a neural stem cell in the adult mammalian central nervous system. Cell, 1999.96(1):p.25-34.
    23. Doetsch F. Sub ventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 1999.97(6):p.703-16.
    24. Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordialneural stem cells. Mol Cell Neurosci, 1997.8(6):p.389-404.
    25. Horner PJ. Proliferation and differentiation of progenitor cells throughout the intactadult rat spinal cord. J Neurosci,2000.20(6):p.2218-28.
    26. Namaka MP, Sawchuk M, MacDonald SC, et al. Neurogenesis in postnatal mouse dorsal root ganglia. ExpNeurol. 2001 Nov;172(1):60-9.
    27. Lois C, Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):2074-7.
    28. Kirschenbaum B, Nedergaard M, Preuss A, et al. In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb Cortex. 1994 Nov-Dec;4(6): 576-89.
    29. Davis AA, Temple S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature,1994.372(6503):p.263-6.
    30.Kornblum HI.Introduction to neural stem cells.Stroke.2007 Feb;38(2 Suppl):810-6.
    31.Doetsch F,Caille I,Lim DA,et al.Subventricular zone astrocytes are neural stem cells in the adult mammalian brain.Cell.1999 Jun 11;97(6):703-16.
    32.Laywell ED,Kukekov VG,Steindler DA.Multipotent neurospheres can be derived from forebrain subependymal zone and spinal cord of adult mice after protracted postmortem intervals.Exp Neurol.1999 Apr;156(2):430-3.
    33.Maric D,Maric I,Chang YH,et al.Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor on self-renewal and differentiation.J Neurosci.2003 Jan 1;23(1):240-51
    34.Meltzer H,Hatton JD,Sang U H.Cell type-specific development of rodent central nervous system progenitor cells in culture.J Neurosurg.1998 Jan;88(1):93-8.
    35.Kilpatrick TJ,Bartlett PF.Cloning and growth of multipotential neural precursors:requirements for proliferation and differentiation.Neuron.1993 Feb;10(2):255-65.
    36.Cui HL,Qiao JT.Promotive action of lysophosphatidic acid on proliferation of rat embryonic neural stem cells and their differentiation to cholinergic neurons in vitro.Sheng Li Xue Bao.2006 Dec 25;58(6):547-55.
    37.Wang TT,Jing AH,Luo XY,et al.Neural stem cells:isolation and differentiation into cholinergic neurons.Neuroreport.2006 Sep 18;17(13):1433-6.
    38.李鹏飞,王春芳.骨髓基质细胞对共培养条件下的脊髓源性神经干细胞分化为胆碱能神经元的诱导.《解剖学杂志》,2006,29(6):744-746
    39.李鹏飞,王春芳.胚胎大鼠脊髓神经干细胞体外培养与定向分化为胆碱能神经元的研究.神经解剖学杂志,2007,23(6):621-625
    40.Lendahl U,Zimmermac LB,Mckay RD.CNS stem cells express a new class of intermediate filament protein.Cell,1990,60:584-595.
    41.Sakakibara S,Okano H.Mouse-Musashi:a neural RNA-binding protein highly enriched in the mammalian CNS stem cells.Dev Bio,1996,176:239-242.
    42. Reynolds BW, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol. 1996 Apr 10;175(1):1-13.
    43. Gritti A, Parati EA, Cova L, et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci. 1996 Feb 1; 16(3): 1091-100.
    1. Moore MW, Klein RD, Farinas I, et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 1996;382:76-9.
    2. Sanchez MP, Silos-Santiago I, Frisen J, et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 1996;382:70-3.
    3. Pichel JG, Shen L, Sheng HZ, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996;382:73-6.
    4. Jing S, Wen D, Yu Y, et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 1996;85:1113-24.
    5. Treanor JJ, Goodman L, Stone DM, et al. Characterization of a multicomponent receptor for GDNF. Nature 1996;382:80-3.
    6. Rosenthal A. The GDNF protein family: gene ablation studies reveal what they really do and how. Neuron 1999;22:201-3.
    7. Kotzbauer PT, Lampe PA, Heuckeroth RO, et al. Neurturin, a relative of glial-cell-line -derived neurotrophic factor. Nature 1996;384:467-70.
    8. Milbrandt J, de Sauvage FJ, Fahrner TJ, et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 1998;20:245-53.
    9. Baloh RH, Tansey MG, Lampe PA, et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 1998;21:1291-302.
    10. Angrist M, Bolk S, Halushka M, et al. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet 1996; 14:341-4.
    11. Maroldt H, Kaplinovsky T, Cunningham AM. Immunohistochemical expression of two members of the GDNF family of growth factors and their receptors in the olfactory system. J Neurocytol. 2005 Sep;34(3-5):241-55.
    12. Mograbi B, Bocciardi R, Bourget I, et al. The sensitivity of activated Cys Ret mutants to glial cell line-derived neurotrophic factor is mandatory to rescue neuroectodermic cells from apoptosis. Mol Cell Biol. 2001 Oct;21(20):6719-30.
    13. Ohshiro K, Puri P. Reduced glial cell line-derived neurotrophic factor level in aganglionic bowel in Hirschsprung's disease.J Pediatr Surg. 1998 Jun;33(6):904-8.
    14. Sakurai T, Yanagisawa M, Masaki T. Molecular characterization of endothelin receptors. Trends Pharmacol Sci 1992;13:103-8.
    15. Puffenberger EG, Hosoda K, Washington SS, et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell. 1994 Dec 30;79(7): 1257-66.
    16. Hosoda K, Hammer RE, Richardson JA, et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 1994 Dec 30;79(7): 1267-76.
    17. Amiel J, Sproat-Emison E, Garcia-Barcelo M, et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008 Jan;45(1):1-14.
    18. Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies. Nat Rev Neurosci. 2007 Jun;8(6):466-79.
    19. Brooks AS, Oostra BA, Hofstra RM. Studying the genetics of Hirschsprung's disease: unraveling an oligogenic disorder. Clin Genet. 2005 Jan;67(1):6-14.
    20. Rice J, Doggett B, Sweetser DA, etal. Transgenic rescue of aganglionosis and piebaldism in lethal spotted mice. Dev Dyn 2000 Jan;217(1): 120-132.
    21. Miyawaki A. Discovery of GFP. Tanpakushitsu Kakusan Koso. 2009 Jan;54(1):78-84.
    22. Katranidis A, Atta D, Schlesinger R, et al. Fast biosynthesis of GFP molecules: a single-molecule fluorescence study. Angew Chem Int Ed Engl. 2009;48(10): 1758-61
    23. Van Raay TJ, Lassiter RT, Stark MR. Electroporation strategies for genetic manipulation and cell labeling.Methods Mol Biol. 2008;438:305-17.
    24. Miura S, Tachibana K, Okamoto T, et al. In vitro transfer of antisense oligodeoxynucleotides into coronary endothelial cells by ultrasound. Biochem Biophys Res Commun. 2002 Nov 8;298 (4): 587-90
    25. Kitagawa T, Iwazawa T, Robbins PD, et al. Advantages and limitations of particle-mediated transfection (gene gun) in cancer immuno-gene therapy using IL-10, IL-12 or B7-1 in murine tumor models.J Gene Med. 2003 Nov;5(11):958-65
    26. El-Aneed A. Current strategies in cancer gene therapy. Eur J Pharmacol. 2004 Sep 13;498(1-3):1-8.
    27. Braun S. Muscular gene transfer using nonviral vectors. Curr Gene Ther. 2008 Oct;8(5):391-405.
    28. Falk A, Holmstrom N, Carlen M, et al. Gene delivery to adult neural stem cells~[J]. Exp Cell Res. 2002 Sep 10;279(1):34-9.
    29. Boussif O, Lezoualc'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16): 7297-301.
    30. Vicennati P, Giuliano A, Ortaggi G, et al. Polyethylenimine in medicinal chemistry. Curr Med Chem. 2008;15(27):2826-39.
    31. Zhao QQ, Chen JL, Lv TF, et al. N/P ratio significantly influences the transfection efficiency and cytotoxicity of a polyethylenimine/chitosan/DNA complex. Biol Pharm Bull.2009 Apr;32(4):706-10.
    32. Ogris M, Steinlein P, Kursa M, et al. The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. 1998 Oct;5(10): 1425-33.
    33. Boussif O, Zanta MA, Behr JP. Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 1996 Dec;3(12):1074-80.
    34. Jeudy G, Salvadori F, Chauffert B, et al. Polyethylenimine-mediated in vivo gene transfer of a transmembrane superantigen fusion construct inhibits B16 murine melanoma growth. Cancer Gene Ther. 2008 Nov; 15(11):742-9.
    35. Demeneix B, Behr JP. Polyethylenimine (PEI). Adv Genet. 2005;53:217-30.
    36. Lungwitz U, Breunig M, Blunk T, et al. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm. 2005 Jul;60(2):247-66.
    37. Lechardeur D, Lukacs GL. Intracellular barriers to non-viral gene transfer. Curr Gene Ther 2002; 2: 183-194.
    38. Moghimi SM, Symonds P, Murray JC, et al. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther. 2005 Jun;11(6):990-5.
    39. Tinsley RB, Vesey MJ, Barati S, et al. Improved non-viral transfection of glial and adult neural stem cell lines and of primary astrocytes by combining agents with complementary modes of action. J Gene Med. 2004 Sep;6(9):1023-32.
    40. Ye L, Haider HKh, Esa WB, et al. Nonviral vector-based gene transfection of primary human skeletal myoblasts. Exp Biol Med (Maywood). 2007 Dec;232(11): 1477-87.
    1. Haricharan RN, Georgeson KE. Hirschspnling disease. Semin Pediatr Surg. 2008 Nov;17(4): 266-75.
    2. Schuchardt A, D'Agati V, Larsson-Blomberg L, et al. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994 Jan 27;367(6461):380-3.
    3. Jain S, NAughton CK, Yang M. Mice expressing a dominant-negative Ret mutation phenocopy human Hirschsprung disease and delineate a direct role of Ret in spermatogenesis. Development. 2004 Nov; 131 (21 ):5503-13. Epub 2004 Oct
    4. Sanchez MP, Silos-Santiago I, Frisen J, et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996 Jul 4;382(6586):70-3.
    5. Pichel JG, Shen L, Sheng HZ, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996 Jul 4;382(6586):73-6.
    6. Enomoto H, Araki T, Jackman A, et al. GFR alpha 1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron. 1998 Aug;21(2):317-24.
    7. Koide T, Moriwaki K, Uchida K, et al. A new inbred strain JF1 established from Japanese fancy mouse carrying the classic piebald allele. Mamm, Genome. 1998 Jan;9(1):15-9.
    8. Amiel J, Sproat-Emison E, Garcia-Barcelo M, et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008 Jan;45(1): 1-14. Epub 2007 Oct 26.
    9. Bielschowsky M, Schofield GC. Studies on megacolon in piebald mice. Aust J Exp Biol Med Sci. 1962 Oct;40:395-403.
    10. Hosoda K, Hammer RE, Richardson JA, et al. targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 1994 Dec 30;79(7):1267-76.
    11. Matsushima Y, Shinkai Y, Kobayashi Y, et al. A mouse model of Waardenburg syndrome type 4 with a new spontaneous mutation of the endothelin-B receptor gene. Mamm Genome. 2002 Jan;13(1):30-5.
    12. Herbarth B, Pingault V, Bondurand N, et al. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci USA. 1998 Apr 28;95(9):5161-5
    13. Cantrell VA, Owens SE, Chandler RL, et al. Interactions between Sox10 and EdnrB modulate penetrance and severity of aganglionosis in the Sox10Dom mouse model of Hirschsprung disease.Hum Mol Genet. 2004 Oct 1; 13( 19):2289-301.
    14. Higashi Y, Maruhashi M, Nelles L, et al. Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cre-mediated conditional knockout in the mouse. Genesis. 2002 Feb;32(2):82-4.
    15. Payette RF, Tennyson VM, Pomeranz HD, et al. Accumulation of components of basal laminae: association with the failure of neural crest cells to colonise the presumptive aganglionic bowel of 1s/1s mutant mice. Dev Biol 1988; 125: 341-60.
    16. Gershon MD, Chalazonitis A, Rothman TP. From neural crest to bowel: development of the enteric nervous system. J Neurobiol 1993; 24: 199-214.
    17. Rothman TP, Le Douarin NM, Fontaine-Perus JC, et al. Developmental potential of neural crest derived cells migrating from segments of developing quail bowel back grafted into younger chick host embryos. Development 1990; 119: 411-23.
    18. Theiry JP, Duband JL, Delovee A. Pathways and mechanisms of avian trunk neural crest migration and localisation. Dev Biol 1982; 93: 324-43.
    19. Sato A, Yamamoto M, Imamura K, et al. Pathophysiology of aganglionic colon and anorectum: an experimental study on aganglionosis produced by a new method in the rat. J Pediatr Surg. 1978 Aug;13(4):399-435.
    20. Sakata K, Kunieda T, Furuta T, Sato A. Selective destruction of intestinal nervous elements by local application of benzalkonium solution in the rat. Experientia. 1979 Dec 15;35(12): 1611-3.
    21. Levin RJ. Actions of spermicidal and virucidal agents on electrogenic ion transfer across human vaginal epithelium in vitro. Pharmacol Toxicol. 1997 Nov;81(5):219-25.
    22. See NA, Epstein ML, Schultz E, et al. Hyperplasia of jejunal smooth muscle in the myentericallydenervated rat. Cell Tissue Res 253:609-617
    23. Parr EJ, Sharkey KA. Multiple mechanisms contribute to myenteric plexus ablation induced by benzalkonium chloride in the guinea-pig ileum. Cell Tissue Res. 1997 Aug;289(2):253-64.
    24. Buttow NC, Santin M, Macedo LC, et al. Study of the myenteric and submucous plexuses after BAC treatment in the intestine of rats. Biocell. 2004 Aug;28(2):135-42.
    25. Moricz K, Gyetvai B, Bardos G. Morphological and functional changes after benzalkonium chloride treatment of the small intestinal Thiry-Vella loop in rats. Brain Res Bull. 1998 Aug;46(6): 519-28.
    26. Zucoloto S, de Deus DA, Martins AA, et al. The relationship between myenteric neuronal denervation, smooth muscle thickening and epithelial cell proliferation in the rat colon. Res Exp Med (Berl). 1997; 197(2): 117-24.
    27. Deniz M, Kilinc M, Hatipo(?)lu ES. Morphological alterations in small intestine of rats with myenteric plexus denervation. Eur Surg Res. 2004 May-Jun;36(3): 152-8.
    28. Hanani M, Ledder O, Yutkin V, et al. Regeneration of myenteric plexus in the mouse colon after experimental denervation with benzalkonium chloride. J Comp Neurol. 2003 Jun 9;462(3):315-27.
    29. Garcia SB, Demarzo MM, Vinhadeli WS, et al. No reduction with ageing of the number of myenteric neurons in benzalkonium chloride treated rats. Neurosci Lett. 2002 Oct 4;331(1):66-8.
    1. Furness JB. The enteric nervous system: normal functions and enteric neuropathies. Neurogastroenterol Motil. 2008 May;20 Suppl 1:32-8.
    2. Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Em、bryol Exp Morphol 1973; 30: 31-48.
    3. Benarroch EE. Enteric nervous system: functional organization and neurologic implications. Neurology. 2007 Nov 13;69(20):1953-7.
    4. Fujimoto T,Hata J,Yokoye ma S,et al.A study of the extracellular matrix protein as the migration path way of neural Crest cells in the gutanalysis in human embryos with special reference to the pathogensis of Hirschsprung's disease. J pediatr Surg, 1987,24(6):550-556.
    5. Burns AJ, Pachnis V. Development of the enteric nervous system: bringing together cells, signals and genes. Neurogastroenterol Motil. 2009 Feb;21(2): 100-2.
    6. Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies. Nat Rev Neurosci. 2007 Jun;8(6):466-79. Review. Erratum in: Nat Rev Neurosci. 2007 Jul;8(7):568.
    7. Wood JD. Enteric nervous system: reflexes, pattern generators and motility. Curr Opin Gastroenterol. 2008 Mar;24(2): 149-58.
    8. Van den Berg MM, Di Lorenzo C, Mousa HM, et al. Morphological changes of the enteric nervous system, interstitial cells of cajal, and smooth muscle in children with colonic motility disorders. J Pediatr Gastroenterol Nutr. 2009 Jan;48(1):22-9.
    9. Haricharan RN, Georgeson KE. Hirschsprung disease. Semin Pediatr Surg. 2008 Nov; 17(4):266-75.
    10. Gobbel GT, Choi SJ, Beier S, et al. Long-term cultivation of multipotential neural stem cells from adult rat subependyma. Brain Res. 2003 Aug 8;980(2):221-32.
    11. Temple S. The development of neural stem cells. Nature. 2001 Nov 1;414(6859): 112-7.
    12. Amar AP, Zlokovic BV, Apuzzo ML. Endovascular restorative neurosurgery: a novel concept for molecular and cellular therapy of the nervous system. Neurosurgery. 2003 Feb;52(2):402-12.
    13. Modo M, Rezaie P, Heuschling P, et al. Transplantation of neural stem cells in a rat model of stroke: assessment of short-term graft survival and acute host immunological response. Brain Res. 2002 Dec 20;958(1):70-82.
    14. Anton R, Kordower JH, Maidment NT, et al. Neural-targeted gene therapy for rodent and primate hemiparkinsonism. ExpNeurol. 1994 Jun;127(2):207-18.
    15. Bartlett PF, Reid HH, Bailey KA, et al. Immortalization of mouse neural precursor cells by the c-myc oncogene. Proc Natl Acad Sci U S A. 1988 May;85(9):3255-9. Erratum in: Proc Natl Acad SciU S A 1989 Feb;86(3): 1103.
    16. Bernard O, Reid HH, Bartlett PF. Role of the c-myc and the N-myc proto-oncogenes in the immortalization of neural precursors. J Neurosci Res. 1989 Sep;24(1):9-20.
    17. Birren SJ, Anderson DJ. A v-myc-immortalized sympathoadrenal progenitor cell line in which neuronal differentiation is initiated by FGF but not NGF. Neuron. 1990 Feb;4(2): 189-201.
    18. Jat PS, Sharp PA. Cell lines established by a temperature-sensitive simian virus 40 large-T-antigen gene are growth restricted at the nonpermissive temperature. Mol Cell Biol. 1989 Apr;9(4): 1672-81.
    19. Benedetti S, Pirola B, Polio B, et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med. 2000 Apr;6(4):447-50.
    20. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981 Jul 9;292(5819): 154-6.
    21. Bain G, Kitchens D, Yao M, et al. Embryonic stem cells express neuronal properties in vitro. Dev Biol. 1995 Apr;168(2):342-57.
    22. Kobayashi S, Luo B, Okabe M, et al. The diabetic state increases the activity but not the number of peritoneal macrophages in the GK rat promoting the tube formation of cultured endothelial cells in rat aorta. Biol Pharm Bull. 1996 Feb; 19(2): 199-202.
    23. Li M, Pevny L, Lovell-Badge R, et al. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol. 1998 Aug 27;8(17):971-4.
    24. Ahmed S. The culture of neural stem cells. J Cell Biochem. 2009 Jan1;106(1):1-6.
    25. Kruger GM, Mosher JT, Bixby S, et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 2002 Aug 15;35(4):657-69.
    26. Bixby S, Kruger GM, Mosher JT, et al. Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity.Neuron. 2002 Aug 15;35(4):643-56.
    27. Su(?)rez-Rodr(?)guez R, Belkind-Gerson J. Cultured nestin-positive cells from postnatal mouse small bowel differentiate ex vivo into neurons, glia, and smooth muscle. Stem Cells. 2004;22(7):1373-85.
    28. Meirelles Lda S, Nardi NB., Nardi NB. Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci. 2009 Jan 1;14:4281-98.
    29. Sanchez-Ramos JR, Cardozo-Pelaez F, Song S, et al. Differentiation of neuron-like cells from bone marrow stromal cells.Mov Disord, 1998,13(Suppl):122.
    30. Sanchez-Ramos J, Song S, Kamath SG, et al. Expression of neural markers in human umbilical cord blood. Exp Neurol, 2001,171:109-115.
    31. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, 2000,164:247-256.
    32. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone arrow stromal cells differentiate into neurons. J Neurosci Res, 2000,61:364-370.
    33. Black I, Woodbury D. Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cells Mol Dis, 2001,27:632-636.
    34. Yip S, Aboody KS, Burns M, et al. Neural stem cell biology may be well suited for improving brain tumor therapies. Cancer J. 2003 May-Jun;9(3):189-204.
    35. Yadirgi G, Marino S. Adult neural stem cells and their role in brain pathology. J Pathol. 2009 Jan;217(2):242-53.
    36. Imitola J, Park KI, Teng YD, et al. Stem cells: cross-talk and developmental programs. Biol Sci. 2004 May 29;359(1445):823-37.
    37. Wong AM, Hodges H, Horsburgh K. Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global ischaemia. Brain Res. 2005 Nov 30;1063(2): 140-50.
    38. Roybon L, Brundin P, Li JY. Stromal cell-derived inducing activity does not promote dopaminergic differentiation, but enhances differentiation and proliferation of neural stem cell-derived astrocytes. Exp Neurol. 2005 Dec;196(2):373-80.
    39. Rauch U, Hansgen A, Hagl C, et al. Isolation and cultivation of neuronal precursor cells from the developing human enteric nervous system as a tool for cell therapy in dysganglionosis. Int J Colorectal Dis. 2006 Sep;21(6):554-9.
    40. Bondurand N, Natarajan D, Thapar N, et al. Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development 2003; 130:6387-400.
    41. Lindley RM, Hawcutt DB, Connell MG, et al. Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. 2008 Jul;135(l):205-216.e6.
    42. Micci MA, Learish RD, Li H, et al. Neural stem cells express RET, produce nitric oxide, and survive transplantation in the gastrointestinal tract. Gastroenterology 2001; 121: 757-66.
    43. Micci MA, Kahrig KM, Simmons RS, et al. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase-deficient mice. Gastroenterology. 2005 Dec;129(6):1817-24.
    44. Natarajan D, Grigoriou M, Marcos-Gutierrez CV, et al. Multipotential progenitors of the mammalian enteric nervous system capable of colonising aganglionic bowel in organ culture. Development. 1999 Jan;126(1):157-68.
    45. Almond S, Lindley MR, Kenny SE, et al. Characterisation and transplantation of enteric nervous system progenitor cells. Gut 2007;56:489-96.
    46. Lindley RM, Hawcutt DB, Connell MG, et al. Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. Gastroenterology. 2008 Jul;135(1):205-216.
    47. Guo BF, Dong MM. Application of neural stem cells in tissue-engineered artificial nerve. Otolaryngol Head Neck Surg.2009 Feb;140(2):159-64.
    48.Koshizuka S,Okada S,Okawa A,et al.Transplanted hematopoietic stem cells from bone marrow differentiate into neural lineage cells and promote functional recovery after spinal cord injury in mice.J Neuropathol Exp Neurol.2004 Jan;63(1):64-72.
    49.Mothe AJ,Kulbatski I,Parr A,et al.Adult spinal cord stem/progenitor cells transplanted as neurospheres preferentially differentiate into oligodendrocytes in the adult rat spinal cord.Cell Transplant.2008;17(7):735-51.
    50.Walczak P,Kedziorek DA,Gilad AA,et al.Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover:the case of the shiverer dysmyelinated mouse brain.Magn Reson Med.2007 Aug;58(2):261-9.
    51.卢蓉,黄丹平,黄冰等.Hoechst 33342标记恒河猴皮肤干细胞向结膜上皮细胞分化.中山大学学报(医学科学版).2007,28(3):263-267

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700