PEG修饰对PAMAM树状大分子导致细胞损伤的保护作用及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰胺-胺树状大分子(PAMAM)是一类由中心向外对称发散且高度分枝的纳米级高分子化合物,分子内部的空腔可以用来包裹药物分子,而末端得基团可以通过修饰连接配体、抗体等生物活性物质,分子所带的高密度正电荷可以压缩DNA。PAMAM树状大分子现已广泛应用于生物医药领域,如基因载体、药物载体、磁共振成像对比剂等。虽然PAMAM树状大分子的应用研究已取得了快速发展,但整代PAMAM树状大分子表面有大量氨基基团,在生理pH条件下易质子化而带正电,因此不可避免的具有一定的细胞毒性。利用无毒、水溶性好的免疫惰性大分子聚合物对PAMAM进行修饰是降低毒性、提高生物相容性的有效方法之一。本实验采用不同相对分子质量(MW)的聚乙二醇(PEG)对五代(generation 5,G5)PAMAM进行不同程度的修饰。考察PAMAM的细胞毒性和PEG修饰的保护作用及其机理,探讨PEG的相对分子质量和修饰度对保护作用的影响,并研究PEG修饰对树状大分子的细胞摄取和转染能力的影响。完成的主要工作有:
     (1)分别用相对分子质量为2 k和5 k的mPEG-SC对G5 PAMAM进行两种氨基取代度修饰,低取代度偶联的PEG数为13、高取代度偶联数为51,分别为G5PAMAM表面氨基数的10%和40%。得到四种PEG-PAMAM化合物,分别为13PEG-2k-PAMAM、51PEG-2k-PAMAM、13PEG-5k-PAMAM和51PEG-5k-PAMAM。用相对分子质量为20 k的mPEG-SC对G5 PAMAM进行修饰,偶联的PEG数为13,得到13PEG-20k-PAMAM。用核磁波谱和红外光谱进行结构表征。
     (2)应用噻唑蓝法(MTT)考察PAMAM对鼠成纤维细胞(NIH 3T3)的细胞毒作用,结果表明PAMAM的细胞毒性有浓度和时间依赖性。比较PAMAM与PEG-PAMAM的细胞毒性,发现PEG修饰后树状大分子细胞毒性显著降低,13PEG-2k-PAMAM、51PEG-2k-PAMAM和13PEG-5k-PAMAM分别降低1 2、37和34倍,毒性最小的51PEG-5k-PAMAM可以降低105倍。
     (3)用FITC标记PAMAM和PEG-PAMAM,考察细胞对树状大分子的摄取情况。结果表明,PAMAM可以被细胞快速摄取,PEG-2k修饰对摄取过程没有显著影响,PAMAM、13PEG-2k-PAMAM和51PEG-2k-PAMAM与细胞孵育2 h后阳性细胞率接近100%。相对分子质量较大PEG修饰的13PEG-5k-PAMAM和51PEG-5k-PAMAM的摄取率虽然略低,但也达到了80%。此外,树状大分子细胞摄取过程有温度依赖性,在低温环境条件下摄取率明显降低,说明细胞对树状大分子的摄取是一个耗能过程。PAMAM和PEG-PAMAM有核靶向力,与细胞孵育15 min后即开始在核聚集。进一步用绿色荧光蛋白(GFP)作为报告基因考察PAMAM和PEG-PAMAM的转染能力。PAMAM和PEG-PAMAM均能将GFP转运至NIH 3T3细胞并成功表达。调整13PEG-2k-PAMAM和51PEG-2k-PAMAM复合物中的电荷比,可以得到与PAMAM相似的转染效果。
     (4)通过流式细胞术、荧光分光光度法考察细胞凋亡、胞内ROS含量和线粒体膜电位的变化,发现PAMAM诱发细胞内ROS的增加,损伤细胞膜及线粒体膜,引起线粒体跨膜电位的降低,诱导细胞凋亡。与PAMAM相比,PEG修饰的树状大分子在较高浓度时才会引致细胞凋亡,而且凋亡率明显下降。此外,PEG化可明显抑制胞内ROS的产生和蓄积,维持线粒体膜电位稳定,保护线粒体。说明PEG化是通过拮抗胞内氧化应激损伤而降低PAMAM的细胞毒性的。偶联的PEG链越多、偶联的PEG相对分子质量越大,毒性下降的越明显。
     (5)以人红细胞考察PAMAM、13PEG-2k-PAMAM、13PEG-5k-PAMAM和13PEG-20k-PAMAM的血液相容性。红细胞溶血实验结果发现5 mg/mL PAMAM的平均溶血率达到7.67±2.25%,13PEG-2k-PAMAM、13PEG-5k-PAMAM和13PEG-20k-PAMAM的平均溶血率在实验浓度范围内均小于5%,低于PAMAM组溶血率(P<0.05)。用光学显微镜观察细胞形态,结果发现PAMAM和13PEG-2k-PAMAM能够引起红细胞聚集,而13PEG-5k-PAMAM和13PEG-20k-PAMAM与红细胞作用后细胞仍维持正常形态,保持良好的悬浮性。用原子力显微镜(AFM)观察红细胞表面超微结构变化,发现PAMAM和13PEG-2k-PAMAM处理后红细胞变形,红细胞膜被严重破坏,而13PEG-5k-PAMAM和13PEG-20k-PAMAM处理的红细胞膜表面结构与正常红细胞接近,膜表面粗糙度远低于PAMAM处理红细胞。说明PEG的相对分子质量会对树状大分子的血液相容性产生较大影响,相对分子质量较大的PEG修饰的树状大分子血液相容性较好。
     综上所述,PAMAM细胞毒性的产生主要是通过诱发细胞内ROS的过量产生和蓄积,损伤细胞膜及线粒体膜,引起线粒体损伤,从而诱导细胞凋亡。而PEG化可以通过拮抗胞内氧化应激损伤而降低PAMAM的细胞毒性。偶联的PEG链越多、偶联的PEG相对分子质量越大,毒性下降的越明显。PEG修饰的树状大分子在提高安全性的同时仍具备转染能力,在基因治疗方面有更广阔的应用前景。可以通过热活化、偶联核定位信号等手段来进一步提高PEG-PAMAM的转染效率。
Dendrimers are highly branched macromolecules which have specific size,shape andchemical functions.Poly (amidoamine) (PAMAM) dendrimers are a specific family ofdendritic polymers,which are based on an ethylene diamine core and an amidoaminerepeat branching structure.Dendrimers have recently been successfully used in the field ofbiomedicine,such as drug delivery,gene delivery,cancer diagnosis,etc.Despite theextensive interests in pharmaceutical applications of dendrimers,PAMAM dendrimersbearing amino terminals show certain cytotoxicity.In order to improve theirbiocompatibility,generation 5 (G5) PAMAM dendrimers were modified by conjugation ofpoly (ethylene glycol) (PEG) of two different molecular weights and different number ofchains.To investigate the influence of PEGylation on PAMAM-induced cytotoxicty,theintracellular responses including reactive oxygen species (ROS) content,mitochondrialmembrane potential (△ψm) and apoptosis were examined.Meanwhile,the protectiveeffect of PEGylation against PAMAM dendrimers induced hemolysis of human red bloodcells (RBCs) was studied.Furthermore,the uptake rate of PEGylated dendrimers wasquantified by using FITC labeled PAMAM and PEG-PAMAM.Moreover,the ability oftransfection for PEGylated dendrimers was investigated.The main results are asfollowings:
     (1) G5 PAMAM were conjugated with PEG-2k or PEG-5k of 13 or 51 PEG chains,which meant 10% and 40% of the total amino terminals of G5 PAMAM were PEGylated,respectively.Thus,four conjugates 13PEG-2k-PAMAM,51PEG-2k-PAMAM,13PEG-5k-PAMAM and 51PEG-5k-PAMAM were prepared.The conjugates werecharacterized by ~1H NMR and FT-IR spectra.
     (2) The IC_(50) values (concentration at which 50% of mitochondrial dehydrogenaseactivity was inhibited) were determined to compare the cytotoxicity of differentdendrimers.The cytotoxicity of PAMAM was concentration- and time-dependent.Theorder of IC_(50) of those conjugates on NIH 3T3 cells was 51PEG-5k-PAMAM,51PEG-2k-PAMAM,13PEG-5k-PAMAM,13PEG-2k-PAMAM,PAMAM.The IC_(50) valueof 13PEG-2k-PAMAM dendrimers was 12 fold more than that of PAMAM.Moreover,the value of 51PEG-5k-PAMAM was about 100 fold more than that of PAMAM.As a result,dendrimers conjugated with more PEG chains of higher molecular weight were much lesscytotoxic.
     (3) The cellular internalization of PAMAM and PEG-PAMAM grew steadily over theincubation time.The total rates of cell accumulation of PAMAM,13PEG-2k-PAMAM and51PEG-2k-PAMAM were almost 100%.The rates of the dendrimers modified by PEG-5kwere little less,about 80%.The uptake rate of PAMAM and PEG-PAMAM were alsotemperature dependent,which was inhibited at 4℃.PAMAM and PEG-PAMAM couldenter the nucleus in 15 min.Moreover,the PEGylated dendrimers maintained the ability oftransfection.The transfection effects of 13PEG-2k-PAMAM and 51PEG-2k-PAMAMwere similar to that of PAMAM at appropriate charge ratio.
     (4) The intracellular responses including ROS contents,mitochondrial membranepotential and apoptosis were examined to elucidate the mechanism of decreasingPAMAM-induced cytotoxicity by PEGylation.The results showed PAMAM inducedapoptosis in a concentration dependent manner.The PEGylation protected remarkablyagainst the PAMAM induced apoptosis.DCFH-DA and Rhodamine-123 were used todetect the levels of intracellular ROS and△ψm,respectively.The results showed PAMAMinduced the burst of intracellular ROS and the dissipation of△ψm,then triggered the cellsa start-up of apoptosis program.These results suggested that cell apoptosis induced byPAMAM was mediated by mitochondrial pathway.PEGylation could effectively reducethe PAMAM-induced cell apoptosis by attenuating ROS production and inhibitingPAMAM-induced△ψm collapse.PAMAM conjugated with more PEG chains of highermolecular weight were much less cytotoxic.
     (5) The protective effect of PEGylation against PAMAM induced hemolysis of RBCswas studied.PAMAM were PEGylated with three molecular weights (2k,5k and 20k).The RBCs morphology and surface structure were analyzed by optical microscopy (OM)and atomic force microscopy (AFM).PAMAM dendrimers induced obvious hemolysiswhile PEGylated ones exhibited good haemocompatibility.The hemolysis resulting fromPEGylated dendrimers was much lower compared to the parent dendrimers.Moreover,RBCs treated with PEG-5k and PEG-20k modified dendrimers kept their normalmorphology.This study demonstrated that haemocompatibility of PAMAM dendrimers could be greatly enhanced by PEGylation.Dendrimers conjugated with higher molecularweight PEG showed much lower haemotoxicity.The results of hemolysis test andmorphology investigation for PEG-5k and PEG-20k modified groups were closer to thoseof control RBCs.
     In conclusion,PEGylated dendrimers were more suitable and valuable for practicalapplication in which they presented a much lower cytotoxicity and higherhaemocompatibility.We suggested that PAMAM dendrimers would stimulateoverproduction of ROS in cells,which could disturb the function of mitochondrial andeventually lead to cell death.However,modified with PEG was able to inhibitPAMAM-induced cell death.Meanwhile,dendrimers conjugated with fewer PEG of lowermolecular weight did not significantly change the endocytic properties.Moreover,thePEGylated dendrimers maintained the ability of transfection.The transfection effect ofPEGylated dendrimers would be enhanced by heating activation or conjugation totargeting ligands.
引文
[1] Dufes C, Uchegbu IF, Schatzlein AG. Dendrimers in gene delivery. Adv. Drug Deliv. Rev., 2005, 57: 2177-2202
    [2] Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. A new class of polymers: starburst-dendritic macromolecules. Polym. J., 1985, 17: 117-132
    [3] Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. Dendritic macromolecules synthesis of starburst dendrimers. Macromolecules, 1986, 19: 2466-2468
    [4] Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistry. Aldrichimica Acta, 2004, 37: 39-57
    [5] Tomalia DA, Esfand R. Dendrons, dendrimers and dendrigrafts. Chem. Ind., 1997, 11:416-420
    [6] Kim YH, Webster OW. Water soluble hyperbranched polyphenylene: "a unimolecular micelle?" J. Am. Chem. Soc, 1990, 112: 4592-4597
    [7] Eichman JD, Bielinska AU, Kukowska-Latallo JF, Baker JR Jr. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharm. Sci. Technol. Today, 2000, 3: 232-245
    [8] Bielinska AU, Chen C, Johnson J, Baker JR Jr. DNA complexing with polyamidoamine dendrimers: implications for transfection. Bioconjug. Chem., 1999, 10:843-850
    [9] Shah DS, Sakthivel T, Toth I, Florence AT, Wilderspin AF. DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers. Int. J. Pharm., 2000, 208: 41-48
    [10] Hughes JA, Aronsohn AI, Avrutskaya AV, Juliano RL. Evaluation of adjuvants that enhance the effectiveness of antisense oligodeoxynucleotides. Pharm. Res., 1996, 13:404-410
    [11] Juliano RL, Alahari S, Yoo H, Kole R, Cho M. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharm. Res., 1999,16: 494-502
    [12] Lebedeva I, Benimetskaya L, Stein CA, Vilenchik M. Cellular delivery of antisense oligonucleotides. Eur. J. Pharm. Biopharm., 2000, 50: 101-119
    [13] Jaaskelainen I, Peltola S, Honkakoski P, Monkkonen J, Urtti A. A lipid carrier with a membrane active component and a small complex size are required for efficient cellular delivery of anti-sense phosphorothioate oligonucleotides. Eur. J. Pharm. Sci.,2000, 10:187-193
    [14] Dass CR. Vehicles for oligonucleotide delivery to tumors. J. Pharm. Pharmacol., 2002, 54: 3-27.
    [15] Jaffr(?)s PA, Morris RE. Synthesis of highly functionalized dendrimers based on polyhedral silsesquioxane cores. J. Chem. Soc. Dalton Trans., 1998, 2767-2770
    [16] Richardson SCW, Pattrick NG, Man YKS, Ferruti P, Duncan R. Poly(amidoamine)s as potential nonviral vectors: ability to form interpolyelectrolyte complexes and to mediate transfection. Biomacromolecules, 2001,2:1023-1028
    [17] Ferruti P, Marchisio MA, Duncan R. Poly(amido-amine)s: biomedical applications. Macromol. Rapid Commun., 2002, 23: 332-355
    [18] Chen W, Turro NJ, Tomalia DA. Using ethidium bromide to probe the interactions between DNA and dendrimers. Langmuir, 2000, 16: 15-19
    [19] Bielinska A, Kukowska-Latallo JF, Johnson J, Tomalia DA, Baker JR Jr. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res., 1996, 24: 2176-2182
    [20] Bielinska AU, Kukowska-Latallo JF, Baker JR Jr. The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA, Biochim. Biophys. Acta, 1997, 1353: 180-190
    [21] Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther., 1997,4:823-832
    [22] Sonawane ND, Szoka FC Jr, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem., 2003,278:44826-44831
    [23] Godbey WT, Wu KK, Mikos AG. Tracking the intracellular path of poly (ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. U.S.A., 1999,96:5177-5181
    [24] Delong R, Stephenson K, Loftus T, Fisher M, Alahari S, Nolting A, Juliano RL. Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery. J. Pharm. Sci., 1997, 86: 762-764
    [25] Wisher AC, Bronstein I, Chechik V. Thiolated PAMAM dendrimer-coated CdSe/ZnSe nanoparticles as protein transfection agents. Chem. Commu., 2006, 15: 1637-1639
    [26] Zhou J, Wu J, Hafdi N, Behr JP, Erbacher P, Peng L. PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chem Commun., 2006, 22: 2362-2364
    [27] Kang H, DeLong R, Fisher MH, Juliano RL. Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm. Res., 2005, 22: 2099-2106
    [28] Roessler BJ, Bielinska AU, Janczak K, Lee I, Baker JR Jr. Substituted beta-cyclodextrins interact with PAMAM dendrimer-DNA complexes and modify transfection efficiency. Biochem. Biophys. Res. Commun., 2001, 283: 124-129
    [29] Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM. Poly (ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules, 2002, 35: 3456-3462
    [30] Tack F, Bakker A, Maes S, Dekeyser N, Bruining M, Elissen-Roman C, Janicot M, Brewster M, Janssen HM, De Wall BF, Fransen PM, Lou X, Meijer EW. Modified poly (propylene imine) dendrimers as effective transfection agents for catalytic DNA enzymes (DNAzymes). J. Drug Target, 2006, 14: 69-89
    [31] Patil ML, Zhang M, Betigeri S, Taratula O, He H, Minko T. Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug. Chem., 2008, 19: 1396-1403
    [32] Nam HY, Hahn HJ, Nam K, Choi WH, Jeong Y, Kim DE, Park JS. Evaluation of generations 2, 3 and 4 arginine modified PAMAM dendrimers for gene delivery. Int. J. Pharm., 2008,363: 199-205
    [33] Nam HY, Nam K, Hahn HJ, Kim BH, Lim HJ, Kim HJ, Choi JS, Park JS. Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. Biomaterials, 2009, 30: 665-673
    [34] Fu HL, Cheng SX, Zhang XZ, Zhuo RX. Dendrimer/DNA complexes encapsulated functional biodegradable polymer for substrate-mediated gene delivery. J. Gene Med.,2008, 10:1334-1342
    [35] Wang Y, Kong W, Song Y, Duan Y, Wang L, Steinhoff G, Kong D, Yu Y. Polyamidoamine Dendrimers with a Modified Pentaerythritol Core Having High Efficiency and Low Cytotoxicity as Gene Carriers. Biomacromolecules, 2009, 10: 617-622.
    [36] Zhang K, Fang H, Wang Z, Taylor JS, Wooley KL. Cationic shell-crosslinked knedel-like nanoparticles for highly efficient gene and oligonucleotide transfection of mammalian cells. Biomaterials, 2009, 30: 968-977
    [37] Hudde T, Rayner SA, Comer RM, Weber M, Isaacs JD, Waldmann H, Larkin DF, George AJ. Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Ther., 1999, 6: 939-943
    [38] Maruyama-Tabata H, Harada Y, Matsumura T, Satoh E, Cui F, Iwai M, Kita M, Hibi S, Imanishi J, Sawada T, Mazda O. Effective suicide gene therapy in vivo by EBV-based plasmid vector coupled with polyamidoamine dendrimer. Gene Ther., 2000, 7: 53-60
    [39] Nakanishi H, Mazda O, Satoh E, Asada H, Morioka H, Kishida T, Nakao M, Mizutani Y, Kawauchi A, Kita M, Imanishi J, Miki T. Nonviral genetic transfer of Fas ligand induced significant growth suppression and apoptotic tumor cell death in prostate cancer in vivo. Gene Ther., 2003, 10: 434-442
    [40] Maksimenko AV, Mandrouguine V, Gottikh MB, Bertrand JR, Majoral JP, Malvy C. Optimisation of dendrimermediated gene transfer by anionic oligomers. J. Gene Med., 2003, 5: 61-71
    [41] Vincent L, Varet J, Pille JY, Bompais H, Opolon P, Maksimenko A, Malvy C, Mirshahi M, Lu H, Vannier JP, Soria C, Li H. Efficacy of dendrimer-mediated angiostatin and TIMP-2 gene delivery on inhibition of tumor growth and angiogenesis: in vitro and in vivo studies. Int. J. Cancer, 2003, 105: 419-429
    [42] Qin L, Pahud DR, Ding Y, Bielinska AU, Kukowska-Latallo JF, Baker JF Jr, Bromberg JS. Efficient transfer of genes into murine cardiac grafts by starburst polyamidoamine dendrimers. Hum. Gene Ther., 1998, 9: 553-560
    [43] Rudolph C, Lausier J, Naundorf S, Muller RH, Rosenecker J. In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J. Gene Med., 2000, 2: 269-278
    [44] Parekh HS, Marano RJ, Rakoczy EP, Blanchfield J, Toth I. Synthesis of a library of polycationic lipid core dendrimers and their evaluation in the delivery of an oligonucleotide with hVEGF inhibition. Bioorg. Med. Chem., 2006, 14: 4775-4780
    [45] Ma M, Cheng Y, Xu Z, Xu P, Qu H, Fang Y, Xu T, Wen L. Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur. J. Med. Chem., 2007, 42: 93-98
    [46] Milhem OM, MylesC, Mckeowm NB, Attwood D, D'Emanuele A. Polyamidoamine starburst dendrimers as solubility enhancers. Int. J. Pharm., 2000, 197: 239-241
    [47] Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain NK, Diwan PV. Dendrimer mediated transdermal delivery: enhanced bioavailability of indomethacin. J. Control. Release, 2003, 90: 335-343
    [48] Cheng Y, Qu H, Ma M, Xu Z, Xu P, Fang Y, Xu T. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: An in vitro study. Eur. J. Med. Chem., 2007, 42: 1032-1038
    [49] Yang H, Lopina ST. Extended realsea of a novel antidepressant, venlafaxine, based on anionic polyamidoamine dendrimers and poly (ethylene glycol)-containing semi-interpenetrating network. J. Biomed. Mater. Res., 2005, 72A: 107-114
    [50] Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR Jr. Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug. Chem., 2004, 15: 1174-1181
    [51] Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, Larterbur PC. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn. Reson. Med., 1994, 31: 1-8.
    [52] Swanson SD, Kukowska-Latallo JF, Patri AK, Chen C, Ge S, Cao Z, Kotlyar A, East AT, Baker JR. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int. J. Nanomedicine., 2008, 3: 201-210
    [53] Yang W, Barth RF, Wu G, Kawabata S, Sferra TJ, Bandyopadhyaya AK, Tjarks W, Ferketich AK, Moeschberger ML, Binns PJ, Riley KJ, Coderre JA, Ciesielski MJ, Fenstermaker RA, Wikstrand CJ. Molecular targeting and treatment of EGFRvⅢ-positive gliomas using boronated monoclonal antibody L8A4. Clin. Cancer Res., 2006, 12: 3792-3802
    [54] Fischer D, Bieber Y, Li Y, Elsasser HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimin: effect of molecular weight on transfection efficientcy and cytotoxicity. Pharm. Res., 1999, 16: 1273-1279
    [55] Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D'Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm., 2003, 252: 263-266
    [56] E1-Sayed M, Ginski M, Rhodes C, Ghandehari H. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J. Control. Release, 2002,81:355-365
    [57] Hong SP, Bielinska AU, Mecke A, Keszler B, Beals JL, Shi XY, Balogh L, Orr BG, Baker JR, Holl MMB. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug. Chem., 2004, 15: 774-782
    [58] Choi JS, Nam K, Park J, Kim JB, Lee JK, Park J. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with 1-arginine. J. Control. Release, 2004, 99: 445-456
    [59] Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of~(125) I-labelled polyamidoamine dendrimers in vivo. J. Control. Release, 2000, 65: 133-148
    [60] Roberts JC, Bhalgat MK, Zera RT. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburstk dendrimers. J. Biomed. Mater. Res., 1996, 30:53-65
    [61] Kojima C, Kono D, Maruyama D, Takagishi T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug. Chem., 2000, 11: 910-917
    [62] Kono K, Kojima C, Hayashi N, Nishisaka E, Kiura K, Watarai S, Harada A. Preparation and cytotoxic activity of poly(ethylene glycol)-modified poly(amidoamine) dendrimers bearing adriamycin. Biomaterials, 2008, 29: 1664-1675
    [63] Liu M, Kono K, Frechet JMJ. Water soluble dendritic unimolecular micelles: their potential as drug delivery agents. J. Control. Release, 2000, 65: 121-131
    [64] Pan G, Lemmouchi Y, Akala EO, Bakare O. Studies on PEGylated and drug-loaded PAMAM dendrimers. J. Bioact. Compat. Polym., 2005, 20: 113-128
    [65] Bhadra D, Bhadra S, Jain S, Jain NK. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm., 2003, 257: 111-124
    [66] Yang H, Morris JJ, Lopina ST. Polyethylene glycolpolyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J. Colloid Interface Sci., 2004, 273: 148-154
    [67] Milhem OM, Mobedi H, Day N, McKeown NB, Attwood D, D'Emanuele A. Development and characterization of dendrimer conjugates derivatives for drug delivery. Proc. Int. Symp. Control. Release Bioact. Mater., 2001, 28: 329-330
    [68] Milhem OM, Mobedi H, Day N, McKeown NB, Attwood D, D'Emanuele A. Development of dendrimer conjugates for drug delivery. Polym. Mater. Sci. Eng., 2001,84:721
    [69] Kim TI, Seo HJ, Choi JS, Jang HS, Baek J, Kim K, Park JS. PAMAM-PEG-PAMAM: novel triblock copolymer as a biocompatible and efficient gene delivery carrier. Biomacromolecules, 2004, 5: 2487-2492
    [70] Kim TI, Baek JU, Yoon JK, Choi JS, Kim K, Park JS. Synthesis and characterization of a novel arginine-grafted dendritic block copolymer for gene delivery and study of its cellular uptake pathway leading to transfection. Bioconjug. Chem.,2007, 18:309-317
    [71] Huang R, Kea W, Liua Y, Jiang C, Peia Y. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials, 2008, 29: 238-246
    [72] Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, Konishi J, Togashi K, Brechbiel MW. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn. Reson. Med., 2001, 46: 781-788
    [73] Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, Akita Y, Mamede MH, Konishi J, Togashi K, Brechbiel MW. Novel liver macromolecular MR contrast agent with a polypropylenimine diaminobutyl dendrimer core: comparison to the vascular MR contrast agent with the polyamidoamine dendrimer core. Magn. Reson. Med., 2001, 46: 795-802
    [74] Margerum LD, Campion BK, Koo M, Shargill N, Lai JJ, Marumoto A, Sontum PC. Gadolinium (Ⅲ) DO3A macrocycles and polyethylene glycol coupled to dendrimers effect of molecular weight on physical and biological properties of macromolecular resonance imaging imaging contrast agents. J. Alloys Compd., 1997,249: 185-190
    [75] Calabretta MK, Kumar A, McDermott AM, Cai C. Antibacterial Activities of Poly(amidoamine) Dendrimers Terminated with Amino and Poly(ethylene glycol) Groups. Biomacromolecules, 2007, 8: 1807-1811
    [76] Kolhe P, Khandare J, Pillai O, Kannan S, Lieh-Lai M, Kannan RM. Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials, 2006, 27: 660-669
    [77] Kukowska-Latallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker JR. Efficient transfer of genetic material into mammalian cells by using Starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. U.S.A., 1996, 96: 4897-4902
    [78] Tang MX, Redemann CT, Szoka FC Jr. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem., 1996, 7: 703-714
    [79] Agrawal P, Gupta U, Jain NK. Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials, 2007, 28: 3349-3359
    [80] Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today, 2001,6:427-436
    [81] Ungar G, Liu Y, Zeng X, Percec V, Cho WD. Giant supramolecular liquid crystal lattice. Science, 2003, 299: 1208-1211
    [82] Twyman LJ, King AS, Martin IK. Catalysis inside dendrimers. Chem. Soc. Rev., 2002,31:69-82
    [83] Ma H, Jen AKY. Functional dendrimers for nonlinear optics. Adv. Mater., 2001, 13: 1201-1205
    [84] Kawa, M. Antenna effects of aromatic dendrons and their luminescence applications. Top Curr. Chem., 2003, 228: 193-204
    [85] Neofotistou E, Demadis KD. Use of antiscalants for mitigation of silica (SiO_2)fouling and deposition: fundamentals and applications in desalination systems. Desalination, 2004, 167: 257-272
    [86] Yokoyama M, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res., 1991, 51: 3229-3236
    [87] Klibanov A, Maruyama K, Torchilin VP, Huang L. Amphipathic poly(ethylene glycol)s effectively prolong the circulation time of liposomes. FEBS Lett., 1990, 268:235-237
    [88] Blume B, Cevc G. Liposomes for the sustained drug release in vivo. Biochim. Biophys. Acta, 1990, 1029: 91-97
    [89] Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochim. Biophys. Acta, 1992, 1113:171-199
    [90] Lasic DD, Needham D. The stealth liposome: a prototypical biomaterial. Chem. Rev., 1995, 95: 2601-2628
    [91] Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003,24: 1121-1131
    [92] Belcheva N, Woodrow-Mumford K, Mahoney MJ, Saltzman WM. Synthesis and biological activity of polyethylene glycol-mouse nerve growth factor conjugate. Bioconjug. Chem., 1999,10: 932-937
    [93] Behera GB, Mishra BK, Behera PK, Panda M. Fluorescent probes for structural and distance effect studies in micelles, reversed micelles and microemulsions. Adv. Colloid Interface Sci., 1999, 82: 1-42
    [94] Kang HS, Yang SR, Kim JD, Han SH, Chang IS. Effects of grafted alkyl groups on aggregation behavior of amphiphilic poly(aspartic acid). Langmuir, 2001, 17: 7501-7506
    [95] Katoaka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev., 2001, 47:113-131
    [96] Ouchi T, Nishizawa H, Ohya Y. Aggregation phenomenon of PEG-grafted chitosan in aqueous solution. Polymer, 1998, 39: 5171-5175
    [97] Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm., 2000, 50: 147-160
    [98] Yoo H, Juliano RL. Enhanced delivery of antisense oligonucleotide with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res., 2000, 28: 4225-4231
    [99] Seib FP, Jones AT, Duncan R. Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells. J. Control. Release, 2007, 117: 291-300.
    [100] Dobrovolskaia MA, Mcneil SE. Immunological properties of engineered nanomaterials. Nat. nanotechnol., 2007, 2: 469-478
    [101] Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ. Cellular and molecular barriers to genetransfer by a cationic lipid. J. Biol. Chem., 1995, 270: 18997-19007
    [102] Kircheis R, Wightman L, Wagner E. Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliv. Rev., 2001, 53: 341-358
    [103] Suh J, Wirtz D, Hanes J. Efficient active transport of gene nanocarriers to the cell nucleus. Proc. Natl. Acad. Sci. U.S.A., 2003, 100: 3878-3882
    [104] Roberts JC, Bhalgat MK, Zera RT. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J. Biomed. Mater. Res., 1996, 30:53-65
    [105] Andersson BS; Aw TY, Jones DP. Mitochondrial transmembrane potential and pH gradient during anoxia. Am. J. Physiol., 1987, 252: C349-C355
    [106] Burton JD. The MTT assay to evaluate chemosensitivity. Methods Mol. Med., 2005,110:69-78
    [107] Smolewski P, Grabarek J, Halicka D, Darzynkiewicz Z. Assay of caspase activation in situ combined with probing plasma membrane integrity to detect three distinct stages of apoptosis. J. Immunol. Methods, 2002, 265: 111-121
    [108] Facompre M, Wattez N, Kluza J, Lansiaux A, Bailly C. Relationship between Cell Cycle Changes and Variations of the Mitochondrial Membrane Potential Induced by Etoposide. Mol. Cell Biol. Res. Commun., 2000, 4: 37-42
    [109] 方允中,郑荣梁.自主基生物学的理论与应用[M].北京:科学出版社, 2002: 23-47
    [110] Wang H, Joseph JA. Structure-activity relationships of quercetin in antagonizing hydrogen peroxide-induced calcium dysregulation in PC12 cells. Free Radic. Biol. Med., 1999,27:612-616
    [111] Hong H, Liu GQ. Protection against hydrogen peroxide-induced cytotoxicity in PC-12 cells by scutellarin. Life Sci., 2004, 74: 2959-2973
    [112] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br. J. Cancer, 1972, 24: 239-257
    [113] Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E. The potential risks of nanomaterials:a review carried out for ECETOC.Part Fibre Toxicol,2006,3:11
    [114]Nel A,Xia T,Madler L,Li N.Toxic potential of materials at the nanolevel.Science,2006,311:622-627
    [115]Oberd(?)rster G,Oberd(?)rster E,Oberd(?)rster J.Nanotoxicology:An Emerging Discipline Evolving from Studies of Ultrafine Particles.Environ.Health Perspect,2005,113:823-839
    [116]Oberdorster E.Manufactured nanomaterials(fullerenes,C60) induce oxidative stress in the brain of juvenile largemouth bass.Environ.Health Perspect,2004,112:1058-1062
    [117]Park JE,Yang JH,Yoon S J,Lee JH,Yang ES,Park JW.Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells.Biochimie,2002,84:1199-1205
    [118]Cai J,Wallace DC,Zhivotovsky B,Jones DP.Separation of cytochrome c-dependent caspase activation from thiol-disulfide redox change in cells lacking mitochondrial DNA.Free Radic Biol.Med.,2000,29:334-342
    [119]Cai J,Jones DP.Superoxide in apoptosis.Mitochondrial generation triggered by cytochrome c loss.J.Biol.Chem.,1998,273:11401-11404
    [120]Th(?)venod F,Friedmann JM,Katsen AD,Hauser IA.Up-regulation of Multidrug Resistance P-glycoprotein via Nuclear Factor-B Activation Protects Kidney Proximal Tubule Cells from Cadmium-and Reactive Oxygen Species-induced Apoptosis.J.Biol.Chem.,2000,275:1887-1896
    [121]Doma(?)ski DM,Klajnert B,Bryszewska M.Influence of PAMAM dendrimers on human red blood cells.Bioelectrochemistry,2004,63:189-191
    [122]Yoshida Y,Kashiba K,Niki E.Free radical-mediated oxidation of lipids induced by hemoglobin in aqueous dispersions.Biochim.Biophys.Acta,1994,1201:165-172
    [123]医用装置标准.美国材料试验协会(ASTM)编著.成都科技大学出版社,1990:325-330
    [124]ISO.Biological evaluation of dental materials.Technical Report.1984,5:2-93
    [125] Henderson E, Haydon PG, Sakaguchi DS. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science, 1992, 257: 1944-1946

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700