Lactococcus lactis食品级诱导表达系统构建及铜绿假单胞菌融合外膜蛋白的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸菌是在食品、医药等领域广泛应用的微生物,用乳酸菌构建以非抗生素抗性为选择标记的食品级载体的研究越来越为人们所关注。
     NICE(The Nisin-Controlled Expression)系统是有效的食品级诱导表达系统。乳酸菌NICE系统是在乳链菌肽诱导下由nisA启动子控制目的基因的表达,含nisR和nisK的两组分调节系统的高效诱导表达系统。由于NICE系统的诱导剂、宿主菌和载体都是食品级的,构建乳酸菌NICE系统食品级表达载体,将集益生菌生物功能和外源基因表达产物活性于一体,在食品和医药方面有着很好的应用前景。
     在目的蛋白生产和发酵中,由于乳酸菌分泌表达可使乳酸菌生产的异源蛋白质前体避免水解,异源蛋白质表达量更高,以同源的乳酸球菌SP_(Usp45)指导目的蛋白的分泌表达并且目的基因与SP_(Usp45),Nuc和LEISSTCDA的融合体可提高分泌表达效率,因而乳酸菌分泌表达更有意义。
     本研究利用食品级a-aga选择标记代替抗生素抗性选择标记,并利用nisA启动子、nisR、nisK和SP_(Usp45)/nucA/cwa_(M6)/t1t2基因,以乳酸球菌作为宿主菌,以乳链菌肽作为诱导分子,构建更为安全稳定的乳酸菌食品级高效诱导细胞质和细胞分泌表达的θ型复制载体系统。OprF/H为本实验室构建,是铜绿假单胞菌外膜蛋白组分F和H的融合蛋白,具有良好的免疫原性,为检测该系统的可行性,将OprF/H基因克隆入构建的载体中,在乳酸球菌中进行高效诱导细胞内和细胞壁分泌表达,为利用此两种载体表达各种外源性和内源性的功能基因提供理论和技术依据,同时也为研制有效的防治铜绿假单胞菌的新型疫苗提供思路。
     从L.lactis SMQ719/pRAF800中提取到食品级载体pRAF800,根据公布的pRAF800的复制子序列,设计引物扩增rep基因,经限制酶EcoRI和NheI酶切,利用T4连接酶与pMG36e的Em~r连接。连接产物用电转化法转入L.lactis NZ9000中,经Em筛选、克隆子鉴定,获得重组质粒pEm~r:rep。用限制酶Hind III酶切pEm~r:rep,pEm~r:rep经绿豆核酸酶削平,T4连接酶连接,获得含Em~r的θ复制子缺失载体pEm~r:Arep。
     然后以pNZ8048 DNA为模板,根据已发表的P_(nisA)和T_(pepN)序列,设计引物扩增出大小为312bp的P_(nisA)-MCS-T_(pepN)基因片段,再用限制酶XbaI酶切pRAF800
Lactic acid bacteria (LAB) are GRAS bacteria that are widely used in food industry and medicine. It is important to establish food-grade expression vectors systems for production of functional proteins. Food-grade means the vector bacteria and the selectable marker should be safe enough to meet the needs of food production.
    The nisin-controlled expression (NICE) system of L. lactis is one of the most widely used expression systems of Gram positive bacteria. The NICE system for controlled heterologous and homologous gene expression in L. lactis has been proven to be very valuable.
    In the production of protein with cells, the secretion of heterologous proteins are an efficient way to escape intracellular proteolysis, and the replacement of SP_(Nuc) by the homologous SP_(Usp45) and a fusion with SP_(Usp45), Nuc, and LEISSTCDA can enhance the production yields and the secretion efficiency of heterologous proteins in LAB. The construction of food-grade inducible gene expression system and engineering strains will intergate the biological function of beneficial bacteria with the activity of expressed products of heterologous genes, and will have great potential in food and medicine.
    In the present study, we constructed a series of food-grade vectors harboring food-grade selectable marker a-aga, theta replicon, P_(nisA) -MCS-T_(pepN) and P_(nisA)-SP_(Usp45)-nucA-CWA_(M6)-tlt2 that were suitable for the production of cytoplasmic and secreted heterologous proteins in L. lactis. The vectors are controlled by the nisA promoter.
    The theta replicon of the plasmid pRAF800 from L. lactis SMQ719 was amplified by PCR with the primers designed based on the pRAF800 sequence. The PCR products were digested with EcoRI and NheI and linked with the Em~r of pMG36e, then transformed into L. lactis NZ9000 by electroporation. The plasmid pEm~r:rep harboring the erythromycin resistance gene and theta replicon were screened on erythromycin plates. The repB-deficient companion plasmid pEm~r:△rep was constructed by enzyme digestion, deficiency and ligation, and could coextist with the plasmid with the same theta replicon in the media containing erythromycin only.
引文
1 Lin M Y,Harlander S,and Savaiano D. Construction of an integrative food-grade cloning vector for Lactobacillus acidophilus. Appl Microbiol Biotechnol.1996,45: 484-489.
    2 Bron P A, Benchimol M G, Lambert J, et al.Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl Environ Microbiol. 2002,68:5663-5670.
    3 Allison G E,and Klaenhammer T R.Functional analysis of the gene encoding immunity to lactacin F.lafI and its use as a lactobacillus-specific food-grade genetic marker.Appl Environ Microbiol. 1996, 62:4450-4460.
    4 Hickey R M.Twomey D P,Ross R P, et al. Exploitation of plasmid pMRCOl to direct transfer of mobilizable plasmids into commercial lactococcal starter strains.Appl Environ Microbiol. 2001,67:2853-2858.
    5 Boucher I,Parrot M,Gaudreau H, et al. Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering lactococcus lactis. Appl Environ Microbiol. 2002,68:6152-6161.
    6 Takala T M,Saris P E J, and Tynkkynen S S H.Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-B-galactosidase gene lacG. Appl Microbiol Biotechnol. 2003,60:567-570.
    7 Cotter P,Hill C, and Ross R P. A food-grade approach for funcational and modification of native plasmids in lactococcus lactis.Appl Environ Microbiol. 2003, 69:702-706.
    8 Emond E,Lavall E R,Drolet G, et al.Molecular characteriazation of a theta replication plasmid and its use for development of a two-component food-grade system for lactococcus lactis. Appl Environ Microbiol. 2001, 67:1700-1709.
    9 Takala T M, and Saris P E J. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl Microbiol Biotechnol. 2002, 59:467-471.
    10 Hughes B F,and McKay L L.Deriving phage-insensitive lactococci using a food-grade vector encoding phage and resistence. J Dairy Sci,1992,75:914-923.
    11 Froseth B R, and McKay L L. Development and application of pFMOll as a??possible food-grade cloning vector.J Dairy Sci. 1991,74:1445-1453.
    12 Platteeuw C,Alen-Boerrigter I V, Schalkwijk S V, et al. Food-grade cloning and expression system for lactococcus lactis.App\ Environ Microbiol. 1996, 62:1008-1013.
    13 Sullivan D O,Ross R P,Twomey D P, et al. Naturally occurring lactococcal plasmid pAH90 links bacteriophage resistance and mobility functions to a food-grade selectable marker.Appl Environ Microbiol. 2001,67:927-937.
    14 De Ruyter P G, Kuipers O P, and Vos W M D.Controlled gene exoression system for lactococcus lactis with the food-grade inducer nisin.Appl Environ Microbiol. 1996,62: 3662-3667.
    15 Leenhouts K,Bolhuis A,Boot J, et al. Cloning,expression,and chromosomal stabilization of the propionibacterium shermanii proline iminopeptidase gene (pip) for food-grade application in lactococcus lactis.Appl Environ Microbiol. 1998,64:4736-4742.
    16 Leenhouts K,Bolhuis A,Venema G, et al. Construction of a food-grade multiple-copy integration system for lactococcus lactis.Appl Microbiol Biotechnol,1998,49:417-423.
    17 Maguin E,Duwat P,Hege T, et al. New thermosensitive plasmid for gram-positive bacteria. J Bacteriol. 1992,174:5633-5638.
    18 Biet F, Cenatiempo Y,and Fremaux C. Identification of a replicon from pTXL1,a small cryptic plasmid from Leuconostoc mesenteroides subsp. mesenteroides Y110, and development of a food-grade vector.Appl Environ Microbiol. 2002,68:6451-6456.
    19 S0rensen K I,Larsen R,Kibenich A, et al.A food-grade cloning system for industrial strains of lactococcus lactis.Appl Environ Microbiol. 2000, 66:1253-1285.
    20 Martin M C,Alonso J C, Suarez J E, et al.Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombinantion.Appl Environ Microbiol. 2000,66: 2599-2604.
    21 Kuipers OP, De Ruyter PG, Kleerebezem M, et al. Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnology. 1998, 64:15-21.
    22 Djoirdjevic GM, and Klaenhammer TR. Inducible gene expression systems in??lactococcus lactis. Molecular Biotechnology. 1998, 9: 127-139.
    23 Kuipers OP, de Ruyter PGA, Kleerebezem M, et al. Controlled overproduction of proteins by lactis acid bacteria. Tibtech April. 1997, 15: 135-140.
    24 De Vos W. Gene expression systems for lactic acid bacteria. Current Opinion in Microbiology. 1999, 2: 289-295.
    25 Kleerebezem M, Beerthuyzen MM, Vaughan EE, et al. Controlled gene expression systems for lactic acid bacteria:transferable Nisin-inducible expression cassettes for lactococcus,leuconostoc,and lactobacillus spp. Appl Environ Microbiol. 1997, 63: 4581-4584.
    26 Reunanen J, and Saris PEJ. Microplate Bioassay for Nisin in Foods, Based on Nisin-Induced Green Fluorescent Protein Fluorescence. Appl Environ Microbiol. 2003, 69: 4214-4218.
    27 Sorvig E, Gronqvist S, Naterstad K; et al. Construction of vecters for inducible gene expression in lactobacillus sakei and L.plantarum. FEMS Microbiology Letters. 2003, 229: 119-126.
    28 Henrich B, Klein JR, Weber B, et al. Food-grade delivery for controlled gene expression in lactococcus lactis. Appl Environ Microbiol. 2002, 68: 5429-5436.
    29 张晶,刘敬忠,谭淑珍,等.苯丙氨酸脱氨酶在乳酸乳球菌NICE系统的高效表达及其实验动物研究.生物工程学报.2002,18(6):713-717.
    30 Kunji ERS, Slotboom D J, and Poolman B. Lactococcus lactis as host for overproduction of functional membrane proteions.Biochimica. Biophysica Acta. 2003, 1610: 97-108.
    31 De Ruyter PGA, Kuipers OP, Meijer WC, et al. Food-grade controlled lysis of lactococcus lactis for accelerated cheese ripening. Nature Biotechnology. 1997, 15: 976-979.
    32 Martin MC, Fernandez M, Martin-Alonso JM, et al. Nisin-controlled expression of Norwalk virus VP60 protein in Lactobacillus casei. FEMS Microbiology Letters. 2004, 237: 385-391.
    33 Pugsley AP, and Possot O. The general secretory pathway of Klebsiella oxytoca: no evidence for relocalization or assembly of pilin-like PulG protein into a??multiprotein complex. Mol Microbiol. 1993;10:665-674.
    34 Dieye Y, Usai S, Clier F, et al. Design of a protein-targeting system for lactic acid bacteria. J Bacteriol. 2001;183:4157-4166.
    35 Steidler L, Viaene J, Fiers W, et al. Functional display of a heterologous protein on the surface of Lactococcus lactis by means of the cell wall anchor of Staphylococcus aureus protein A. Appl Environ Microbiol. 1998;64:342-345.
    36 Piard JC, Hautefort I, Fischetti VA, et al. Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J Bacteriol. 1997;179:3068-3072.
    37 Bernasconi E, Germond JE, Delley M, et al. Lactobacillus bulgaricus proteinase expressed in Lactococcus lactis is a powerful carrier for cell wall-associated and secreted bovine beta-lactoglobulin fusion proteins. Appl Environ Microbiol. 2002;68:2917-2923.
    38 Miller JR, Kovacevic S, and Veal LE. Secretion and processing of staphylococcal nuclease by Bacillus subtilis. J Bacteriol. 1987;169:3508-3514.
    39 Liebl W, Sinskey AJ, and Schleifer KH. Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. J Bacteriol. 1992;174:1854-1861.
    40 Le Loir Y, Grass A, Ehrlich SD, et al. Direct screening of recombinants in gram-positive bacteria using the secreted staphylococcal nuclease as a reporter. J Bacteriol. 1994;176:5135-5139.
    41 Ravn P, Arnau J, Madsen SM, et al. The development of TnNuc and its use for the isolation of novel secretion signals in Lactococcus lactis. Gene. 2000;242:347—356.
    42 Poquet I, Ehrlich SD, and Gruss A. An export-specific reporter designed for gram-positive bacteria: application to Lactococcus lactis. J Bacteriol. 1998;180:1904-1912.
    43 Bermudez-Humaran L G, Langella P, Commissaire J, et al. Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol Lett. 2003;224:307-313.
    44 Kuipers OP, de Ruyter PG, Kleerebezem M, et al. Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol. 1997;15:135-140.
    45 Le Loir Y, Gruss A, Ehrlich SD, et al. A nine-residue synthetic propeptide??enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J Bacteriol. 1998;180:1895-1903.
    46 Sibakov M, Koivula T, von Wright A, et al. Secretion of TEM beta-lactamase with signal sequences isolated from the chromosome of Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1991;57:341-348.
    47 Pillidge CJ, and Pearce LE. Expression of a beta-galactosidase gene from Clostridium acetobutylicum in Lactococcus lactis subsp. lactis. J Appl Bacteriol. 1991;71:78-85.
    48 Israelsen H, Madsen SM, Vrang A, et al. Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol. 1995;61:2540-2547.
    49 Perez-Martinez G, Kok J, Venema G, et al. Protein export elements from Lactococcus lactis. Mol Gen Genet. 1992;234:401-411.
    50 Koivula T, Sibakov M, and Palva I. Isolation and characterization of Lactococcus lactis subsp. lactis promoters. Appl Environ Microbiol. 1991;57:333-340.
    51 Geoffroy MC, Guyard C, Quatannens B, et al. Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Appl Environ Microbiol. 2000;66:383-39l.
    52 Corthier G, Delorme C, Ehrlich SD, et al. Use of luciferase genes as biosensors to study bacterial physiology in the digestive tract. Appl Environ Microbiol. 1998;64:2721-2722.
    53 Thompson A, and Gasson MJ. Location effects of a reporter gene on expression levels and on native protein synthesis in Lactococcus lactis and Saccharomyces cerevisiae. Appl Environ Microbiol. 2001;67:3434-3439.
    54 Le Loir Y, Nouaille S, Commissaire J, et al. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol. 2001;67:4119-4127.
    55 Lindholm A, Smeds A, and Palva A. Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis. Appl Environ Microbiol. 2004;70:2061-2071.
    56 Ribeiro LA, Azevedo V, Le Loir Y, et al. Production and targeting of the Brucella??abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol. 2002;68:910-916.
    57 Poquet I, Saint V, Seznec E, et al. HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol. 2000;35:1042-1051.
    58 de Vos WM, Vos P, de Haard H, et al. Cloning and expression of the Lactococcus lactis subsp. cremoris SK11 gene encoding an extracellular serine proteinase. Gene. 1989;85:169-176.
    59 Miyoshi A, Poquet I, Azevedo V, et al. Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol. 2002;68:3141-3146.
    60 Bermudez-Humaran LG, Langella P, Miyoshi A, et al. Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol. 2002;68:917-922.
    61 Koch B, Kilstrup M, Vogensen FK, et al. Induced levels of heat shock proteins in a dnaK mutant of Lactococcus lactis. J Bacteriol. 1998;180:3873-3881.
    62 Nilsson D, Lauridsen AA, Tomoyasu T, et al. ALactococcus lactis gene encodes a membrane protein with putative ATPase activity that is homologous to the essential Escherichia coli ftsH gene product. Microbiology. 1994;140 (Pt 10):2601-2610.
    63 Steidler L, Hans W, Schotte L, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science. 2000;289:1352-1355.
    64 Bermudez-Humaran LG, Langella P, Cortes-Perez NG, et al. Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect Immun. 2003;71:1887-1896.
    65 Bermudez-Humaran LG, Cortes-Perez NG, Le Loir Y, et al. Fusion to a carrier protein and a synthetic propeptide enhances E7 HPV-16 production and secretion in Lactococcus lactis. Biotechnol Prog. 2003;19:1101-1104.
    66 Nouaille S, Bermudez-Humaran L, Adel-Patient K, et al. Improvement of bovine beta-lactoglobulin production and secretion in Lactococcus lactis. Braz J Med Biol Res..
    67 Chatel JM, Nouaille S, Adel-Patient K, et al. Characterization of a Lactococcus lactis strain that secretes a major epitope of bovine beta-lactoglobulin and evaluation??of its immunogenicity in mice. Appl Environ Microbiol. 2003;69:6620-6627.
    68 Enouf V, Langella P, Commissaire J, et al. Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environ Microbiol. 2001;67:1423-1428.
    69 Chatel JM, Langella P, Adel-Patient K, et al. Induction of mucosal immune response after intranasal or oral inoculation of mice with Lactococcus lactis producing bovine beta-lactoglobulin. Clin Diagn Lab Immunol. 2001;8:545-551.
    70 Petit-Glatron MF, Monteil I, Benyahia F, et al. Bacillus subtilis levansucrase: amino acid substitutions at one site affect secretion efficiency and refolding kinetics mediated by metals. Mol Microbiol. 1990;4:2063-2070.
    71 Haddaoui EA, Leloup L, Petit-Glatron MF, et al. Characterization of a stable intermediate trapped during reversible refolding of Bacillus subtilis alpha-amylase. Eur J Biochem. 1997;249:505-509.
    72 徐波,曹郁生,李海星.乳酸菌食品级载体选择标记.生命的化学.2004,24(5):391-393.
    73 J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(第三版).北京:科学出版社,2003.12.
    74 Wells J.M. et al. Improved cloning vectors and transformation procedure for lactococcus lactis. J. Appl. Bacteriology. 1993(74):629-636
    75 Lee A.B. et al. Improved directed PCR screen for bacterial colonies: Wooden toothpicks inhibit PCR amplification. Bio Techniques. 1995.18 (2): 225-226
    76 徐波,曹郁生.食品级高效诱导表达系统-NICE系统.生物技术通报.2005,175(2):14-17
    77 Mclntyre D.A et al.Genetic transformation of intact lactococcuslactisbyhigh-voltageelectroporation.Appl.Environ Microbial. 55:604-610
    78 McIntype D.A.et al,1989.1mproved electoporation efficiency of intact lactococcus lactis subsp lactis cellsgrowindefinedmedia.Appl.Environ.Microbial. 1989, 55: 2621-2626
    79 Hollo H.and Ness LEHigh-frequency transformation by decoroporation of lactococcus lactis subsp cremoris grown with glycine in osmotially stabilized media.Applied and Enrivonmeneal Microbiology. 1989, 55: 3119-3123.
    80 Gloria D.S, Rafael G, Maria J.R, et al. Replication and Control of Circular Bacterial??Plasmids. Microbiol Molecular Biol Rev. 1996, (62):434-464.
    81 Lachica R V F, Genigeorgis C, and Hoeprich P D. Metachromatic agar-diffusion methods for detecting staphylococcal nuclease activity. Appl Microbiol.1971;21:585-587.
    82 Le Loir Y, Gruss A, Ehrlich S D, Langella P. Direct screening of recombinants in gram-positive bacteria using the secreted staphylococcal nuclease as a reporter. J Bacteriol. 1994;176:5135-5139.
    83 Ton T.H, Liu G. Mazmanian S K, et al. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc Natl Acad Sci USA. 1999;96:12424-12429.
    84 Schneewind O, Model P, Fischetti V.A. Sorting of protein A to the staphylococcal cell wall. Cell. 1992;70:267-281.
    85 Fischetti V.A, Pancoli V, Schneewind O. Conservation of a hexapeptide sequence in the anchor region of surface proteins from Gram-positive cocci. Mol Microbiol. 1990;4:1603-1605.
    86 Piard J.C, Jimenez D.R, Fischetti V.A, et al. The M6 protein of Streptococcus pyogenes and its potential as a tool to anchor biologically.active molecules at the surface of lactic acid bacteria. Adv Exp Med Biol. 1997;418:545-550.
    87 Stahl S, Uhlen M. Bacterial surface display: trends and progress. Trends Biotechnol. 1997;15:185-192.
    88 廖立新,曹郁生,李国辉.一种快速粗提铜绿假单胞菌外膜蛋白的方法.江西医学院学报.2003,43(1):60-61.
    89 张万山,陈燕,曹郁生.铜绿假单胞菌外膜蛋白OprF和OprH基因扩增、融合、克隆及原核表达.江西医学院学报.2004,44(2),5-9.
    90 Micheal D, Andrea S, Friedrich L, et al. Sequence and transcriptional start site of the Pseudomonas aeruginosa outer membrane porin protein F gene. J Bacteriol. 1988, 170(1):155-162.
    91 Bell A, Hancock RE. Outer membrane protein H1 of Pseudomonas aeruginosa: purification of the protein and cloning and nucleotide sequence of the gene. J. Bacteriol. 1989, 171(6):3211-3217. 1989, 171(6):3211-3217.
    92 刘同军,徐文琳,张玉臻.变溶菌(Mutanolysin)研究历史和发展前景.微生物学报,2000(40)2:224-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700