三唑酮在土壤中的吸附迁移及对土壤酶活性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用批量平衡法研究三唑酮在土壤中的吸附性能,以柱淋溶法研究三唑酮在土壤中的垂直移动能力,并测定了三唑酮在不同浓度处理下不同培养时间内对土壤过氧化氢酶和脲酶活性的影响,主要研究结果如下:
     三唑酮在土壤中的吸附符合Freundlich方程,lgC_s与lgC_eq的相关系数R~2达0.9677-0.9926,呈极显著相关性。随着土壤溶液中三唑酮浓度的升高,土壤吸附三唑酮的量呈非线性等温吸附,吸附等温式C_s=K_dC_(eq~(l(?)n))中,l/n的值为0.7753-0.9874,可认为是一种非线性关系。其吸附性能K_d值与土壤有机质含量、粘粒含量有很大的关系,两者的相关系数R~2分别为0.9364和0.95,而与土壤阳离子不呈线性相关性。平均K_(oc)为256,表明三唑酮在土壤中移动性属于中等类化合物。三唑酮在土壤中的吸附量随温度的升高而减少,吸附性减弱;在土壤中的吸附为物理吸附。
     在200mm模拟降雨下经24h的不饱和淋溶,三唑酮在四种土壤中的移动能力从大到小的顺序为:河潮土>红壤>红黄泥>麻沙泥,分别有15.87%、9.56%、0.72%、0.68%的三唑酮被淋出。相对于不饱和淋溶,在饱和淋溶下,淋出液中三唑酮的量增加了20.21%,表明三唑酮在土壤中的移动性增强。在模拟酸雨的淋溶作用下,三唑酮在土壤中的移动性呈减弱趋势,并且随着酸雨pH的降低,淋出液中的三唑酮含量相对于对照分别减少了22.89%(pH4.5.)和34.36%(pH3.5),淋溶迁移能力减弱,说明三唑酮在土壤中的吸附量随pH值的降低而增加,在土壤中的移动能力减弱。
     在低浓度(1~10mg/kg)下三唑酮对土壤过氧化氢酶活性的抑制作用时间较短,仪为一天,随着培养时间的延长,抑制作用减弱,主要表现为激活作用,激活率呈现“增强一减弱”的变化趋势。而高浓度下(50mg/kg)则抑制作用较强,抑制期长达20天。对土壤脲酶活性的抑制作用较强,恢复的速度也较慢。各浓度下的脲酶活性受到不同程度的抑制作用,抑制期长达20天以上。在整个试验条件下,脲酶活性呈现出“抑制-恢复”变化规律。
The adsorption of triadimefon in four tested soils with a batch equilibrium method and leaching in soil columns were studied .The influence of triadimefon on the activity of catalase and urease in soil under different concentration and different cultivated time was also studied.The main results were summarized as following:
    The adsorption of triadimefon in tested soils gave an approximate fit to the Freudlich empirical equation ,the range of R2 values between 1gCs and 1gCeq, was from 0.9677-0.9926,which indicated the most distinct correlation.Adsorption was not proportional to solution concentration with a constant partitioning of triadimefon between the solution phase and the sorbent. In the isotherm equation Cs=KdCeq1/n , the range of 1/n values was 0.7753-0.9874,which also showed the degree of isotherm nonlinearity.The adsorption mainly influenced by organic and clay content,which were positively correlated with Kd values ,the R2 values respectively were 0.9364 and 0.95.But the cation was not correlated with Kd values. The average Koc values for four tested soils was 256.According to the classification of mobility of pesticide in soil ,the mobility of triadimefon in soil belonged to the medium .The quantities of triadimefon adsorbed by soil got down with the increasing tempreature.The adsorption in soil belonged to physical adsorption.
    under the control of 200 mm water falling through the four unsaturated soil columns during 24h,the order of the mobility of triadimefon in soil was Hechao soil >red soil >reddish yellow soil >Masha soil ,the quantities of triadimefon leached out respectively were 15. 87%, 9. 56%, 0.72%, 0.68% .Compared with unsaturated soil column, in saturated soil column,the quantities of triadimefon leached out increased 20.21%,which indicated that the mobility of triadimefon in saturated soil increased. While 200 mm stimulated acide rain falling through unsaturated soil columns, the mobility of triadimefon in soil got down As the acidity of simulated acid rain were raised, the quantities of triadimefon in leaching water decreasing 22.89% (pH was 4.5)and 34.36%(pH was 3.5) .Which indicated that the adsorption of triadimefon in soil increased with the decreasing of pH values.
    
    
    
    While under the concentration of 1 mg/kg and 5 mg/kg, The activity of catalase was inhibited by triadimefon, the term was short, only one day. As the cultivated time got long, the inhibiition got weak, showed as stimulation.The tendency of activation was "get strong -get weak". Under 50 mg/kg, the time of inhibition was as long as 20 days . The inhibition of triadimefon to urease was stronger than that of catalase. And its revive time was also very late. The time of inhibition was over 20 days. During the whole experiment, the activity of urease expressed as "inhibition -revive".
    Author: Zhou Anwen(Encironmental Science and Engineering) Directed by: Associated professor Guo Zhengyuan
引文
1.华小梅,单正军.我国农药的生产、使用状况及其污染环境因于分析[J].环境科学进展,1996.4(2):33-35
    2.蔡道基,朱忠林,单正军,等.涕灭威对地下水污染敏感区的预测与区划试点[J].环境科学进展,1995,3(1):11-37
    3.杨永岗,彭钰欣.农药与未来农业的发展[J].环境导报,1997,6:35-38
    4.毛景英.生物农药—未来农药发展的理想选择[J].环境科学进展,1998,6(3):43-47
    5.潘元海,魏爱雪,赵国栋,等.水中衡量有机磷农药的高效液相色谱/质谱分析[J].环境科学进展.1999,7(1):32-40
    6.单正军,朱忠林,华小梅,等.我国农药环境污染及管理现状[J].环境保护,1997,7:40-44
    7. Leistra M, Boesten J J T I. Pesticide contamination of groundwater in western Europe[J].Agriculture, Eeosysterms and Environment, 1989, 26(4): 368-389
    8. Hallberg G R. Pesticide pollution of groundwater in the Huimid united States[J]. Agricul ture, Ecosysterms and Environment, 1989, 26 (4):269-367
    9.黄国强,李凌,李鑫钢.农药在土壤中迁移转化及模型方法研究进展[J].农业环境保护.2002.21(43):75-377,378
    10.马庆立,陈鹤鑫,徐进等.土壤中农药吸附-解吸的研究方法[J].农药译丛,1989,(5):45-47
    11.方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境,2002,11(1)
    12.安凤春,莫汉宏,杨克武,等.农药在土壤中迁移的研究方法[J].环境化学,1994,13(3):214-217
    13.郑世英.农药对农田生态及农产品质量的影响[J].石河于大学学报(自然科学版),2002,6(3):255-258
    14.李淑云.农药与农业生态[J].生物学通报,2001,36(5):18-19
    15.吴平霄,廖宗文.农药在蒙脱石层间域中的环境化学行为[J].环境科学进展,1999.7(3):70-77
    16.丁敬祥,朱炎.有机污染物在土壤-水体系中的分配理论[J].农村生态环境,1997,13(3):42-45
    17. Minglegrin u, Gerstl Z. Reevaluation of partitioNing as a Mechamism of Nonionic Chemicals Adsorption in soil. J. Environ Qual, 1983, 12(1): 1-11
    18.刘维屏,Carla Gessa,利谷隆在土壤中的吸附过程和机理,环境科学,1995,16(1):16-18
    19.周风帆,蔡后建,金琦等,多效唑土壤吸附及在模拟生态系统分布动态的研究,南京大学学报,1994,30(1):55-62
    20.王军,朱鲁生,林爱军,等.二甲戊灵在土壤中的吸附及微生物降解[J].农业环境科学学报2003,22(4):488-492
    21.杨景辉.土壤污染与防治[M].北京:科学出版社,1995
    22.韩熹莱.中国农业百科全书总编辑委员会.中国农业百科全书(农药卷)[M].北京:农业出版社,
    
    1993:255-283
    23.徐瑞蔽,胡钦红,靳伟,等.多效唑在土壤中讲解、吸附和淋溶作用,环境化学,1994,13(1):53-59
    24. Castaneda A R, et al. [J].Environ. Sci, Health, 1996. 31(1)
    25. Czapar G P, Hot,o, R S. Herbicide and tracer movement in soil columns containing an artificial maccropore [J].Environ Qual, 1992, 21: 110
    26.花日茂,岳永德,汤锋,等.多菌灵在土壤中的吸附与移动[J].安徽农业科学,1995.23(2):171-173
    27.李克武,王小芳.李谨,等.苯达松在单离于蒙脱石上的吸附机理研究[J].环境科学与技术.1998.(3):5-7
    28.司友斌,岳永德,周东美,等.农药在光照土壤层的迁移和降解[J].环境科学学报,2003,23(1):119-123
    29.李连芳,异噁草酮在湖南几种水稻土中迁移与降解.湖南农业大学硕士论文,2001
    30.薛南冬,杨仁斌.丙硫克百威在集中土壤中的迁移和降解研究[J].土壤学报,2003,(40):131-135
    31.李克威,刘维屏,周瑛,等.灭草威在土壤中吸附的支配因素[J].环境科学,2003,(24):126-130
    32.杨克武.安凤春,莫汉宏.单甲脒在土壤中的吸附[J].环境化学,1995,(14):431-436
    33.杨克武,莫汉宏.徐晓白,等.灭幼脲Ⅲ号在土壤中的吸附与淋溶[J].环境科学学报,1993,(13):39-44
    34.叶常明.除草剂在土壤中的吸附行为研究[J].环境污染治理技术与设备,2002,3(5):1-6
    35.李克威,刘维屏,许中坚,等.灭草松在腐殖质上的吸附及其机理[J].环境科学学报.2002.22(6):754-758
    36.朱优峰,徐小白,习志群.有机氯在多介质环境中迁移转化的研究进展[J].自然科学进展,2003,13(9):910-915
    37.严健汉.詹重慈主编.土壤环境学[M].华中师范大学出版社,1985
    38.周礼恺.土壤酶学[M].北京:中国科技出版社,1987
    39.周礼恺.土壤酶与植物营养以及农药的相互关系[J].土壤学进展,1991,9(6):18-27
    40.和文祥,蒋新,朱茂旭,等.杀虫双对土壤磷酸酶的毒性效应[J].应用与环境生态学报,2002,8(6):658-661
    41.关松荫.化学农药对土壤酶活性抑制作用的研究[J].土壤通报,1992,23(5):232-233
    42.杨玲,孔星云,郭明.化学农药对土壤脲酶的影响[J].塔里木农垦大学学报,2001,13(3):13-16
    43.郭明,陈军红,王春蕾.4种农药对土壤脱氢酶活性的影响[J].环境化学,2000,19(6):523-527
    44.李时银,黄智,倪利晓,等.毒死蜱及代谢产物对土壤过氧化氢酶活性的影响[J].农业环境保护,2002,21(6):553-555
    45.杨惠芳,王保君,林力,等.单甲脒农药对土壤微生物种群和土壤酶活性的影响[J].应用与环境
    
    生态学报,1996,2(1):58-65
    46.和文祥,蒋新.朱茂旭,等.酶修复土壤农药污染的研究进展[J].生态学杂志,2001,20(3):47-51
    47.逢焕成,严慧峻,刘继芳,等.土壤有机氯无让的生物修复和土壤酶活性的关系[J].土壤肥料,2002:130-32
    48.王煥民.张于明.新编农药手册[M].北京:农业出版社,1989.
    49.王煥民,张于明.新编农药手册[M].北京:农业出版社,1989.
    50.邵新玺,黄清秦.农药急性毒性与分级标准的探讨[J].医学动物防制,2002,18(2):465-466.
    51.陈平.口服农药三唑酮急性中毒5例报告[J].中国工业医学杂志,1994,7(2):106-107.
    52.黄星培,吴先福,林葆华。杀菌剂粉锈宁的毒性研究[J].职业医学,1995,22(1):52-53
    53. u Ikaiddi, HC Akunne, KF Ssoliman. Behavioral and neurochemical effects of acute and repeated administration of triadimefon in the male rat[J]. Neurotoxicology, 1997, 18(3): 771-780
    54. M Vijayraghavan, B Nagarajan. Mutagenic potential of acute exposure to organophosphorus and organochlorine compounds[J].Mutat Res, 1994, 321(1-2):103-111
    55. Buchienauer H, Grossman F. Triadimefon:Mode of action in plaints and fungi[J]. Neth J Plant Phathol, 1997, 83:93-103.
    56.郭振飞,卢少云.李宝盛,等.三唑酮对绿豆幼苗叶片衰老的延缓作用[J].植物学报,1998,40(5):442-447.
    57. Asare-Boamah NK et al. Plant Cell Physiol, 1986,27:83.
    58.郭振飞.潘瑞炽.三唑酮及其对植物的生理作用[J].植物生理学通讯,1989.(1):75.
    59. FLETCHER R A, NATH V. Triadimefon reduces transpiration and inceases yield in water stress plants[J].Physiol Plant, 1984,62:422-426.
    60.杨远庆等.三唑酮对茶树叶片衰老进程的延缓作用[J].湖南农业大学学报,2003,29(2):137-139.
    61.卢少云,郭振飞,李宝盛,等.三唑酮对离体水稻叶片衰老的延缓作用[J].华南农业大学学报,2000,21(2):57-60
    62.冯兆忠,王静,冯宗炜.等.三唑酮对黄瓜幼苗生长及抗寒性的影响[J].应用生态学报,2003,14(10):1637-1640
    63.冯兆忠,王静.三唑酮对离体黄瓜于叶膜系统的影响[J].西北植物学报,2002,22(3):651-655.
    64.冯兆忠,徐仰仓,李焕梅,等.三唑酮对离体黄瓜于叶过氧化物酶活性及蛋白质含量的影响[J].环境科学,2002,23(5):65-68
    65.冯兆忠等.三唑酮对黄瓜叶抗氧化酶活力的影响[J].西北植物学报,2000,20(6):1022-1026
    66.冯兆忠等.三唑酮浸种后黄瓜幼苗的生理生化变化[J].西北植物学报,2001,21(3):481-486
    
    
    67. Punja. Z.K. Relationships among soil depth, soil texture, and in culumplacement in infectionofcarrotrootsbyerup-t ivelygerminatingsclerotiaofolerotiumrolfsii[J]. Phyto pathology, 1986, (76): 976-980
    68.徐飞.三做在粮食作物上的作用.农药市场信息,2002:30
    69.陆长缨,季明东,李沛元,多菌灵和三唑酮对水稻病害的协同作用[J].江苏农业科学,1995,(3):45-47
    70.孙国才,季明东,陆长缨.多菌灵与三唑酮复配对油菜菌核病的协同作用[J].江苏农业科学,2000(6):42-43
    71.江树人,曹国印.三唑酮在黄瓜植物体内的代谢[J].核农学把报,1991,5(3):189-192
    72. J.P. Da Silva, Abilio M. Da Silva, I.V. Khmelinskii. Dssipation of triadimefon on the soild/gas interface[J].Chemosphere, 2001 (45): 875-880
    73. J.P. DaSilva, A. M.J. Da Silva, I.V. Khmelinskii et al. Photophysics and photochemistry of azole fungicides: triadimefon and tradimenol[J].Jourual of Photochemistry and PhotobiologyA: Chemistry, 2001:31-37
    74. P. Da Silva. Aqueous photochemistry of pesticides triadimefon and triadimenol[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, (154): 293-298,
    75. SK Nag, P Dureja. Environmental transformation of tradimefon in water and on plant leaf surface[J]. Eniron Sci Health B, 2003, 38(1): 49-57
    76. Moza P N, Hustert K, Feicht E, Kettrup A. Comparative Rates of Photolsis of Triadimefon in Aqueous Solution in the Presene of Humic and Fulvic Acid[J].Chemosphere, 1995, 30(4): 605-610
    77.岳永德,汤锋,花日茂.土壤质地和温度对农药在土壤中光解的影响[J].安徽农业大学学报,1995,22(4):351-355
    78.杨淑娟.三唑酮的气相色谱分析[J].福建热作科学,2001,26(4):12-15.
    79.牛淑研等.三唑酮的气相色谱分析[J].理化检验,2002,38(11):48-49.
    80.单炜力,叶纪明.氧乐·酮乳油中氧乐果与三唑酮的毛细管气相色谱分析[J].农药科学与管理增刊,1998.
    81.赵伟.福美双·三唑酮悬浮剂的高效液相色谱分析[J].化工标准,2001,4:23-25.
    82.周煜,林立毅.水果中三唑酮残留的气相色谱和气相色谱—质谱分析[J].分析化学,1997,25(5):510-514.
    83.陈尚文,潘寅,陈振佳,等.咖啡叶中三唑酮残留量的研究[J].农药.1991,30(1):39-40.
    84. C Molto, and G Font. Optimization of a matrix solid-phase dispersion method for the analysis of pesticide residues in vegetables[J]. Chromatogr A, November 22, 1996: 754(1-2): 437-44.
    
    
    85. George J. soleas. Multiresidue analysis of senven pesticide in wine by gas chromatography with mass-selective detection[J]. Journal of Chromatography A, 2000, 205-212
    86. J. del Nozal. S eparation of triadimefon and triadisenol enant iomers and diastereoisomers by supercritical fluid chromatography[J]. Journal of Chromatography A, 2003, (986): 135-141
    87. Extension of the bioautograph teehnique for multriresidue determination of fungicide residues in plants and water[J]. Anna Balinova. Analytica Chimica Acta 311, 1995:423-427
    88. C.G. Zambonin. Solid-phase microextraction and gas chromatography-mass spectrometry for the rapid screening of triazole residues in wine and strawberries[J].Journal of Chromatography A, 2002:225-260
    89.刘臣辉.粉锈宁在黄瓜中的消解与残留[J].农业环境保护,1993,12(4):155—157.
    90.麦铭,李东跃,尤玉珍.三唑酮在黄瓜上的消解与残留[J].农药,1989.28(1):31—32.。
    91.中科院南京土壤研究所主编.土壤理化分析[M].上海科学技术出版社,1978.
    92. McCall P J, Laskowski D A, Swmann R L et al. Test protocolsfor environmental fate and movement of toxicants[J]. Washington D C: Proc of Syrup AOAC, 1980: 89-109.
    93.岳永德,花曰茂,汤锋.土壤颗粒对农药在土壤中的分布和光解的影响[J].安徽农业大学学报,1993,20(4):309-314
    94. N Singh. Sorption behavior of triazole fungicides in Indian soil and its correlation with soil properties[J], Agric Food Chem, October 23, 2002, (22): 6434-6439
    95.吴甫成,吴君维,王晓燕等.湖南酸雨污染特征[J].环境科学学报,2000,20(6):807-809

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700