脊髓γ-氨基丁酸能和脑啡肽能神经元的神经化学特点及发育模式的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-氨基丁酸(GABA)和脑啡肽(ENK)能神经元是脊髓背角重要的中间神经元,这些神经元与初级传入纤维、背角浅层的投射神经元、来自上位脑结构的下行投射纤维以及其他类型的中间神经元之间形成复杂的局部环路,在感觉信息传递和调节过程中发挥着重要的作用。由于成熟中间神经元的结构及功能形成于发育时期,它们的正常发育是上述局部环路正确形成的保证,因此很有必要从发育阶段对其开展研究。但目前有关脊髓背角GABA能和ENK能中间神经元的神经化学特点、产生模式、迁移特点及调控机制等尚存许多空白。
     本研究利用特异性显示GABA能神经元的谷氨酸脱羧酶(GAD)67-绿色荧光蛋白(GFP)基因敲入小鼠和特异性显示ENK能神经元的前原脑啡肽(PPE)-GFP转基因小鼠,综合运用神经形态学、分子神经生物学等手段,开展了以下三部分研究内容:
     1.脊髓背角GABA能和ENK能神经元的神经化学特点
     运用荧光原位杂交与免疫荧光双标、单细胞RT-PCR及实时定量PCR等技术,对GAD67-GFP基因敲入小鼠和PPE-GFP转基因小鼠的特异性进行了验证,并系统观察了脊髓背角GABA能和ENK能神经元的神经化学特点、相互的共存关系及5-HT3A受体的表达。结果如下:
     (1)免疫荧光双标结果显示GAD67-GFP基因敲入小鼠脊髓GFP阳性细胞均表达神经元标志物神经元核蛋白(NeuN),背角浅层GFP细胞分别占I、Ⅱ和Ⅲ层NeuN阳性胞核的31.51%、33.34%和44.70%。将近98%的GFP细胞表达GAD67和GABA。原位杂交组织化学与免疫组织化学双标结果显示所有GFP阳性细胞与GAD67 mRNA共存。PPE-GFP转基因小鼠不同脑区GFP与PPE mRNA的表达模式一致。脊髓GFP阳性细胞均与NeuN、PPE mRNA共存。脊髓背角GFP阳性细胞分别占I、Ⅱ和Ⅲ层NeuN阳性神经元的16.95%、40.68%和12.45%。上述结果提示这两种小鼠中GFP的表达可特异显示脊髓GABA能和ENK能神经元。
     (2)脊髓背角58.38%、19.63%和2.81%的GABA能神经元分别与钙视网膜蛋白(CR)、小白蛋白(PV)和维生素D依赖性钙结合蛋白(CB)共存;脊髓背角ENK能神经元与CR、PV和CB的共存率为61.15%、5.05%和24.74%;12.44%的ENK能神经元与一氧化氮合酶(NOS)共存;脊髓背角ENK能神经元与囊泡膜谷氨酸转运体1(VGLUT1)和VGLUT2的共存比例为20.61%和21.21%;脊髓背角GABA能神经元与PPE mRNA的共存细胞占GABA能神经元的44.41%,占PPE mRNA的53.93%;单细胞PCR结果表明脊髓背角28.07%的GABA能神经元和22.58%的ENK能神经元表达5-HT3A受体。上述结果为更好的理解GABA能和ENK能神经元在脊髓的功能提供了形态学依据。
     2.脊髓GABA能神经元的发育模式及调控机制
     运用GAD67-GFP基因敲入小鼠和Ebf2基因敲除小鼠,结合免疫荧光双标、BrdU标记、脊髓片培养、Time-lapse荧光显微镜动态观察及单细胞RT-PCR等技术,观察了脊髓GABA能神经元的时空分布、起源、迁移模式和调控机制。结果如下:
     (1) GABA能神经元最早出现在胚胎11.5天(E11.5)脊髓的腹侧部,至胚胎晚期和生后阶段,主要分布在脊髓背角,于E17达到高峰。至P14,GABA能神经元的分布达到与成年脊髓相似的模式。上述结果提示脊髓GABA能神经元的分布具有明显的时间和空间分布特点,呈由腹侧向背侧的分化趋势。
     (2)脊髓GABA能神经元的产生主要集中在E10.5-E14.5。E11.5和E13.5是两个产生高峰,E10.5产生的GABA能神经元较少,且主要位于脊髓前角。E11.5和E13.5产生的GABA神经元主要分布在脊髓背角浅层和中央管周围。脊髓背角深层的GABA能神经元多产生于E12.5。胚胎晚期仅产生较少的GABA能神经元。
     (3)在体和离体结果均表明胚胎晚期脊髓套层部分GABA能神经元表达细胞周期标记物Ki-67、5-溴-2′-脱氧尿苷(BrdU)和磷酸化的组蛋白H-3(P-H3),提示这些GABA能神经元具有增殖活性。推测在套层内这些具有增殖活性的GABA能神经元是胚胎晚期脊髓GABA能神经元的一个新的来源。
     (4)脊髓GABA能神经元产生后以放射状迁移的方式到达脊髓套层,然后向背腹方向移动到达其终止部位。E10.5产生的GABA能神经元主要迁移至脊髓前角,而E11.5产生的GABA能神经元则主要迁移至脊髓背角。不同阶段产生的神经元具有特定的迁移模式。
     (5) Ebf2基因敲除小鼠脊髓背角Pax2的表达下调, Lmx1b、Drg11和Tlx3的表达未发生改变。上述结果提示Ebf2参与了脊髓GABA能神经元的发育调控。
     3.脊髓ENK能神经元的发育模式
     运用PPE-GFP转基因小鼠,结合免疫荧光双标技术,观察了脊髓ENK能神经元的时空分布、发育阶段ENK能神经元的神经化学特点及其表达的调控分子。结果如下:
     (1) ENK能神经元最早出现在E11.5颈段脊髓腹内侧部,腰段脊髓ENK能神经元在E12.5出现。在E13.5,ENK能神经元主要分布在中间带。E14.5时脊髓背侧开始出现ENK能神经元,之后细胞数量逐渐增多,于胚胎晚期和生后阶段,ENK能神经元主要分布在脊髓背角,P21达到与成年类似的分布模式。上述结果提示脊髓ENK能神经元的分布具有明显的时间和空间分布特点,呈腹侧向背侧、吻侧向尾侧的发育趋势。
     (2)发育阶段脊髓背角ENK能神经元与GABA能神经元的共存比率较恒定,E16时共存细胞占ENK能神经元的43.35%,P3时双标细胞占ENK能神经元的45.02%。不同发育阶段ENK能神经元与CB、PV及CR的共存率不同,提示在ENK能神经元的发育成熟的不同时程中发挥不同的功能。
     (3) E15.5时ENK能神经元与Pax2的共存细胞占ENK能神经元的65.17%;至P3,GFP/Pax2双标神经元占ENK能神经元的57.74%,且主要分布在背角浅层。在脊髓背角Ⅰ层观察到ENK能神经元与Lmx1b的共存细胞,在E15和E18,共存细胞分别占脊髓背角ENK能神经元的3.48%和4.50%。上述结果为深入探讨脊髓ENK能神经元的发育调控分子机制提供了形态依据。
     通过上述研究得到了以下结论:(1)较系统地观察了脊髓背角GABA能和ENK能神经元所包含的神经活性物质和5-HT受体亚型,为阐明这两类神经元的神经化学特点提供了实验依据;(2)揭示了脊髓GABA能和ENK能神经元的时间和空间分布特点及GABA能神经元的迁移模式;(3)明确了脊髓GABA能神经元的产生时程规律;首次发现了胚胎发育晚期脊髓套层内存在GABA能神经元祖细胞,提出了脊髓GABA能神经元的新起源;(4)证实Ebf2基因参与脊髓GABA能神经元的发育调节。
     GABA能和ENK能神经元作为脊髓背角局部环路重要的组成部分,对感觉传递的调控发挥重要作用。因此探讨脊髓背角GABA能和ENK能中间神经元的神经化学特点、神经元的产生、分化特点、迁移方式及调控基因等,不仅有助于理解正常生理状态下脊髓背角GABA能和ENK能神经元及其参与的局部环路在感觉信息调节中的作用,更重要的是有助于理解病理状态下发生可塑性变化和脊髓背角局部环路重建的机制,从而为脊髓损伤后GABA能和ENK能神经元的修复以及相关的神经系统变性疾病的发病机理和治疗提供新的思路。
γ-aminobutyric acid (GABA) ergic neurons and enkephalin (ENK) ergic neurons are important interneurons in the spinal dorsal horn (SDH). These interneurons together with primary afferent fibers, projection neurons, decending terminals and other types of interneurons in the superficial layers comprise the complex nociceptive circuitry, which play important roles in modulating transmission of nociceptive information. The assembly of the complex neuronal circuit depends on the generation of functionally distinct types of dorsal horn neurons during development. Any disturbance of the development of these elements will strongly affect the formation of nociceptive circuitry in the SDH. So it is necessary to examine them during the development course. However, the neurochemical features, temperal and spatial distribution, origin, migration and transcriptional regulation of GABAergic and ENKergic neurons in the spinal cord remain largely unknown.
     In the present study, we used glutamic acid decarboxylase (GAD)67 -green fluorescence protein (GFP) knock-in mouse to characterize GABAergic neurons and preproenkephalin (PPE)-GFP transegenic mouse to characterize ENKergic neurons. We performed the following three parts of the experiment by using morphological and molecular biological methods.
     1. The neurochemical features of GABAergic and ENKergic neurons in the SDH.
     By using double immunofluorescence labeling, fluorescent in situ hybridization combined with immunofluorescence labeling, single-cell reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR methods, we confirmed the validity of GAD67-GFP knock-in mouse and PPE-GFP transgenic mouse. And then we observed the neurochemical features, the expression of 5-hydroxytryptamine (5-HT)3A receptor and the co-existence of GABAergic and ENKergic neurons in the SDH. The results were as followings: (1) Double immunofluorescence labeling results showed that all the GFP-positive neurons were co-localized with neuronal nuclei protein (NeuN). More than 98% of the GFP-positive neurons were positive for GAD67 and GABA. The double labeled staining for GFP and in situ hybridization for GAD67 mRNA showed that GFP immunoreactive neurons expressed GAD67 mRNA in the spinal cord. GFP-positive neurons constituted 31.51%, 33.34%, and 44.70% of the NeuN-positive neurons in laminae I, II, and III, respectively. The expression pattern of GFP-positive neurons in the PPE-GFP transgenic mouse paralleled with that of PPE mRNA expression in different brain regions. All the GFP-positive neurons in the spinal cord of the PPE-GFP transgenic mouse co-localized with NeuN and PPE mRNA. ENKergic neurons constituted 16.95%, 40.68%, and 12.45% of the NeuN-positive neurons in laminae I, II, and III, respectively. Thus, the above double-lebeling study convinced us of the usefulness of the mice for the studies of GABAergic and ENKergic neurons in the spinal cord. (2) The proportions of calretinin (CR)-, parvalbumin (PV)- and calbinding DK28 (CB)-positive cells among GABAergic neurons in the SDH were 58.38%, 19.63%, and 2.81%, respectively. The proportions of CR-, PV- and CB-positive cells among ENKergic neurons in the SDH were 61.15%, 5.05% and 24.74%, respectively. About 12.44% of ENKergic neurons in the SDH were immunoreactive for nitric oxide synthase (NOS). We found that 20.61% of ENKergic neurons in the SDH expressed VGLUT1 and 21.21% of ENKergic neurons were positive for VGLUT2. Quantitative analysis indicated that more than 44.41% of GABAergic neurons showed signals for PPE mRNA in the SDH. While 53.93% of PPE mRNA-expressing neurons were immunoreactive for GABA. Single-cell RT-PCR results showed that 5-HT3A receptor subunit was detected in 28.07% of GABAergic neurons and 22.58% of ENKergic neurons. These detailed results have broad implications for understanding the functional roles of GABAergic and ENKergic neurotransmission in the SDH.
     2. The developmental pattern and transcriptional regulation of GABAergic neurons in the spinal cord.
     By using GAD67-GFP knock-in mouse and early B factor 2 (Ebf2) knock out mouse, we observed the temporal and spatial distribution, origin, migration and transcriptional regulation of GABAergic neurons in the spinal cord. Double immunofluorescent labeling, 5-bromo-2-deoxyuridine (BrdU) labeling, spinal cord slice culture, Time-lapse observation and single-cell RT-PCR were used in this part. The results were as followings:
     (1) GFP-positive GABAergic neurons appeared at embryonic day (E) 11.5 in the ventral region of the spinal cord and became abundant in the whole future gray matter at E12. Thereafter, GFP-positive neurons increased progressively in number and extended from ventral to dorsal regions. The intensity of GFP-positive neurons in the dorsal horn peaked at E17. At postnatal day 14, the distribution pattern of GFP immunoreactivity was similar to that of GABAergic neurons in adult spinal cord. Taken together, the present results suggest that the GFP immunoreactivity, and thus the expression of GABA, undergoes a ventral to dorsal shift in the spinal cord during development.
     (2) Birthdating studies revealed that GABAergic neurogenesis were present since E10.5. Then the generation of GABAergic neurons significantly increased, reaching a peak at E11.5. The two waves for the co-localization of GABA and BrdU in the spinal cord were seen at E11.5 and E13.5. The vast majority of GABAergic neurons were generated before E14.5. Then, GABA-positive neuron generation decreased drastically. The birthdates of GABAergic neurons in each lamina were different.
     (3) Both in vivo and in vitro results indicated that a small but significant fraction of GABAergic neurons in the spinal mantle layer were double-labeled with cell-cycle markers Ki-67, BrdU and phosphorylated histone H3 (P-H3). These double-labeled neurons characterized by cell-cycle markers were proliferative GABAergic nneurons which might contribute to the production of spinal GABAergic neurons at late embryonic stages.
     (4) Time-lapse observation results indicated that after production, GABAergic neurons migrate to the spinal mantle layer in a radial manner and then migrate to the final location. BrdU labeling results showed that GABAergic neurons born at E10.5 migrate ventrally, and do not contribute to the formation of the superficial layer of the SDH. GABAergic neurons born at E11.5 migrate dorsally and contribute to the formation of the superficial layer of the SDH.
     (5) The expression of Pax2 in the SDH of the Ebf2 knock out mouse decreased compared with that in the wild type mouse. While there was no change in the expression of Lmx1b, Drg11 and Tlx3. These results suggested that Ebf2 was required for the development of GABAergic neurons in the spinal cord.
     3. The developmental pattern of ENKergic neurons in the spinal cord.
     By using PPE-GFP transgenic mouse and double immunofluorescent labeling method, we observed the temperal and spatial distribution and neurochemical characteristics of ENKergic neurons during the spinal cord development.
     (1) GFP-positive ENKergic neurons appeared at E11.5 in the ventral region of the spinal cord. At E13.5, GFP-positive neurons were mainly present in the intermediate zone. No matter what level was considered, the first labeled GFP-positive cells were observed in the dorsal gray matter at E14. Thereafter,GFP positive neurons increased progressively in number and extended from ventra1 to dorsa1 regions. After birth, GFP-positive neurons were mainly restricted to the dorsal gray matter and also decreased in the staining intensity. At postnatal day 21, the distribution pattern of GFP immunoreactivity was similar to that of ENKergic neurons in the adult spinal cord. Taken together, the present results suggest that ENKergic neurons develop according to a rostro-caudal and ventro-dorsal gradient.
     (2) Double labeling results revealed a significant population of neurons expressing both GABA and ENK. Interestingly, this proportion remained stable during the course of development. The proportions of double-labeled neurons among ENKergic neurons were 43.35% at E16, 45.02% at P3. CB, CR and PV showed a dynamic pattern of co-localization with ENK in neurons of the spinal cord throughout development. The transient expression of calcium-binding proteins in ENKergic neurons might be related to the critical period of development.
     (3) The proportions of Pax2 among ENKergic neurons in the SDH at E15.5 and E17.5 were 65.17% and 57.74%, respectively. At P3, the GFP/Pax2 double-labeled neurons were primarily located in the superficial layers of the SDH. We also observed a portion of ENKergic neurons co-expressed Lmx1b at E15 (3.48%) or at E18 (4.50%). Double-labeled neurons were mainly observed in laminae I. The above results provide detailed morphological evidence for the regulation of ENKergic neuron development.
     In summary, from the above results we can draw the following conclusions. (1) We examined the expression of neurochemical substances, 5-HT receptor subtype in the GABAergic and ENKergic neurons in the spinal cord. Such detailed information will provide morphological evidence for the neurochemical characteristics of GABAergic and ENKergic neurons in the SDH. (2) Our results showed the dynamic expression pattern of GABAergic and ENKergic neurons and the migration of GABAergic neurons in the spinal cord. (3) The present study revealed the birthdating of GABAergic neurons in the spinal cord. We confirmed the presence of GABAergic neuron progenitor in the spinal mantle layer at late embryonic stages. These GABAergic neuron progenitors might be another source of GABAergic neurons of the spinal cord. (4) Our results provide evidence that Ebf2 was required for the GABAergic neuron development in the spinal cord.
     GABAergic and ENKergic neurons are important elements of the neuronal circuitry in the SDH and play crucial roles in the modulation of nociception. Therefore, exploring the neurochemical features, the ontogeny, origin, migration and transcriptional regulation of GABAergic and ENKergic neurons will far improve our understanding of the functional relevance of these interneurons. Most importantly, it will helpful to comprehend the mechanism on the neural plasticity under pathological conditions. The identification of neurochemical features and developmental patterns of these interneurons will aid in the design of new strategies for spinal cord injury or some developmental disorders.
引文
[1] Costigan M, Woolf CJ. No DREAM, No pain. Closing the spinal gate. Cell 2002;108 (3):297-300.
    [2] Millan MJ. Descending control of pain. Prog Neurobiol 2002;66 (6):355-474.
    [3] Gebhart GF. Descending modulation of pain. Neurosci Biobehav Rev 2004;27 (8):729-37.
    [4] Li H, Kang JF, Li YQ. Serotonin potentiation of glycine-activated whole-cell currents in the superficial laminae neurons of the rat spinal dorsal horn is mediated by protein kinase C. Brain Res Bull 2002;58 (6):593-600.
    [5] Dickenson AH, Chapman V, Green GM. The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. Gen Pharmacol 1997;28 (5):633-8.
    [6] Urban MO, Zahn PK, Gebhart GF. Descending facilitatory influences from the rostral medial medulla mediate secondary, but not primary hyperalgesia in the rat. Neuroscience 1999;90 (2):349-52.
    [7] Eaton MJ, Plunkett JA, Karmally S, Martinez MA, Montanez K. Changes in GAD- and GABA- immunoreactivity in the spinal dorsal horn after peripheral nerve injury and promotion of recovery by lumbar transplant of immortalized serotonergic precursors. J Chem Neuroanat 1998;16 (1):57-72.
    [8] Xu TL, Pang ZP, Li JS, Akaike N. 5-HT potentiation of the GABA(A) response in the rat sacral dorsal commissural neurones. Br J Pharmacol 1998;124 (4):779-87.
    [9] Garraway SM, Hochman S. Serotonin increases the incidence of primary afferent-evoked long-term depression in rat deep dorsal horn neurons. J Neurophysiol 2001;85 (5):1864-72.
    [10] Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology 1999;38 (8):1083-152.
    [11] Flanagan, JG. Neural map specification. Curr Opin Neurobiol 2006;16 (1):59-66.
    [12] Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996;274 (5290):1123-33.
    [13] Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 1999;96 (6):795-806.
    [14] Tessier-Lavigne M, Placzek M, Lumsden AG, Dodd J, Jessell TM. Chemotropic guidance of developing axons in the mammalian central nervous system. Nature 1988;336 (6201):775-8.
    [15] Watanabe K, Tamamaki N, Furuta T, Ackerman SL, Ikenaka K, Ono K. Dorsally derived netrin 1 provides an inhibitory cue and elaborates the 'waiting period' for primary sensory axons in the developing spinal cord. Development 2006;133 (7):1379-87.
    [16] Islam SM, Shinmyo Y, Okafuji T, Su Y, Naser IB, Ahmed G, Zhang S, Chen S, Ohta K, Kiyonari H, Abe T, Tanaka S, Nishinakamura R, Terashima T, Kitamura T, Tanaka H. Draxin, a repulsive guidance protein for spinal cord and forebrain commissures. Science 2009;323 (5912):388-93.
    [17] Chen ZF, Rebelo S, White F, Malmberg AB, Baba H, Lima D, Woolf CJ, Basbaum AI, Anderson DJ. The paired homeodomain protein DRG11 is required for the projection of cutaneous sensory afferent fibers to the dorsal spinal cord. Neuron 2001;31 (1):59-73.
    [18] Inoue K, Ozaki S, Shiga T, Ito K, Masuda T, Okado N, Iseda T, Kawaguchi S, Ogawa M, Bae SC, Yamashita N, Itohara S, Kudo N, Ito Y. Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat Neurosci 2002;5 (10):946-54.
    [19] Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 2000;1 (1):20-9.
    [20] Zhuang B, Sockanathan S. Dorsal-ventral patterning: a view from the top. Curr Opin Neurobiol 2006;16 (1):20-4.
    [21] Helms AW, Johnson JE. Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 2003;13 (1):42-9.
    [22] Caspary T, Anderson KV. Patterning cell types in the dorsal spinal cord: what the mouse mutants say. Nat Rev Neurosci 2003;4 (4):289-97.
    [23] Matise M. A dorsal elaboration in the spinal cord. Neuron 2002;34 (4):491-3.
    [24] Muller T, Brohmann H, Pierani A, Heppenstall PA, Lewin GR, Jessell TM, Birchmeier C. The homeodomain factor lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron 2002;34 (4):551-62.
    [25] Glasgow SM, Henke RM, Macdonald RJ, Wright CV, Johnson JE. Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 2005;132 (24):5461-9.
    [26] Cheng L, Arata A, Mizuguchi R, Qian Y, Karunaratne A, Gray PA, Arata S, Shirasawa S, Bouchard M, Luo P, Chen CL, Busslinger M, Goulding M, Onimaru H, Ma Q. Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat Neurosci 2004;7 (5):510-7.
    [27] Cheng L, Samad OA, Xu Y, Mizuguchi R, Luo P, Shirasawa S, Goulding M, Ma Q. Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat Neurosci 2005;8 (11):1510-5.
    [28] Helms AW, Johnson JE. Progenitors of dorsal commissural interneurons are defined by MATH1 expression. Development 1998;125 (5):919-28.
    [29] Helms AW, Battiste J, Henke RM, Nakada Y, Simplicio N, Guillemot F, Johnson JE. Sequential roles for Mash1 and Ngn2 in the generation of dorsal spinal cord interneurons. Development 2005;132 (12):2709-19.
    [30] Muller T, Anlag K, Wildner H, Britsch S, Treier M, Birchmeier C. ThebHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord. Genes Dev 2005;19 (6):733-43.
    [31] Kriks S, Lanuza GM, Mizuguchi R, Nakafuku M, Goulding M. Gsh2 is required for the repression of Ngn1 and specification of dorsal interneuron fate in the spinal cord. Development 2005;132 (13):2991-3002.
    [32] Mizuguchi R, Kriks S, Cordes R, Gossler A, Ma Q, Goulding M. Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat Neurosci 2006;9 (6):770-8.
    [33] Li MZ, Wang JS, Jiang DJ, Xiang CX, Wang FY, Zhang KH, Williams PR, Chen ZF. Molecular mapping of developing dorsal horn-enriched genes by microarray and dorsal/ventral subtractive screening. Dev Biol 2006;292 (2):555-64.
    [34] Lee KJ, Dietrich P, Jessell TM. Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature 2000;403 (6771):734-40.
    [35] Lee KJ, Mendelsohn M, Jessell TM. Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev 1998;12 (21):3394-407.
    [36] Millonig JH, Millen KJ, Hatten ME. The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 2000;403 (6771):764-9.
    [37] Chesnutt C, Burrus LW, Brown AM, Niswander L. Coordinate regulation of neural tube patterning and proliferation by TGFbeta and WNT activity. Dev Biol 2004;274 (2):334-47.
    [38] Butler SJ, Dodd J. A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 2003;38 (3):389-401.
    [39] Muroyama Y, Fujihara M, Ikeya M, Kondoh H, Takada S. Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord.Genes Dev 2002;16 (5):548-53.
    [40] Gunhaga L, Marklund M, Sjodal M, Hsieh JC, Jessell TM, Edlund T. Specification of dorsal telencephalic character by sequential Wnt and FGF signaling. Nat Neurosci 2003;6 (7):701-7.
    [41] Zechner D, Muller T, Wende H, Walther I, Taketo MM, Crenshaw EB, 3rd, Treier M, Birchmeier W, Birchmeier C. Bmp and Wnt/beta-catenin signals control expression of the transcription factor Olig3 and the specification of spinal cord neurons. Dev Biol 2007;303 (1):181-90.
    [42] Allain AE, Bairi A, Meyrand P, Branchereau P. Ontogenic changes of the GABAergic system in the embryonic mouse spinal cord. Brain Res 2004;1000 (1-2):134-47.
    [43] Tran TS, Alijani A, Phelps PE. Unique developmental patterns of GABAergic neurons in rat spinal cord. J Comp Neurol 2003;456 (2):112-26.
    [44] John A, Wildner H, Britsch S. The homeodomain transcription factor Gbx1 identifies a subpopulation of late-born GABAergic interneurons in the developing dorsal spinal cord. Dev Dyn 2005;234 (3):767-71.
    [45] Pillai A, Mansouri A, Behringer R, Westphal H, Goulding M. Lhx1 and Lhx5 maintain the inhibitory-neurotransmitter status of interneurons in the dorsal spinal cord. Development 2007;134 (2):357-66.
    [46] Berki AC, O'Donovan MJ, Antal M. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord. J Comp Neurol 1995;362 (4):583-96.
    [47] Huang M, Huang T, Xiang Y, Xie Z, Chen Y, Yan R, Xu J, Cheng L. Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Dev Biol 2008;322 (2):394-405.
    [48] Batista MF, Lewis KE. Pax2/8 act redundantly to specify glycinergic and GABAergic fates of multiple spinal interneurons. Dev Biol 2008;323(1):88-97.
    [49] Xu Y, Lopes C, Qian Y, Liu Y, Cheng L, Goulding M, Turner EE, Lima D, Ma Q. Tlx1 and Tlx3 coordinate specification of dorsal horn pain-modulatory peptidergic neurons. J Neurosci 2008;28 (15):4037-46.
    [50] Vanegas H, Schaible HG. Descending control of persistent pain: inhibitory or facilitatory? Brain Res Brain Res Rev 2004;46 (3):295-309.
    [51] Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 2003;4 (12):1002-12.
    [52] Allain AE, Meyrand P, Branchereau P. Ontogenic changes of the spinal GABAergic cell population are controlled by the serotonin (5-HT) system: implication of 5-HT1 receptor family. J Neurosci 2005;25 (38):8714-24.
    [1] Millan MJ. Descending control of pain. Prog Neurobiol 2002;66 (6):355-474.
    [2] Gebhart GF. Descending modulation of pain. Neurosci Biobehav Rev 2004;27 (8):729-37.
    [3] Almond JR, Westrum LE, Henry MA. Post-embedding immunogold labeling of gamma-aminobutyric acid in lamina II of the spinal trigeminal subnucleus pars caudalis: I. A qualitative study. Synapse 1996;24 (1):39-47.
    [4] Dumba JS, Irish PS, Anderson NL, Westrum LE. Electron microscopic analysis of gamma-aminobutyric acid and glycine colocalization in rat trigeminal subnucleus caudalis. Brain Res 1998;806 (1):16-25.
    [5] Lee T, Kaneko T, Taki K, Mizuno N. Preprodynorphin-, preproenkephalin-, and preprotachykinin-expressing neurons in the rat neostriatum: an analysis by immunocytochemistry and retrograde tracing. J Comp Neurol 1997;386 (2):229-44.
    [6] Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 2003;467 (1):60-79.
    [7] Koshimizu Y, Wu SX, Unzai T, Hioki H, Sonomura T, Nakamura KC, Fujiyama F, Kaneko T. Paucity of enkephalin production in neostriatal striosomal neurons: analysis with preproenkephalin-green fluorescent protein transgenic mice. Eur J Neurosci 2008;28 (10):2053-64.
    [8] Nakamura KC, Kameda H, Koshimizu Y, Yanagawa Y, Kaneko T. Production and histological application of affinity-purified antibodies to heat-denatured green fluorescent protein. J Histochem Cytochem 2008;56 (7):647-57.
    [9] Arnold DB, Heintz N. A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells. Proc NatlAcad Sci U S A 1997;94 (16):8842-7.
    [10] Kawaguchi Y, Kondo S. Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 2002;31 (3-5):277-87.
    [11] Sakai T, Oshima A, Nozaki Y, Ida I, Haga C, Akiyama H, Nakazato Y, Mikuni M. Changes in density of calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder. Neuropathology 2008;28 (2):143-50.
    [12] Harte MK, Powell SB, Swerdlow NR, Geyer MA, Reynolds GP. Deficits in parvalbumin and calbindin immunoreactive cells in the hippocampus of isolation reared rats. J Neural Transm 2007;114 (7):893-8.
    [13] Mascagni F, Muly EC, Rainnie DG, McDonald AJ. Immunohistochemical characterization of parvalbumin-containing interneurons in the monkey basolateral amygdala. Neuroscience 2009;158 (4):1541-50.
    [14] Panzanelli P, Fritschy JM, Yanagawa Y, Obata K, Sassoe-Pognetto M. GABAergic phenotype of periglomerular cells in the rodent olfactory bulb. J Comp Neurol 2007;502 (6):990-1002.
    [15] Van Brederode JF, Mulligan KA, Hendrickson AE. Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex. J Comp Neurol 1990;298 (1):1-22.
    [16] Laing I, Todd AJ, Heizmann CW, Schmidt HH. Subpopulations of GABAergic neurons in laminae I-III of rat spinal dorsal horn defined by coexistence with classical transmitters, peptides, nitric oxide synthase or parvalbumin. Neuroscience 1994;61 (1):123-32.
    [17] Hokfelt T, Broberger C, Xu ZQ, Sergeyev V, Ubink R, Diez M. Neuropeptides--an overview. Neuropharmacology 2000;39 (8):1337-56.
    [18] Law PY, Wong YH, Loh HH. Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol2000;40:389-430.
    [19] Liao D, Lin H, Law PY, Loh HH. Mu-opioid receptors modulate the stability of dendritic spines. Proc Natl Acad Sci U S A 2005;102 (5):1725-30.
    [20] Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ. The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 2003;17 (1):13-27.
    [21] Schneider SP, Walker TM. Morphology and electrophysiological properties of hamster spinal dorsal horn neurons that express VGLUT2 and enkephalin. J Comp Neurol 2007;501 (5):790-809.
    [22] Poulin JF, Castonguay-Lebel Z, Laforest S, Drolet G. Enkephalin co-expression with classic neurotransmitters in the amygdaloid complex of the rat. J Comp Neurol 2008;506 (6):943-59.
    [23] Todd AJ, Spike RC, Russell G, Johnston HM. Immunohistochemical evidence that Met-enkephalin and GABA coexist in some neurones in rat dorsal horn. Brain Res 1992;584 (1-2):149-56.
    [24] Jo YH, Stoeckel ME, Schlichter R. Electrophysiological properties of cultured neonatal rat dorsal horn neurons containing GABA and met-enkephalin-like immunoreactivity. J Neurophysiol 1998;79 (3):1583-6.
    [25] Eaton MJ, Plunkett JA, Karmally S, Martinez MA, Montanez K. Changes in GAD- and GABA- immunoreactivity in the spinal dorsal horn after peripheral nerve injury and promotion of recovery by lumbar transplant of immortalized serotonergic precursors. J Chem Neuroanat 1998;16 (1):57-72.
    [26] Xu TL, Pang ZP, Li JS, Akaike N. 5-HT potentiation of the GABA(A) response in the rat sacral dorsal commissural neurones. Br J Pharmacol 1998;124 (4):779-87.
    [27] Glaum SR, Proudfit HK, Anderson EG. Reversal of the antinociceptive effects of intrathecally administered serotonin in the rat by a selective 5-HT3 receptor antagonist. Neurosci Lett 1988;95 (1-3):313-7.
    [28] Tanimoto T, Takeda M, Nishikawa T, Matsumoto S. The role of 5-hydroxytryptamine3 receptors in the vagal afferent activation-induced inhibition of the first cervical dorsal horn spinal neurons projected from tooth pulp in the rat. J Pharmacol Exp Ther 2004;311 (2):803-10.
    [29] Morales M, Battenberg E, de Lecea L, Bloom FE. The type 3 serotonin receptor is expressed in a subpopulation of GABAergic neurons in the rat neocortex and hippocampus. Brain Res 1996;731 (1-2):199-202.
    [30] Puig MV, Santana N, Celada P, Mengod G, Artigas F. In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. Cereb Cortex 2004;14 (12):1365-75.
    [31] Tsuchiya M, Yamazaki H, Hori Y. Enkephalinergic neurons express 5-HT3 receptors in the spinal cord dorsal horn: single cell RT-PCR analysis. Neuroreport 1999;10 (13):2749-53.
    [32] Hovius R, Tairi AP, Blasey H, Bernard A, Lundstrom K, Vogel H. Characterization of a mouse serotonin 5-HT3 receptor purified from mammalian cells. J Neurochem 1998;70 (2):824-34.
    [33] Garraway SM, Hochman S. Serotonin increases the incidence of primary afferent-evoked long-term depression in rat deep dorsal horn neurons. J Neurophysiol 2001;85 (5):1864-72.
    [1] Millan MJ. Descending control of pain. Prog Neurobiol 2002;66 (6):355-474.
    [2] Fitzgerald M. The development of nociceptive circuits. Nat Rev Neurosci 2005;6 (7):507-20.
    [3] Owens DF, Kriegstein AR. Developmental neurotransmitters? Neuron 2002;36 (6):989-91.
    [4] Herlenius E, Lagercrantz H. Development of neurotransmitter systems during critical periods. Exp Neurol 2004;190 Suppl 1:S8-21.
    [5] Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 2000;1 (1):20-9.
    [6] Helms AW, Johnson JE. Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 2003;13 (1):42-9.
    [7] Glasgow SM, Henke RM, Macdonald RJ, Wright CV, Johnson JE. Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 2005;132 (24):5461-9.
    [8] Cheng L, Samad OA, Xu Y, Mizuguchi R, Luo P, Shirasawa S, Goulding M, Ma Q. Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat Neurosci 2005;8 (11):1510-5.
    [9] Tran TS, Alijani A, Phelps PE. Unique developmental patterns of GABAergic neurons in rat spinal cord. J Comp Neurol 2003;456 (2):112-26.
    [10] Allain AE, Bairi A, Meyrand P, Branchereau P. Ontogenic changes of the GABAergic system in the embryonic mouse spinal cord. Brain Res 2004;1000 (1-2):134-47.
    [11] Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 2003;467 (1):60-79.
    [12] Gao BX, Stricker C, Ziskind-Conhaim L. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks. J Neurophysiol 2001;86 (1):492-502.
    [13] Lawson SJ, Davies HJ, Bennett JP, Lowrie MB. Evidence that spinal interneurons undergo programmed cell death postnatally in the rat. Eur J Neurosci 1997;9 (4):794-9.
    [14] Kee N, Sivalingam S, Boonstra R, Wojtowicz JM. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods 2002;115 (1):97-105.
    [15] Fukuda T, Kawano H, Osumi N, Eto K, Kawamura K. Histogenesis of the cerebral cortex in rat fetuses with a mutation in the Pax-6 gene. Brain Res Dev Brain Res 2000; 120 (1):65-75.
    [16] Yozu M, Tabata H, Nakajima K. Birth-date dependent alignment of GABAergic neurons occurs in a different pattern from that of non-GABAergic neurons in the developing mouse visual cortex. Neurosci Res 2004;49 (4):395-403.
    [17] Dupuy ST, Houser CR. Developmental changes in GABA neurons of the rat dentate gyrus: an in situ hybridization and birthdating study. J Comp Neurol 1997;389 (3):402-18.
    [18] Wu SX, Goebbels S, Nakamura K, Kometani K, Minato N, Kaneko T, Nave KA, Tamamaki N. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc Natl Acad Sci U S A 2005;102 (47):17172-7.
    [19] Friocourt G, Kanatani S, Tabata H, Yozu M, Takahashi T, Antypa M, Raguenes O, Chelly J, Ferec C, Nakajima K, Parnavelas JG. Cell-autonomous roles of ARX in cell proliferation and neuronal migration during corticogenesis. J Neurosci 2008;28 (22):5794-805.
    [20] Kowalczyk T, Pontious A, Englund C, Daza RA, Bedogni F, Hodge R, Attardo A, Bell C, Huttner WB, Hevner RF. Intermediate Neuronal Progenitors (Basal Progenitors) Produce Pyramidal-Projection Neuronsfor All Layers of Cerebral Cortex. Cereb Cortex 2009.
    [21] Martinez-Cerdeno V, Noctor SC, Kriegstein AR. The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb Cortex 2006;16 Suppl 1:i152-61.
    [22] Anderson SA, Eisenstat DD, Shi L, Rubenstein JL. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 1997;278 (5337):474-6.
    [23] Letinic K, Zoncu R, Rakic P. Origin of GABAergic neurons in the human neocortex. Nature 2002;417 (6889):645-9.
    [24] Tsunekawa N, Yanagawa Y, Obata K. Development of GABAergic neurons from the ventricular zone in the superior colliculus of the mouse. Neurosci Res 2005;51 (3):243-51.
    [25] Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996;274 (5290):1123-33.
    [26] Garcia-Dominguez M, Poquet C, Garel S, Charnay P. Ebf gene function is required for coupling neuronal differentiation and cell cycle exit. Development 2003;130 (24):6013-25.
    [27] Garel S, Marin F, Mattei MG, Vesque C, Vincent A, Charnay P. Family of Ebf/Olf-1-related genes potentially involved in neuronal differentiation and regional specification in the central nervous system. Dev Dyn 1997;210 (3):191-205.
    [28] Garel S, Marin F, Grosschedl R, Charnay P. Ebf1 controls early cell differentiation in the embryonic striatum. Development 1999;126 (23):5285-94.
    [29] Corradi A, Croci L, Broccoli V, Zecchini S, Previtali S, Wurst W, Amadio S, Maggi R, Quattrini A, Consalez GG. Hypogonadotropic hypogonadism and peripheral neuropathy in Ebf2-null mice. Development 2003;130 (2):401-10.
    [30] Li MZ, Wang JS, Jiang DJ, Xiang CX, Wang FY, Zhang KH, Williams PR, Chen ZF. Molecular mapping of developing dorsal horn-enrichedgenes by microarray and dorsal/ventral subtractive screening. Dev Biol 2006;292 (2):555-64.
    [31] Wiesenfeld-Hallin Z, Aldskogius H, Grant G, Hao JX, Hokfelt T, Xu XJ. Central inhibitory dysfunctions: mechanisms and clinical implications. Behav Brain Sci 1997;20 (3):420-5; discussion 35-513.
    [32] Levitt P, Eagleson KL, Powell EM. Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci 2004;27 (7):400-6.
    [33] Rennie JM, Boylan GB. Neonatal seizures and their treatment. Curr Opin Neurol 2003;16 (2):177-81.
    [1] Millan MJ. Descending control of pain. Prog Neurobiol 2002;66 (6):355-474.
    [2] Zagon IS, Isayama T, McLaughlin PJ. Preproenkephalin mRNA expression in the developing and adult rat brain. Brain Res Mol Brain Res 1994;21 (1-2):85-98.
    [3] Yang DS, Boelen MK, Morgan IG. Development of the enkephalin-, neurotensin- and somatostatin-like (ENSLI) amacrine cells in the chicken retina. Brain Res Dev Brain Res 1997;101 (1-2):57-65.
    [4] Leslie FM, Chen Y, Winzer-Serhan UH. Opioid receptor and peptide mRNA expression in proliferative zones of fetal rat central nervous system. Can J Physiol Pharmacol 1998;76 (3):284-93.
    [5] Garner LK, Mendelson B, Albers KM, Kindy M, Overbeck TL, Davis BM. Ontogeny and effect of activity on proenkephalin mRNA expression during development of the chick spinal cord. J Comp Neurol 1994;347 (1):36-46.
    [6] Koshimizu Y, Wu SX, Unzai T, Hioki H, Sonomura T, Nakamura KC, Fujiyama F, Kaneko T. Paucity of enkephalin production in neostriatal striosomal neurons: analysis with preproenkephalin-green fluorescent protein transgenic mice. Eur J Neurosci 2008;28 (10):2053-64.
    [7] Xu Y, Lopes C, Qian Y, Liu Y, Cheng L, Goulding M, Turner EE, Lima D, Ma Q. Tlx1 and Tlx3 coordinate specification of dorsal horn pain-modulatory peptidergic neurons. J Neurosci 2008;28 (15):4037-46.
    [8] Huang M, Huang T, Xiang Y, Xie Z, Chen Y, Yan R, Xu J, Cheng L. Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Dev Biol 2008;322(2):394-405.
    [9] Huang J, Tamamaki N, Obata K, Li YQ, Wu SX. Prenatal and postnatal development of GABAergic neurons in the mouse spinal cord revealed by GFP expression in GAD67-GFP knock-in mouse. Neuroembryol Aging 2007;4:147-154.
    [10] Berki AC, O'Donovan MJ, Antal M. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord. J Comp Neurol 1995;362 (4):583-96.
    [11] Arnold DB, Heintz N. A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells. Proc Natl Acad Sci U S A 1997;94 (16):8842-7.
    [12] Gonchar Y, Burkhalter A. Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 1997;7 (4):347-58.
    [13] Davila JC, Olmos L, Legaz I, Medina L, Guirado S, Real MA. Dynamic patterns of colocalization of calbindin, parvalbumin and GABA in subpopulations of mouse basolateral amygdalar cells during development. J Chem Neuroanat 2008;35 (1):67-76.
    [14] Sharma V, Nag TC, Wadhwa S, Roy TS. Stereological investigation and expression of calcium-binding proteins in developing human inferior colliculus. J Chem Neuroanat 2009;37 (2):78-86.
    [15] Song ZM, Hu J, Rudy B, Redman SJ. Developmental changes in the expression of calbindin and potassium-channel subunits Kv3.1b and Kv3.2 in mouse Renshaw cells. Neuroscience 2006;139 (2):531-8.
    [16] Viloria A, Rodriguez-Alonso M, Costas V, Perez-Fernandez J, Pombal MA, Megias M. Developmental changes of calretinin immunoreactivityin the lamprey spinal cord. Brain Res Bull 2008;75 (2-4):428-32.
    [17] Caspary T, Anderson KV. Patterning cell types in the dorsal spinal cord: what the mouse mutants say. Nat Rev Neurosci 2003;4 (4):289-97.
    [18] Helms AW, Johnson JE. Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 2003;13 (1):42-9.
    [19] Brohl D, Strehle M, Wende H, Hori K, Bormuth I, Nave KA, Muller T, Birchmeier C. A transcriptional network coordinately determines transmitter and peptidergic fate in the dorsal spinal cord. Dev Biol 2008;322 (2):381-93.
    [20] Schneider SP, Walker TM. Morphology and electrophysiological properties of hamster spinal dorsal horn neurons that express VGLUT2 and enkephalin. J Comp Neurol 2007;501 (5):790-809.
    [21] Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ. The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 2003;17 (1):13-27.
    [22] Glasgow SM, Henke RM, Macdonald RJ, Wright CV, Johnson JE. Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 2005;132 (24):5461-9.
    [23] Mizuguchi R, Kriks S, Cordes R, Gossler A, Ma Q, Goulding M. Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat Neurosci 2006;9 (6):770-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700