基于多孔硅衬底的碳化硅APCVD生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC是一种宽带隙半导体材料,具有带隙宽、临界击穿场强高、饱和电子漂移速度大等优点,是高温、高频、高功率半导体器件的首选材料,在微电子学领域具有广阔的应用前景。由于SiC的单晶制备技术较复杂,成本较高,所以采用在Si基片上异质外延生长SiC的方法成为了研究的热点。然而这一方法首要需要解决的是SiC与Si之间存在较大的晶格失配度(约20%)和热膨胀系数差异(8%)。因此,SiC在Si基片上的异质外延制备仍存在困难,还有很多问题需要研究解决。
     本论文提出在多孔硅衬底上,采用常压化学气相淀积(APCVD)生长SiC薄膜的方法:首先通过双槽电化学腐蚀方法在待生长的Si基片上通过电化学腐蚀得到多孔硅结构作为缓冲层,其次再使用常规的APCVD方法在多孔硅结构上异质外延生长SiC。该方法的优点是利用了预处理的Si片表面的多孔结构来减小与SiC之间的晶格失配度,同时在APCVD生长过程中不用进行缓冲层的预生长,可以直接在多孔硅衬底上生长SiC薄膜。
     论文首先分析了APCVD法生长SiC薄膜的物理和化学机理。对生长的样品,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)及其附件能谱分析(EDS)对外延薄膜的结构性质进行了分析。侧重研究了源气体Si/C比和生长温度对SiC薄膜质量的影响,研究结果表明:SiC薄膜的晶粒尺寸随Si/C比的减小而增大。硅碳比较小时,C的过量将导致化合反应过快,从而导致薄膜表面形成缺陷和空洞,表面变得粗糙;当硅碳比较大时,Si的过量又会使薄膜晶粒尺寸和分布不均匀;只有适当的Si/C比可以得到晶粒取向一致性较好和表面较平整的SiC薄膜。SiC薄膜的晶粒取向的一致性随着温度的进一步升高而变好,晶粒尺寸增大,生长的薄膜从多晶形态向单晶形态转变。
Characterized by wide bandgap, silicon carbide is an excellent material with high breakage electric field, high thermal conductivity, high saturated electron mobility, which is considered as one of the most promising wide band gap semiconductors, and widely utilized in high temperature, high frequency and large power semiconductor devices. But the fabrication of single-crystal SiC costs too much and the process is very complicated, so the heteroexpitaxial growth of SiC on Si substrate become very popular in research. Due to the large lattice parameter mismatch(20%) and the large thermal expansion coefficient mismatch(8%), however, the heteroexpitaxial growth of SiC on Si substrate is difficult and still has problem to be studied.
     In this paper, the growth technology is presented for epitaxial silicon carbide films on porous silicon by atmosphere-pressure chemical vapor deposition(APCVD) process, that is, to fabricate porous silicon (PS) on the Si wafer by electrochemical etching method first in order to form a buffer layer, and then depositing the SiC films on this buffer layer. The porous silicon on the wafer was used to reduce the lattice parameter mismatch between Si wafer and SiC film, and then SiC film can be deposited on porous silicon without preparing a buffer layer on Si wafer in APCVD process.
     The chemical and physical process of atmosphere-pressure chemical vapor deposition SiC thin films is analyzed firstly. The structural properties of the films grown on porous silicon substrate are studied by X-ray diffraction(XRD), scanning electronic microscope(SEM) and EDS detector attachment to SEM. The effects of Si/C ratio of the source gas and growth temperature on the quality of thin films was studied in detail. It was observed that the size of particles in SiC film was increased with the decrease of Si/C ratio. The small Si/C ratio would accelerate the chemical process and lead to the formation of defeat and void on the surface of film, and the large Si/C ratio would lead to the different size and disorder of film particle. Only the proper Si/C ratio could obtain a SiC films that had a good single-crystalline orientation and a smooth surface. The single-crystalline orientation of the thin films meliorated with the increasing of growth temperature, the size of particles became large and the polycrystalline SiC films would turn to single crystal with the increasing of temperature.
引文
[1]郝跃,彭军,杨银堂,碳化硅宽禁带半导体技术[M]北京:科学出版社,2000
    [2] J.B.Casady and R.W.Johnson. Status of silicon carbide(SiC) as a wide-bandgap semiconductor for high-temperature applications: A Review[J]. Solid-State Electronics, 1996, 39(10):1209-1422
    [3] Ravik.Nadella and M.A.Capano. High-resistance layers in n-type 4H-silicon carbide by hydrogen ion implantation [J].Appl. Phys. Lett., 1997, 70(7):886-888
    [4]刘技文,SiC纳米薄膜和SiC纳米线的制备及光电发射性质的研究,天津大学博士论文,2001
    [5] H. Matusunami, T. kimoto, Step-controlled epitaxial growth of SiC: High quality homoepitaxy, Materials Science and Engineering, R:Reports, 1997, 20, 3, 125-166
    [6] S.Nishino, J.A.Powell, H.Matsunami, andT.Tanaka, "Chemical vapor deposition of single crystallineβ-SiC Thin Films on silicon substrates with sputtered SiC intermediate layer", J. Electrochem.Soc., Vol.127, (Dec.1980), pp.2674-2680
    [7] Casady J B, Johnson R W .S olid State Electronics, 1996, 39 (10):1409
    [8]鲁励,引入注目的SiC材料、器件和市场[J],世界产品与技术, 2003, 12:22
    [9] H.Matsunami, M. Ikeda, A. Suzuki, et al, IEEE Trans Electron Devices, 1997, ED-24,958
    [10] Matsunami H. Current SiC technology for power electronic devices beyond Si [J]. Microelectr Eng, 2006, 83:2
    [11] Teker K, Jacob C , Chung J , et al. Epitaxial growth of 3C-SiC on Si ( 100) using hexamethy ldisilane and comparison with growth on Si (111) [J]. Thin Solid Films, 2006, 371:53
    [12] Bloom E E , Zinkle S J , Wien F W. Materials to deliver the promise of fusion power progress and challenges[J] . J Nuclear Mater, 2004, 329-333:12
    [13] H. Matsunami, T. kimoto, Step-controlled epitaxial growth of SiC: High quality homoepitaxy, Materials Science and Engineering Repoters, 1997, 20, 3:125-166
    [14] HUNG K I, ZORMAN C A, MEHREGANY M. Fabrication and testing of single crystalline 3C-SiCdevices using a novel SiC-on-insulator substrate solid-state sensors[J]. Actuators and Microsystems, 12th International Conference on, 2003, 1:742-745
    [15] Y.H.Cha, H.J.Doerr, R.F.Bunshah, Electrical properties of polycrystallineβ-SiC thin films for high temperature sensors grown by the activated reactiveevaporation process, Surface and Coating Technology, 1993,62,(1-3),697-701
    [16]西鹏,高技术纤维,化学工业出版社, 2004, 443-449
    [17] S.G.Muller, R.C.Glass, H.M.Hobgood, et al. The status of SiC bulk growth from an industrial point of view.J.Cryst.Growth, 2000, 211(1-4):325-332
    [18]陈治明、王建农,半导体器件的材料物理学基础,科学出版社,2000
    [19] J.A. Cooper, A.K. Agarwal, K.Hara, et al. Foreword. IEEE Trans Electron Devices, 1999, 46(3):442
    [20] H .M .Hobgood, D .L .Barret, J. P .Mchugh, et al .Large Diameter 6H-SiC for Microwave Device Applications. J. Crystal. Growth, 1994, 137:181-186
    [21] T. Kimoto, T. Urushidani, S. Kobayashi, et al. High Voltage(>1kV) SiC Schottky Barrier Diodes with Low On-Resistances. IEEE Electron Device Letters, 1993, 14(12):548-550
    [22] C. Dezauzier, N. Becourt, G. Arnaud, et al. Electrical characterization of SiC for high-temperature thermal-sensor applications. Sensors and Actuators A: Physical, 1995, 46(1-3): 71-75
    [23] S .Z hang, L .Raniero, E .Fortunato, et al. Characterization of silicon carbide thin films and their use in colour sensor. Slar Energy Materials and Solar Cells, 2005, 87(1-4):343-348
    [22]郝跃、彭军、杨银堂,碳化硅宽禁带半导体技术[M],北京:科学出版社,2000
    [23] Chen Zhiming, Ma lianping, Lu Gang, et al. Liquid phase epitaxial growth of 3C-SiC films deposited on Si. Diamond and Related Materials,2001,10:1255-1258
    [24] Pfennighaus K, Fissel.A, Kaiser.U, et al .Investigation of growth conditions for epitaxial growth of SiC on Si in the solid-source molecular beam epitaxy. Mater.Sci. and Eng; 1997, B4
    [25]林洪峰、谢二庆、马紫微等,射频溅射法制备3C-SiC和4H-SiC薄膜,物理学报,2004,53(8):2780-2784
    [26] Hung. K. I, Zorman. C. A, Mehregay. M. Fabrication and testing of single crystalline 3C-SiC devices using a novel SiC-on-insulator substrate solid-state sensors [J]. Actuators and Microsystems, 12th International Conference, 2003, 1:742-745.
    [27] H. M. Manasevit, Appl. Phys. 1968, Lett.12, 156
    [28] SERREC, RODR IGUEZ A R, MORANTE J R, et al.β-SiC on SiO2 formed by ion implantation and bonding for micromechanics applications [J]. Sensors and Actuators A, 1999, 74 (1-3):169-173
    [29] GOSELE U, TONG Q, REICHE M, et al. Properties of SIMOX and bonded SOImaterial [J].Microelectronic Engineering, 1995, 28 (1-4):391-397
    [30] Ishimaru M, Dickerson R M,Scanning transmission electron microscopy-energy dispersive X-ray/electron energy loss spectroscopy studies on SiC-on-insulator structures [J].Electrochem Soc, 147 (5):1979-1981,2000
    [31]朱作云、李跃进、杨银堂等,SiC/Si异质生长的研究[J],西安电子科技大学学报,1997,24(1):122
    [32]王引书、李晋闽、林兰英等,Si(100)衬底上SiC的外延生长[J],材料研究学报,1997,14卷增刊
    [33] Cheng K L, Cheng H Ch, Lee W H et al. Deposition of polycrystalline 3C-SiC films on Si substrate at room temperature [J]. Appl Phys Lett, 1997, 70 (2):223
    [34] Hatayama T, Tanaka N , Fnyuki T et al. Initial stage for heteroepitaxy of 3C-SiC on the Si (001) surface in dimethylgermance source molecular beam epitaxy [J]. Appl Phys Lett, 1997, 70 (11):1411
    [35] Hofmann J, Veprek S, Heind J. Pseudomorphic growth of ultra-thin cubic 3C-SiC films on Si (100) by temperature programmed organ metallic chemical vapor deposition [J].Appl Phys,1999,85 (5):2652
    [36] Miyasato T, Sun Y, Wigmore J K. Growth and characterization of nano-scale 3C-SiC islands on Si substrates [J].Appl Phys,1999,85 (7):3565
    [37] Zorman. V, Yasseen et al. Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques [J].Electronic Materials,1998,27 (3):L17
    [38] Bruel M. Silicon on insulator material technology [J]. Electronics Letters, 1995,31(14):1201
    [39] Ciccio L D, Tiec Y L,Letertre F et al. Silicon carbide on insulator formation using the smart cut process [J]. Electronics Letters, 1996, 32 (12):1144
    [40] Moller H, Krobtz G, Suppression of Si cavities at the Si/Si interface during epitaxial growth of 3C-SiC on silicon-on-insulator [J].J Eletrochem Soc, 2001, 248(1):G16-G24
    [41] Chen J, Scofield J, Formation of SiC SOI structures by direct growth on insulating layers [J]. J Electrochem Soc, 2000,147 (10):3845-3849
    [42] Jain S C, Willander M. III-nitrides growth, characterization and properties [J].Appl Phys, 2000, 87(3):965-1003
    [43] Saxler A , Kung P, Sun C J et al. High quality aluminum nitride epitaxial layers grown on sapphire substrates [J].Appl Phys Lett, 1994,64 (3):339
    [44]彭军、朱作云,蓝宝石/氮化铝衬底上SiC外延薄膜的X射线衍射分析[J],西安电子科技大学学报,2000,27(2):186-189
    [45] M.I.J.Beale et al. An Experimental and Theoretical Study of the Formation and Microstructure of Porous Silicon [J].J .Cryst.Growth.1985,73(3):622-636
    [46] Beale M I J, Benjiamin J D, Uren M J. J Cryst Growth [J], 1985, 73: 622
    [47] C. D. Stinsprint, J. C. Wormhoudtk, J.Cryst. Growth, 1998, 87, 481
    [48] S.E. Saddow, T. E. Schattner, M. Shamsuzzoha, S. V. Rendakova, V. A. Dmitriev TEM investigation of silicon carbide wafers with reduced micropipe density [J]. J.Electron Mater.2000, 29(3):364-367
    [49] T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin,et al., Ion-assisted pulsed laser deposition of cubic boron nitride films, J .Appl. Phys,1994,76,5 ,3 088-310
    [50] P. B. Mirkarimi, K. F. McCarty,QF. Cardinale, et al., Substrate effects in cubic boron nitride film formation, Journal of Vacuum Science & Technology A, 1996, 14, 251-255
    [51] G. P. Lamaze, R.G.Downing, L. B. Hackenberger, et al., Analysis of cubic boron nitride thin films by neutron depth profiling, Diamond and Related Materials, 1994,3 ,4-6,728-731
    [52] Y. Inoue, S. Nakashima, A. Mitsuishi, Raman spectra of amorphous SiC, Solid State Communications,1983,48,2:1071-1075
    [53] W. K. Choi, F. L. Loo, C. H. Ling, Structural and electrical studies of radio frequency sputtered hydrogenated amorphous silicon carbide films, J.Appl. Phy., 1995,7 8,12.7289– 7294
    [54] Y. Sun, T. Miyasato, Infrared Absorption Properties of Nanocrystalline Cubic SiC Films, Jpn .J .Appl. Phys., 1998, 37, 5485-5489
    [55] J. F. Moudler, W. F. Stickle, F. E. Sobol, in: J. Chastain, Handbook of X-ray Photo electron Spectroscopy, Perkin Elmer, Eden Praiie, MN, 1992
    [56] C .D .Wager, W .M .Riggs, L .E .Davis, Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer, Corp, 1978
    [57] A. Henry, I. G. Ivanov, T. Egilsson, et al., High quality 4H-SiC grown on various substrate orientations, Diamond and Related Materials,1997,6 ,10,1289-1292
    [58] L.Rimai, R. Ager, W. H. Weber, preparation of crystalographically aligned layers of silicon carbide by pulsed laser deposition of carbon onto Si wafers, Appl. Phys. Lett,1994,65,17,2171-2173
    [59] J.H. Boo, K. S. Yu, M. Lee, et al., Deposition of cubic SiC films on silicon using dimethylisopropylsilane,Apll.Phys.Lett.,1995,66, 25,3486-3488
    [60] Oh. J. H, Oh. B. J, Choi. D. J. The effect of input gas ratio on the growth behaviorof chemical vapor deposited SiC films. J. Mater.Sci., 2001, 36:1695-1700
    [61] D. J. lark, S. G. Sridhara. Hydrogen Incorporation in Boron-Doped 6H-SiC CVD Epilayers Produced Using Site-Competition Epitaxy, Journal of Electronic Material, Vol.24 No.4, 1995:P289-293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700