纳米结构ZnO在TiO_2薄膜上的电化学沉积及其光电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用电化学沉积技术以ITO/TiO2纳米薄膜为基底,以硝酸锌水溶液为电解液,实现了纳米结构ZnO在TiO2纳米薄膜上的生长,并通过XRD、SEM、EDS、Raman和PL光谱等方法对样品进行测试和表征。重点研究了电解液浓度、沉积时间、六次甲基四胺(HMT)的引入以及TiO2基底薄膜的微观结构等对纳米结构ZnO的生长及其光学性质的影响,并结合循环伏安等电化学测试探讨了过程机制。
     采用溶胶-水热法合成TiO2膏体,通过浸渍提拉-旋涂过程制备了ITO/TiO2纳米薄膜,其具有规则均一的微观结构,粒径约为10 nm。以所合成的ITO/TiO2纳米薄膜为基底,采用0.03 mol/L的硝酸锌溶液为电解液和锌源,在-0.75 V的恒电压下,沉积得到纳米结构ZnO薄膜。ZnO具有六方相的晶体结构,并且沿着(002)晶面(c-轴)方向表现出明显的择优化生长,以至于形成了垂直于基底的ZnO纳米棒阵列。没有经过热处理,ZnO的结晶度依然很高。通过改变沉积时间、电解液浓度、TiO2基底薄膜的微观结构和引入功能分子等条件,可以方便地调控ZnO薄膜的结晶度以及表面形貌。结果表明,延长沉积时间、增加电解液浓度和引入一定量的HMT等均对ZnO薄膜的生长有促进作用,使得纳米棒的结晶度和取向更好,这与电化学沉积过程中沉淀剂OHˉ浓度的增加有关。与ITO玻璃基底相比,ZnO更易于在纳米结构TiO2薄膜上实现电化学沉积,并且基底薄膜的微观结构对ZnO生长有着较大的影响。
     在325 nm波长光的激发下,所获得的ITO/TiO2/ZnO薄膜分别约在375 nm和520 nm处表现出窄的紫外光发射峰和宽的绿光发射带,这主要是ZnO发光所导致的。紫外光发射是近带边激子的辐射复合产生的,而绿光发射则通常被认为与ZnO薄膜的内部本征缺陷有关。通过调控ZnO的结晶度及其阵列的微观结构,可以改变复合薄膜的发光性能。
In this paper, well-aligned ZnO nanorod arrays have been successfully fabricated directly on anatase TiO2 nanoparticle films through a simple electrochemical deposition (ECD) method in the zinc nitrate solution. The samples were characterized by the methods of XRD, SEM, EDS, Raman and PL. The effects of the reactant concentration, deposition time, HMT additive and the microstructure of TiO2 film on the growth and the optical capability of the nanostructured ZnO obtained were studied in detail. The mechanism of ECD process was investigated by electrochemical methods such as cyclic voltammogram.
     Nanosized anatase TiO2 film on the ITO glass has been fabricated via spin coat process, with TiO2 nanoparticles, which were synthesized by a sol–hydrothermal method. It had uniform structure, composed of spherical nanoparticles with 10 nm in diameter. With ITO/TiO2 film as substrate, 0.03 mol/L Zn(NO3)2 solution acted as electrolyte and Zn sources, we could obtain nanostructured ZnO film when deposition potential was -0.75 V. ZnO crystal prepared by electrodeposition was hexagonal phase and grew along [002] direction (c-axis) with obvious preferential orientation, so as to form ZnO nanorod arrays vertically on the substrate. Although ZnO crystals were not passed through thermal treatment, its crystallinity was still quite high.
     Through altering deposition time, reactant concentration, microstructure of TiO2 film and adding functional molecule, we could regulate the crystallinity and surface morphology of ZnO film conveniently. The results showed that prolonging the deposition time, increasing the reactant concentration and adding a certain amount of HMT could promote the growth of ZnO film and increase crystallinity and orientation of nanorods, which is close related to the increase of depositon reagent OHˉconcentration in the ECD process. Compared with ITO glass substrate, ZnO could be more easily deposited on the TiO2 film, and the microstructure of film substrate had a great effect on the growth of ZnO.
     Under the excitation wavelength of 325 nm, the as-prepared compound semiconductor film exhibited a strong and narrow near-ultraviolet PL peak located at about 375 nm and a weak and broad green emission band centered at 520 nm around, mainly assigned to the photoluminescence of ZnO. Ultraviolet emission peak is attributed to the exciton-related emission near the band-edge and green emission band is attributed to the intrinsic defects of ZnO generally. Through adjusting and controlling the crystallinity of ZnO and the microstructure of ZnO nanorods array, the photoluminescence performance of the composite film could be changed.
引文
[1]陈和生,孙振亚,陈文怡.纳米科学技术与精细化工[J].湖北化工, 1999, 16(1): 8-10
    [2]严东生,冯端.材料新星[M].长沙:湖南科学技术出版社, 1998.
    [3] S. Ijima. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58.
    [4] F. -H. Lin, C. -K. Hsu, T. -P. Tang, P. -L. Kang, F. -F. Yang. Thermal-heating CVD synthesis of BN nanotubes from trimethyl borate and nitrogen gas[J]. Materials Chemistry and Physics, 2008, 107: 115-121.
    [5] H. A. Therese, J. Li, U. Kolb, W. Tremel. Facile large scale synthesis of WS2 nanotubes from WO3 nanorods prepared by a hydrothermal route[J]. Solid State Sciences, 2005, 7: 67-72.
    [6] M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsar, P. Stadelmann, D. Mihailovic. Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes[J]. Science, 2001, 292: 479-481.
    [7] D. A. Wang, F. Zhou, Y. Liu, W. M. Liu. Synthesis and characterization of anatase TiO2 nanotubes with uniform diameter from titanium powder[J]. Materials Letters, 2008, 62: 1819-1822.
    [8] X. Y. Liu, M. S. Mo, X. Y. Chen, Y. T. Qian. A rational redox route for the synthesis of tellurium nanotubes[J]. Inorganic Chemistry Communications, 2004, 7: 257-259.
    [9] B. J. Yang, C. Li, H. M. Hu, X. G. Yang, Q. W. Li, Y. T. Qian. A room-temperature route to bismuth nanotube arrays[J]. Eur. J. Inorg. Chem., 2003, 2003: 3699-3702.
    [10] J. Choi, J. L. Musfeldt, Y. J. Wang, I-L-J. Koo, M. -H. W'hangbo, J. Galy, P. Millet. Optical investigation of Na2V3O7 nanotubes[J]. Chem. Mater., 2002, 14: 924-930.
    [11] S. Y. Jeong, J. Y. Kim, H. D. Yang, B. N. Yoon, S. -H. Choi, H. K. Kang, Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy[J]. Adv. Mater., 2003, 15: 1172-1176.
    [12] M. Zhang, Y. Bando, K. Wada. Silicon dioxide nanotubes prepared by anodic alumina as templates[J]. J. Mater. Res., 2000, 15: 387-392.
    [13] C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj. Inorganic nanowires[J].Progress in Solid State Chemistry, 2003, 31: 5-147.
    [14] Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of semiconducting oxides[J]. Science, 2001, 291: 1947-1949.
    [15] Y. X. Chen, X. Q. Zhao, B. Sha, J. H. Chen. Stacking fault directed growth of thin ZnO nanobelt[J]. Materials Letters, 2008, 62: 2369-2371.
    [16] Z. L. Wang, Z. W. Pan. Junctions and networks of SnO nanoribbons[J]. Adv. Mater., 2002, 14: 1029-1032.
    [17] Z. W. Pan, Z. R. Dai, Z. L. Wang. Lead oxide nanobelts and phase transformation induced by electron beam irradiation[J]. Appl. Phys. Lett., 2002. 80: 309-311.
    [18] J. Zhang, L. D. Zhang. Intensive green light emission from MgO nanobelts[J]. Chemical Physics Letters, 2002, 363: 293-297.
    [19] X. S. Peng, L. D. Zhang, G. W. Meng. X. F. Wang, Y. W. Wang, C. Z. Wang, G. S. Wu. Photoluminescence and infrared properties ofα-A12O3 nanowires and nanobelts[J]. J. Phys. Chem. B, 2002, 106: 11163-11167.
    [20] Y. C. Zhu, Y. Bando, D. F. Xue. Spontaneous growth and luminescence of zinc sulfide nanobelts[J]. Appl. Phys. Lett., 2003, 82: 1769-1771.
    [21] C. H. An, K. B. Tang, G. Z. Shen, C. R. Wang, Q. Yang, B. Haia, Y. T. Qian. Growth of bell-like SnS crystals from ethylenediamine solution[J]. Journal of Crystal Growth, 2002, 244: 333-338.
    [22] J. Jian, X. L. Chen, M. He, W. J. Wang, X. N. Zhang, F. Shen. Large-scale GaN nanobelts and nanowires grown from milled Ga2O3 powders[J]. Chemical Physics Letters, 2003, 368: 416-420.
    [23] Y. W. Wang, L. D. Zhang, G. W. Meng, C. H. Lung, G. Z. Wang, S. H. Sun. Zn nanobelts: a new quasi one-dimensional metal nanostrcture[J]. Chem. Commun., 2001, 2632-2633.
    [24] M. S. Mo, J. H. Zeng, W. C. Yu, S. Y. Zhang, Y. T. Qian. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes[J]. Adv. Mater., 2002, 14: 1658-1662.
    [25] H. F. Zhang, A. C. Dohnalkova, C.–M. Wang, E. C. Buck, L.–S. Wang. Lithium-assisted self-assembly of aluminum carbide nanowires and nanoribbons[J].Nano Lett., 2002, 2: 105-108.
    [26] X. G. Wen, W. X. Zhang, S. H. Yang. Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper surface[J]. Langmuir, 2003, 19: 5898-5903.
    [27]张德恒,王卿璞.新型半导体激光器——ZnO紫外激器[J].物理, 1999, 30(12): 741-744.
    [28]王卿璞,张德恒,于永芹,黄柏标. ZnO薄膜材料的发光特性[J].半导体情报, 2001, 38(4): 48-53.
    [29]宋淑芳,李键.掺杂对纳米ZnO薄膜结构的影响[J].内蒙古大学学报, 2001, 32(6): 704-706.
    [30] Z. K. Tang, G. K. L. Wong, P. Yu. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Appl. Phys. Lett., 1998, 72(25): 3270-3272.
    [31] J. J. Chen, F. Zeng, D. M. Li, J. B. Niu, F. Pan. Deposition of high-quality zinc oxide thin films on diamond substrates for high-frequency surface acoustic wave filter applications[J]. Thin Solid Films, 2005, 485: 257-261.
    [32] R. G. Heidemen, P. V. Lambeck, J. G. E. Gardeniers. High quality ZnO layers with adjustable refractive indices for integrated optics applications[J]. Optical Materials, 1995, 4(6): 741-755.
    [33] C. Q. Ge, Z. K. Bai, M. L. Hu, D. W. Zeng, S. Z. Cai, C. S. Xie. Preparation and gas-sensing property of ZnO nanorod-bundle thin films[J]. Materials Letters, 2008, 62: 2307-2310.
    [34] A. E. Suliman, Y. W. Tang, L. Xu. Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells[J]. Solar Energy Materials and Solar Cells, 2007, 91: 1658-1662.
    [35] P. Yu, Z. K. Tang, G. K. L. Wong. Stimulated emission at room temperature from ZnO quantum dot films. Proceeding of 23rd international conference on the Physics of Semiconductors. Vol. 2, edited by M. Schefller and R. Zimmermann, World Scientific, Singapore, 1996, p1453-1456.
    [36] R. F. Service. Materials Science: Will UV lasers beat the blues? [J]. Science, 1997, 276: 895-898.
    [37] D. M. Bagnall, Y. F. Chen, Z. Zhu. Optically pumped lasing of ZnO at room temperature[J]. Appl. Phys. Lett., 1997, 70(17): 2230-2232.
    [38] X. Q. Zhang, Ikuo Suemune, H. Kumano, Z. G. Yao, S. H. Huang. Room temperature ultraviolet lasing action in high-quality ZnO thin films[J]. Journal of Luminescence, 2007, 122-123: 828-830.
    [39] Z. Y. Wang, B. B. Huang, X. J. Liu, Q. Zhang, X. Y. Jing. Photoluminescence studies from ZnO nanorod arrays synthesized by hydrothermal method with polyvinyl alcohol as surfactant[J]. Materials Letters, 2008, 62: 2637-2639.
    [40] F. F. Wang, R. B. Liu, A. L. Pan, T. H. Wang, B. S. Zou. The optical properties of ZnO sheets electrodeposited on ITO glass[J]. Materials Letters, 2007, 61: 2000-2003.
    [41] D. M. Bagnall, Y. F. Chen, Z. Zhu. High temperature excitonic stimulated emission from ZnO epitaxial layers[J]. Appl. Phys. Lett, 1998, 73(8): 1038-1040.
    [42] S. L. King, J. G. E. Gardeniers, I. W. Boyd. Pulsed-laser deposited ZnO for device application[J]. Appl. Surf. Sci., 1996, 96-98: 811-818.
    [43] H. Maki, N. Ichinose, N. Ohashi, H. Haneda, J. Tanaka. Lattice relaxation of a ZnO (0001) surface accompanied by a decrease in antibonding feature[J]. J Cryst. Growth, 2001, 229: 114-118.
    [44]仲维卓,施尔畏.晶体生长形态学[M].北京:科学出版社, 1999.
    [45]张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社, 2001.
    [46]李新勇,张桂兰,汤国庆,陈文驹.纳米晶体材料研究进展[J].化学进展, 1996, 8: 231-239.
    [47] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292:1897-1899.
    [48] W. I. Park, G. -C. Yi, J. -W. Kim, S.-M. Park. Schottky nanocontacts on ZnO nanorod arrays[J]. App. Phy. Lett., 2003, 82: 4358-4360.
    [49] K. Ip, Y. W. Hero, K. H. Baik, D. P. Norton, S. J. Pearton, S. Kim, J. R. LaRoche, F. Ren. Temperature dependent characteristics of Pt schottky contacts on n-type ZnO[J]. App. Phy. Lett. ,2004, 84: 2835-2837.
    [50] H. Kim, C. M. Gilmore, J. S. Horwitzl. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices[J]. Appl. Phys. Lett., 2000, 76(3): 259-261.
    [51] D. C. Look, D. C. Reynods, J. W. Hemsky. Production and annealing of electron irradiation damage in ZnO[J]. Appl. Phys. Lett., 1999, 75(6): 811-813.
    [52] R. Groenen, J. L. Linden. An expanding thermal plasma for deposition of surface textured ZnO: Al with focus on thin film solar cell applications[J]. Applied surface Science, 2001, 173: 40-43.
    [53] T. Komaru, S. Shimizu, M. Kanbe. Optimization of transparent conductive oxide for improved resistance to reactive and/or high Temperature optoelectric device Processing[J]. Jpn. J. Appl. Phys, 1999, 38(10): 5796-5804.
    [54]丁飞,李华. ZnO及其含锌混合氧化物薄膜的充放电性能研究[J].化学物理学报, 2000, 13(2): 207-211.
    [55] L. F. Xu, Q. W. Chen, D. S. Xu. Hierarchical ZnO nanostructures obtained by electrodeposition[J]. J. Phys. Chem. C, 2007, 111: 11560-11565.
    [56] J. C. Fan, Z. Xie. Effects of substrate temperature on structural, electrical and optical properties of As-doped ZnO films[J]. Materials Science and Engineering: B, 2008, 150: 61-65.
    [57] H. Y. Bae, G. M. Choi. Electrical and reducing gas sensing properties of ZnO and ZnO-CuO thin films fabricated by spin coating method[J]. Sensors & Actuators, 1999, B 55(1): 47-54.
    [58] F. D. Paraguay, M. Miki-Yoshida, J. Morales, J. Solis, W. L. Estrada. Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour[J]. Thin Solid Films, 2000, 373(1-2): 137-140
    [59]毛祥军,杨志坚,叶志镇.用MOCVD在ZnO/A12O3衬底上生长GaN及其特性[J].半导体学报, 1999, 20(8): 639-642.
    [60] S. B. Xue, X. Zhang, R. Huang, H. Z Zhuang. Effects of the sputtering time of ZnO buffer layer on the quality of GaN thin films[J]. Applied Surface Science, In Press, Accepted Manuscript, Available online 1 May 2008.
    [61] T. Ohgaki, S. Sugimura, N. Ohashi, I. Sakaguchi, T. Sekiguchi, H. Haneda.Structure and properties of GaN films grown on single crystalline ZnO substrates by molecular beam epitaxy[J]. Journal of Crystal Growth, 2005, 275, e1143-e1148.
    [62]陈光华.新型电子薄膜材料[M].北京:化学工业出版社,2002.
    [63]杨秀健,施朝淑,许小亮.纳米ZnO的研究及其进展[J].无机材料学报, 2003, 18: 1-10.
    [64] S. Lubomir, A. A. Marc. Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids[J]. J. Am. Chem. Soc., 1991, 113: 2826-2833.
    [65] X. Y. Kong, Y. Ding, R. Yang, Z. L. Wang. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J]. 2004, 303: 1348-1351.
    [66] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, D. P. Yu. Efficient field emission from ZnO nanoneedle arrays[J]. Applied Physics Letters, 2003, 83, 144-146.
    [67] X. J. Feng, L. Feng, M. H. Jin, J. Zhai, L. Jiang. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J]. J. Am. Chem. Soc., 2004, 126, 62-63.
    [68] W. I. Rark, G. -C. Yi, M. Kinm, S. J. Pennycook, Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures, Adv. Mater., 2003, 15: 526-529.
    [69] M. L. Cui, X. M. Wu, L. J. Zhuge, Y. D. Meng. Growth of fractal patterns in ZnO films doped with Fe[J]. Vacuum, 2008, 82: 613-616.
    [70] F. Li, X. T. Huang, L. Y. Liu, Y. Jiang, Z. Li. Synthesis and characterization of ZnO/SiO2 core/shell nanocomposites and hollow SiO2 nanostructures[J]. Materials Research Bulletin, In Press, Accepted Manuscript, Available online 8 May 2008.
    [71] Y. B. Jin, B. Zhang, S. M. Yang. Room temperature UV emission of MgxZn1?xO films[J]. Solid State Communacations, 2001, 119: 409-413.
    [72] S. Fujihara, H. Naito, T. Kimura. Visible photoluminescence of ZnO nanoparticles dispersed in highly transparent MgF2 thin-films via sol–gel process[J]. Thin Silid Films, 2001, 389: 227-232.
    [73] Z. H. Yuan, L. D. Zhang. Influence of ZnO+Fe2O3 additives on the anatase-to-rutile transformation of nanometer TiO2 powders[J]. Nanostructured Materials, 1998,10(7): 1127-1133.
    [74] Y. C. Kane, S. B. Park. Preparation of zinc oxide-dispersed silver particles by spray pyrolysis of colloidal solution[J]. Materials Letters, 2001, 40: 129-133.
    [75] A. V. Singh, R. M. Mehra, N. Buthrath. Highly conductive and transparent aluminum doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient[J]. J. Appl. Phys., 2001, 90 (11): 5661-5664.
    [76] F. K. Shan, B. I. Kim, G. X. Liu. Blueshift of near band edge emissionin Mg doped ZnO thin films and aging[J]. J. Appl. Phys., 2004, 95(9): 4772-4776.
    [77] G. Santana, A. Morales-Acevedo, O. Vigil. Structural and optical properties of (ZnO)x(CdO)1-xthin films obtained by spray pyrolysis[J]. Thin Solid Films, 2000, 373: 235-238.
    [78] L. Guo, S. H. Yan, C. L. Yang. Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties[J]. Appl. Phys. Lett., 2000, 76(20): 2901-2903.
    [79]李君.氧化锌薄膜的电化学制备和性能研究[D].吉林大学, 2006.
    [80] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang. High intense UV-luminescence of nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films[J]. Journal of Crystal Growth, 2002, 240: 463-466.
    [81]马勇,王万录,廖克俊,吕建伟,孙晓楠. ZnO薄膜的光致发光[J].功能材料, 2004, 35(2): 139-141.
    [82] Q. P. Wang, D. H. Zhang, Z. Y. Xue. Violet luminescence emited from ZnO films depositedon Si substrate by rf magnetron sputering[J]. Appl Surf Sci, 2002, 201: 123-128.
    [83]边超,姚宁,张兰,杨仕娥,张兵临. ZnO薄膜发光特性的研究进展[J].真空与低温, 2003, 9(2): 113-118.
    [84] H. Cao, J. Y. Xu, D. Z. Zhang. Spatial confinement of laser light in active random media[J]. Phys. Rev. Lett., 2000, 84: 5584-5587.
    [85] Z. Q. Li, Y. J. Xiong, Y. Xie, Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route[J]. Inorg. Chem., 2003, 42: 8105-8109.
    [86] M. H. Huang, Y. Y. Wu, H. N. Feick, N. Tran, E. Weber, P. D. Yang. Catalyticgrowth of zinc oxide nanowires by vapor transport[J]. Adv. Mater., 2001, 13: 113-116.
    [87] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade. Mechanisms behind green photoluminescence in ZnO phosphor powders[J]. J. Appl. Phys., 1996, 79: 7983-7990.
    [88] D. B. Wang, C. X. Song. Controllable synthesis of ZnO nanorod and prism arrays in a large area[J]. J. Phys. Chem. B, 2005, 109: 12697-12700.
    [89] B. Q. Cao, Y. Li, G. T. Duan, W. P. Cai. Growth of ZnO nanoneedle arrays with strong ultraviolet emissions by an electrochemical deposition method[J]. Crystal Growth & Design, 2006, 6: 1091-1095.
    [90] B. Q. Cao, X. M. Teng, S. H. Heo, Y. Li, S. O. Cho, G. H. Li, W. P. Cai. Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties[J]. J. Phys. Chem. C, 2007, 111: 2470-2476.
    [91]李剑光,叶志镇,赵炳辉.用于制备GaN的硅基ZnO过渡层的高温热处理研究[J].半导体学报, 1999, 20(10): 862-866.
    [92]裴志亮,谭明晖. ZnO:Al薄膜的组织结构与性能[J].材料研究学报, 2000, 14(s): 538-542.
    [93] K. K. Kim, J. H. Song, H. J. Jung. The grain size effects on the photoluminescence of ZnO/α-A12O3 grown by radio-frequency magnetron sputtering[J]. J. Appl. Phys., 2000, 87(7): 3573-3579.
    [94] Q. P. Wang, X. J. Zhang, G. Q. Wang, S. H. Chen, X. H. Wu, H. L. Ma. Influence of excitation light wavelength on the photoluminescence properties for ZnO films prepared by magnetron sputtering[J]. Applied Surface Science, 2008, 254: 5100-5104.
    [95] T. Minami, T. Yamamoto, T. Miyata. Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering[J]. Thin Solid Films, 2000, 366(1): 63-68.
    [96] R. Z. Ma, Y. Bando, T. Sato. Nanowires of metal borates[J]. Appl. Phys. Lett., 2002, 81: 3467-3469.
    [97] H. Tabata, M. Saeki, S. L. Guo. Control of the electric and magnetic properties of ZnO films[J]. Physica B, 2001, 308-310: 993-998.
    [98] K. Sakurai, M. Kanehiro. Effects of oxygen plasma condition on MBE growth of ZnO[J]. Journal of Crystal Growth, 2000, 209(2-3): 522-525.
    [99] S. H. Park, H. Suzuki, T. Minegishi, G. Fujimoto, J. S. Park, I. H. Im, D. C. Oh, M. W. Cho, T. Yao. Low-temperature growth of high-quality ZnO layers by surfactant-mediated molecular-beam epitaxy[J]. Journal of Crystal Growth, 2007, 309: 158-163.
    [100] X. A. Zhang, J. W. Zhang, W. F. Zhang, D. Wang, Z. Bi, X. M. Bian, X. Hou. Enhancement-mode thin film transistor with nitrogen-doped ZnO channel layer deposited by laser molecular beam epitaxy[J]. Thin Solid Films, 2008, 516: 3305-3308.
    [101] J. L. Zhao, X. M. Li, J. M. Bian, W. D. Yu, C. Y. Zhang. Growth of nitrogen-doped p-type ZnO films by spray pyrolysis and their electrical and optical properties[J]. Journal of Crystal Growth, 2005, 280: 495-501.
    [102] K. -S. Kim, H. W. Kim, C. M. Lee. Effect of growth temperature on ZnO thin film deposited on SiO2 substrate[J]. Materials Science and Engineering: B, 2003, 98(2): 135-139.
    [103] X. M. Fan, J. S. Lian, Z. X. Guo, H. J. Lu. Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si(111) substrates[J]. Applied Surface Science, 2005, 239: 176-181.
    [104] W. I. Park, D. H. Kim, S. -W. Jung, G. -C. Yi. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods[J]. Appl. Phys. Lett., 2002, 80: 4232-4234.
    [105] K. S. Kim, H. W. Kim, Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition[J]. Physical B, 2003, 328: 368-371.
    [106] W. I. Park, G. -C. Yi, M. Kim, S. J. Pennycook. ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy[J]. Adv. Mater., 2002, 14: 1841-1843.
    [107] K. Ogata, K. Maejima, Sz. Fujita, Sg. Fujita. Growth mode control of ZnO towardnanorod structures or high-quality layered structures by metal-organic vapor phase epitaxy[J]. J Cryst. Growth, 2003, 248: 25-30.
    [108] A. El-Yadouni, A. Boudrioua, J. C. Loulergue, V. Sallet, R. Triboulet. Growth and optical characterization of ZnO thin films deposited on sapphire substrate by MOCVD technique[J]. Optical Materials, 2005, 27: 1391-1395.
    [109] Y. T. Zhang, G. T. Du, B. Y. Liu, H. C. Zhu, W. C. Li, D. L. Liu, S. R. Yang. Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by low-pressure MOCVD[J]. Journal of Crystal Growth, 2004, 262(1-4): 456-460.
    [110] M. Joseph, H. Tabata, H. Saeki, K. Ueda, T. Kawai. Fabrication of the low-resistive p-type ZnO by codoping method[J]. Physical B, 2001, 302-303: 140-148.
    [111] S. Liang, C. R. Gorla, N. Emanetoglu. Epitaxial growth of (1120) ZnO on (0112) Al2O3 by metalorganic chemical vapor deposition[J]. J. Elec. Materials 1998, 27(11): L72-L76.
    [112] Y. Liu, C. R. Gorla, S. Liang. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD[J]. J. Elec. Materials, 2000, 29(1): 60-63.
    [113]雅著,徐明霞.溶胶-凝胶技术在氧化物薄膜制备方面的应用[J].材料工程, 1996, 5: 21-23.
    [114]熊毅,荆天辅,张春江.喷射电沉积纳米晶镍的研究[J].电镀与精饰, 2000, 22(5): 14-19.
    [115]陈国华,王光信.电化学方法应用[M].北京:化学工业出版社, 2003, 350-351.
    [116]向国朴,脉冲电镀的理论与应用[M].天津:天津科学技术出版社, 1989.
    [117]朱瑞安,郭振常,脉冲电镀[M].北京:电子工业出版社, 1986.
    [118]向国朴,脉冲电镀发展概况[J].电镀与涂饰, 2000, 19(4): 43-46.
    [119]许维源,近年来脉冲电镀发展概况[J].电镀与涂蚀, 2003, 22(6): 41-44.
    [120] M. Gladstein, H. Cuterman. A new approach to controlling metal deposition during the pulse plating process[J]. Met. Finish., 2002(8): 26-33.
    [121]安茂忠,王文林,杨哲龙.电沉积法制备功能性金属化合物薄膜[J].功能材料, 1999, 30(6): 585-587.
    [122]赵阳培,黄国慧,电沉积纳米晶材料的研究进展[J].材料科学与工程, 2003,21(1): 126-129.
    [123]刘英麟.电化学自组装金属氧化物及其复合结构和光电器件的研究[D],中国科学院长春光学精密机械与物理研究所, 2004.
    [124] P. E. dejongh, D. Vanmaekelbergh, J. J. Kelly. Cu2O: Electrodeposition and characterization[J]. Chem. Mater., 1999, 11: 3512-3517.
    [125]陈志钢,唐一文,贾志杰.导电玻片上氧化亚铜膜的电沉积和表征[J].无机材料学报, 2005, 20(2): 367-372.
    [126] D. K. Zhang, Y. C. Liu, Y. L. Liu, H. Yang. The electrical properties and the interfaces of Cu2O/ZnO/ITO p–i–n heterojunction[J]. Physica B, 2004, 351: 178-183.
    [127] S. Peulon, D. Lincot. Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films[J]. Adv. Mater., 1996, 8: 66-169.
    [128] S. Peulon, D. Lincot. Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions[J]. J. Electrochem. Soc., 1996, 143: 864-874.
    [129] M. Izaki, T. Omi. Transparent zinc oxide films prepared by electrochemical reation[J]. Appl. Phys. Lett., 1996, 68(17): 2439-2430.
    [130] M. Izaki, T. Omi. Electrolyte optimization for cathodic growth of zinc oxide films, J. Electrochem. Soc., 1996, 143, L53-L55.
    [131] M. Fahoumea, O. Maghfoula, M. Aggour. Growth and characterization of ZnO thin films prepared by electrodeposition technique[J]. Solar Energy Materials & Solar Cells, 2006, 90: 1437-1444.
    [132] Y. L. Liu, Y. C. Liu, Y. X. Liu. Structural and optical properties of nanocrystalline ZnO films grown by cathodic electrodeposition on Si substrates[J]. Physica, 2002, 322: 31-36.
    [133] A. Goux, T. Pauporté, J. Chivot, D. Lincot. Temperature effects on ZnO electrodeposition[J]. Electrochimica Acta, 2005, 50: 2239-2248.
    [134]刘敬肖,杨大智,蔡英骥. TiO2与TiO2-SiO2薄膜的表面性质及生物活性研究[J].硅酸盐学报, 2001, 29 (4) : 350-354.
    [135]余家国,赵修建,赵青南. TiO2纳米薄膜的溶胶-凝胶工艺制备和表征[J].物理化学学报, 2000, 16 (9) : 792-797.
    [136]傅正文,罗骞,张伟.有序中孔纳米多晶TiO2薄膜的Li+嵌脱行为[J].化学学报, 2000, 58 (10) : 1226-1229.
    [137] H. S. Jung, J. -K. Lee, J. Lee, B. S. Kang, Q. Jia, M. Nastasi, J. H. Noh, C. -M. Cho, S. H. Yoon. Mobility enhanced photoactivity in Sol-Gel grown epitaxial anatase TiO2 films[J]. Langmuir, 2008, 24(6): 2695-2698.
    [138]沈杰,董昊,张永熙,杨锡良.溶胶-凝胶法制备二氧化钛薄膜的亲水性研究[J].真空科学与技术, 2000, 20 (6): 385-389.
    [139]陈文梅,杨尊先,赵修建,余家国.光催化超亲水性TiO2-SiO2薄膜的研究[J].硅酸盐学报, 2001, 29(1): 39-43.
    [140] S. K. Poznyak, D. V. Talapin, A. I. Kulak. Structural, optical, and photoelectrochemical properties of nanocrystalline TiO2-In2O3 composite solids and films prepared by Sol-Gel method[J]. J. Phys. Chem. B, 2001, 105(21): 4816-4823.
    [141] K. Prashantha, B. J. Rashmi, T. V. Venkatesha, Joong-Hee Lee. Spectral characterization of apatite formation on poly(2-hydroxyethylmethacrylate)-TiO2 nanocomposite film prepared by sol–gel process[J]. Spectrochimica Acta Part A, 2006, 65: 340-344.
    [142] W. Sun, S. Q. Zhang, Z. X. Liu, C. Wang, Z. Q. Mao. Studies on the enhanced photocatalytic hydrogen evolution over Pt/PEG-modified TiO2 photocatalysts[J]. International Journal of Hydrogen Energy, 2008, 33: 1112-1117.
    [143] Y. J. Chi, H. G. Fu, L. H. Qi, K. Y. Shi, H. B. Zhang, H. T. Yu. Preparation and photoelectric performance of ITO/TiO2/CdS composite thin films[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195: 357-363.
    [144]钱新明,白玉白,李铁津. CdS敏化对TiO2纳米薄膜电极光生电荷转移特性的影响[J].高等学校化学学报, 2000, 21(2): 295-297.
    [145] J. H. Fang, X. M. Lu, X. F. Zhang, D. G. Fu, Z. H. Lu. CdSe/TiO2 nanocrystalline solar cells[J]. Supramolecular Science, 1998, 5: 709-711.
    [146]徐灵戈,黎甜楷,王淑琴,溶胶-凝胶法制备掺杂TiO2薄膜及其光电性能的研究[J].感光科学与光化学, 1995, 3(2): 154-160.
    [147] C. Y. Wang, C. Y. Liu, X. Zheng. The particles I. photochemical deposition surface chemistry of gold on ultrafine of hybrid manometer-sized TiO2 particles[J]. Collids Surf. A, 1998, 131(1)3: 271-280.
    [148] L. F. Xu, Y. Guo, Q. Liao, J. P. Zhang, D. S. Xu. Morphological control of ZnO nanostructures by electrodeposition[J]. J. Phys. Chem. B, 2005, 109, 13519-13522.
    [149] H. M. Luo, J. F. Zhang, Y. S. Yan. Electrochemical deposition of mesoporous crystalline oxide semiconductor films from lyotropic liquid crystalline phases[J]. Chem. Mater., 2003, 15: 3769-3773.
    [150] Y. F. Mei, G. G. Siu, Ricky K. Y. Fu. Room-temperature electrosynthesized ZnO thin film with strong (002) orientation and its optical properties[J]. Applied Surface Science, 2006, 252: 2973–2977.
    [151] A. Mondal, N. Mukherjee, S. K. Bhar. Galvanic deposition of hexagonal ZnO thin films on TCO glass substrate[J]. Materials Letters, 2006, 60: 1748-1752.
    [152] E. A. Dalchielea, P. Giorgia, R. E. Marottia, F. Martín. Electrodeposition of ZnO thin films on n-Si(100)[J]. Solar Energy Materials & Solar Cells, 2001, 70: 245-254.
    [153] S. Kar, A. Dev, S. Chaudhuri. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays[J]. J. Phys. Chem. B, 2006, 110: 17848-17853.
    [154] S. Kar, B. N. Pal, S. Chaudhuri, D. Chakravorty. One-dimensional ZnO nanostructure arrays: Synthesis and characterization[J]. J. Phys. Chem. B, 2006, 110: 4605-4611.
    [155] A. Dev, S. Kar, S. Chakrabarty, S. Chaudhuri. Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route[J]. Nanotechnology, 2006, 17, 1533-1540.
    [156] B. Cheng, W. S. Shi, J. M. Russell-Tanner, L. Zhang, E. T. Samulski. Synthesis of variable-aspect-ratio, single-crystalline ZnO nanostructures[J]. Inorg. Chem., 2006, 45: 1208-1214.
    [157]ü. ?zgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchiko. A comprehensive review of ZnO materials and devices[J]. J. Appl. Phys., 2005, 98: 041301.
    [158] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, D. L. Phillips, L. Ding, W. K. Ge. Defects in ZnO nanorods prepared by a hydrothermal method[J]. J. Phys. Chem. B, 2006, 110: 20865-20871.
    [159] A. L. Yang, Z. L. Cui. Controlling the orientation of ZnO nanorod arrays using TiO2 thin film templates dip-coated by sol-gel[J]. Journal of Nanoparticle Research, 2007, 9: 245-250.
    [160] K. Marek. The significance of the difference in the point of zero charge between rutile and anatase[J]. Adv. Colloid. Interface Sci., 2002, 99: 255-264.
    [161] M. L. Taylor, G. E. Morris, R. St. C. Smart. Influence of aluminum doping on titania pigment structural and dispersion properties[J]. J. Colloid Interf. Sci., 2003, 262: 81-88.
    [162] Q. C. Li, V. Kumar, Y. Li, H. T. Zhang, T. J. Marks, R. P. H. Chang. Fabrication of ZnO nanorods and nanotubes in aqueous solutions[J]. Chem. Mater., 2005, 17: 1001-1006.
    [163] K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brien. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution[J]. J . Mater. Chem., 2004, 14: 2575-2591.
    [164] H. Zhang, D. Yang, Y. J. Ji, X. Y. Ma, J. Xu, D. L. Que, Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process[J]. J. Phys. Chem. B, 2004, 108: 3955-3598.
    [165] W. J. Li, E. W. Shi, W. Z. Zhong, Z. W. Yin. Growth mechanism and growth habit of oxide crystals[J]. J. Cryst. Growth, 1999, 203: 186-196.
    [166] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. A. Rodriguez, H. Konishi, H. F. Xu. Complex and oriented ZnO nanostructures[J]. Nat. Mater., 2003, 2: 821-826.
    [167] T. Mahalingam, V. S. John, M. Raja, Y. K. Su, P. J. Sebastian. Electrodeposition and characterization of transparent ZnO thin films[J]. Solar Energy Materials&Solar Cells, 2005, 88: 227-235.
    [168]李怀祥,赵婧,王瑞华.方波脉冲电沉积氧化锌薄膜的研究[J].山东师范大学学报(自然科学版), 2005, 20(2): 48-50.
    [169] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, Biomimetic arrays of oriented helical ZnO nanorods and columns[J]. J. Am. Chem. Soc., (Communication), 2002, 124(44): 12954-12955.
    [170] R. Chander, A. K. Raychaudhuri. Growth of aligned arrays of ZnO nanorods by low temperature solution method on Si surface[J]. J MATER. SCI., 2006, 41: 3623-3630.
    [171] Seung-Ho Jung, Eugene Oh, Kun-Hong Lee, Yosep Yang, Chan Gyung Park, Wanjun Park, Soo-Hwan Jeong. Sonochemical preparation of shape-selective ZnO nanostructures[J]. Crystal Growth & Design, 2008, 8: 265-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700