Si晶体中点缺陷和位错交互作用的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对Si基半导体器件速度和功率要求的不断提高,使用应变方法进行人工能带剪裁的技术显得越来越重要。在Si基体与外延的Si_(1-x)Ge_x层之间加入一层相对低温条件下生长的低温Si(LT-Si)层,该层中大量存在的各种类型缺陷改变了失配应变的释放机理,最终得到了高质量的Si_(1-x)Ge_x层。这种方法在这近十年间被广泛的研究和不断改进,Si_(1-x)Ge_x层质量也不断的提高。但是,对于这种方法机理的解释,却始终没有一个统一的认识。
     SiGe/Si结构的失配应力的释放主要是通过在{111}面上生成可以滑动的60度位错来完成的,本文采用分子动力学的模拟方法,使用Stillinger-Weber势函数和周期性边界条件,建立了60度位错偶极子,具体研究点缺陷和60度位错的相互作用。
     首先提出了相对简单的建立位错偶极子的新方法:把混合型位错分解为刃位错和螺位错分量,依次加载原子的位移场,得到初始构型,再执行模拟退火过程以稳定位错芯结构。通过计算发现,在位错芯附近的空位及自间隙原子的形成能要比远离位错芯或者没有位错缺陷完整晶体的形成能低。
     其次使用Parrinello-Rahman方法施加剪切应力,研究了位错在相当于晶格失配应力作用下的运动情况。与空位缺陷及自间隙原子缺陷作用后的位错,其运动速度要比完好的位错速度慢,位错速度随着剪应力增大而增加,随着温度升高而降低,这一结果与声子拖拽模型相吻合,但与缺陷作用后的位错运动的声子拖拽效应更加明显。同时发现,派纳力随着温度升高而降低,这与Peierls–Nabarro model相一致,相比之下,与缺陷作用后的位错的派纳力增加很多。由此可以推断出,低温硅(LT-Si)缓冲层中点缺陷对失配位错运动具有阻碍作用。
With the demand of the speed and power of Si based semiconductor devices, the technology of band tailoring via stress is becoming more and more important. When putting a layer of Si buffer grown in low temperature between the SiGe epi-layer and Si substrate, there are large amount and kinds of defects in the buffer layer that alter the strain relaxation mechanism and make the final threading dislocation density very low. This method is studied widely and improved constantly in these 10 years, and the quality of Si_(1-x)Ge_x layer is improved constantly. But the relaxation mechanism of this method is still under debate.
     Because the relief of lattice misfit stress is mainly depending on the glide of 60o dislocation on the {111} plane, a 60°dislocation dipole model was built by molecular dynamics simulation method based on the Stillinger-Weber potential and periodic boundary condition, point defect interaction with dislocation was investigated concretely.
     Firstly, a relatively simple method was presented to generate a dislocation dipole: divide the mixed dislocation into the edge and screw components, impose a displacement field to all atoms to establish the initial configuration, and then conduct a simulated annealing process for relaxation. Calculated formation energies of vacancies and self-interstitials near the core of a 60°dislocation are considerably lower than in the bulk.
     Secondly, the dislocation motion characteristics under lattice misfit stress are studied with Molecular Dynamics, the shear stress is applied with Parrinello-Rahman method. The velocity of dislocation interaction with vacancies and self-interstitials is slower than that of perfect dislocation, the velocity of dislocation increases as the stress increases, decreases as the temperature increases, which is consistent with the phonon drag model. It is more obvious that the phonon drag mechanism enhances during the motion of dislocation interaction with defects. The peierls stress decreases as the temperature increases, which is consistent with the Peierls–Nabarro model, and the peierls stress of dislocation interaction with defects increases largely. It can be concluded that the defects in the low temperature Si buffer will block the motion of misfit dislocation.
引文
1 S. V. Elshocht , M. Caymax, T. Conard, et al. Study of CVD High-k Gate Oxides on High-Mobility Ge and Ge/Si Substrates. Thin Solid Films. 2006, 508:1~5
    2 C. W. Liu, S. Maikap, C. Y. Yu. Mobility Enhancement Technology, IEEE Circuits & Devices Magzine. 2005, 5:21~36
    3 C. H. Leea, S. L. Wub, S. J. Chang. SiGe Heterostucture Field-Effect Transistor with ICP mesa Treatments. Materials Science in Semiconductor Processing. 2005, 8:37~375
    4 S. W. Lee, H. C. Chen, L. J. Chen, et al. Effects of Low-Temperature Si Buffer Layer Thickness on the Growth of SiGe by Molecular Beam Epitaxy. J. Appl. Phys. 2002, 92(2):6880~6885
    5 H. Chen, L. W. Guo, Q. Cui, et al. Low-Temperature Buffer Layer for Growth of a Low-Dislocation-Density SiGe Layer on Si by Molecular-Beam Epitaxy. J. Appl. Phys. 1996, 79(2):1167~1169
    6 Y. H. Luo, J. Wan, R. L. Forrest, J. L. Liu, et al. High-Quality Strain-Relaxed SiGe Films Grown with Low Temperature Si Buffer. J. Appl. Phys. 2001, 89(12): 8279~8283
    7 Y.B.Bolkhovityanova, A.S. Deryabina, A. K. Gutakovskii, et al. Heterostructures Ge x Si1-x/Si(001) (x = 0.18–0.62) Grown by Molecular Beam Epitaxy at a Low (350 jC) Temperature: Specific Features of Plastic Relaxation. Thin Solid Films. 2004, 466:69~74
    8 C. S. Peng, Z. Y. Zhao, H. Chen, et al. Relaxed Ge0.9Si0.1 Alloy Layers with Low Threading Dislocation Densities Grown on Low-Temperature Si Buffers. Appl. Phys. Lett. 1998, 72(24):3160~3162
    9 K. K. Linder, F. C. Zhang, J. S. Rieh, et al. Reduction of Dislocation Density in Mismatched SiGe/Si Using a Low-Temperature Si Buffer Layer. Appl. Phys. Lett. 1997, 70(24):3224~3226
    10 Y. B. Bolkhovityanov, A. K. Gutakovskii, V. I. Mashanov, et al. Solid Solutions GeSi Grown by MBE on a Low Temperature Si(001) Buffer Layer: Specific Features of Plastic Relaxation. Thin Solid Films. 2001, 392:98~106
    11 J. W. Matthews and A. E. Blakeslee. Defects in Epitaxial Multilayers I.MisfitDislocations. J. Cryst. Growth. 1974, 27: 118~125
    12 V. I. Vdovin, M. Muhlberger, M. M. Rzaev, et al. Dislocation Structure Formation in SiGe/Si(001) Heterostructures with Low-Temperature Buffer Layers. Journal of Physics: Condensed Matter. 2002, 14:13313~13318
    13 E. Kasper, K. Lyutovich, V. Bauer, et al. New Virtual Substrate Concept for Vertical MOS Transistors. Thin Solid Films. 1998, 336:319~322
    14 E. A.Stach, R. Hull, J. C. Bean, et al. The Effect of Dislocation Interactions on Heteroepitaxial Strain Relaxation. Microsc. Microanal. 1998, 4:294~307
    15 R. Hull, E. A. Stach, R. Tromp, et al. Interaction of Moving Dislocations in Semiconductors with Point, Line and Planar Defects. Phys. Status. Solid A. 1999, 171:133~146
    16 C. S. Peng, Y. K. Li, Q. Hang, et al. The Formation of Dislocations in the Interface of GeSi/Low-Temperature Si Buffer Grown on Si(001). Journal of Crystal Growth. 2001, 227:740~743
    17 Witten T A, Sander L M. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Physical Review Letters. 1981, 47(19):1400~1402
    18 Car R, Parrinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory. Physical Review Letters.1985,55(22):2471~2474
    19 Laasonen K, Pasquarello A, Car R, Vanderbilt D. Car-Parrinello Molecular Dynamics with Vanderbilt Ultrasoft Pseudopotentials. Physical Review B. 1993, 47(16):10142~1053
    20 Van Swyenhoven H, Farkas D,Caro A. Grain-Boundary Structures in Polycrystalline Metals at the Nanoscale, Physical Review B. 2000, 62:831~838
    21 J. Godet, L. Pizzagalli, S. Brochard. Theoretical Study of Dislocation Nucleation from Simple Surface Defection Semiconductors. Physical Review B. 2004,70:054109-1~54109-5
    22 A. T. Blumenau, R. Jones, T. Frauenheim. The 60o Dislocation in Diamond and its Dissociation. J. Phys.: Condes. Matter. 2003, 15:2951~2960
    23 J. Rabier, J. L. Demenet. Low Temperature, High Stress Plastic Deformation of Semiconductors. Phys. Stat. Solidi B. 2000, 222:63~74
    24 Alder B J, Wainwright T E. Phase Transition for a Hardsphere System. The Journal of Chemical Physics. 1957, 27:1208~1209
    25 L. Verlet. Computer‘Experiments’on Classical Fluids. I. ThermodynamicalProperties of Lennard-Jones Molecules. Physical Review. 1967. 159:98~103
    26 W. R. Hockney. The Potential Calculation and Some Applications. Methods in Computational Physics. 1970, 9:136~211
    27 W. C. Swope, H. C. Amderson. P. H. Berens, et al. A Computer Simulation Method for the Calculatioin of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Applocation to Small Water Clusters. Journal of Chemical Physics. 1982, 76:637~649
    28 D. Beeman. Some Multistep Methods for Use in Molecular Dynamics Calculations. Journal of Computational Physics. 1976, 20:130~139
    29 C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs, NJ, Prentice-Hall. 1971
    30 F. H. Stillinger, T. A. Weber. Computer Simulation of Local Order in Condensed Phases of Silicon. Phys. Rev. B. 1985, 31(8):5262~5271
    31 L. Nurminen, F. Tavazza, D. P. Landau, et al. Comparative Study of Si(001)…Surface Structure and Interatomic Potentials in Finite-Temperature Simulations. Physical Review B. 2003, 67:035405~035415
    32 J. Tersoff. New Empirical Approach for the Structure and Energy of Covalent Systems. Phys. Rev. B. 1988. 37:6991~7000
    33 J. Tersoff. Empirical Interatomic Potential for Silicon with Improved Elastic Properties. Phys. Rev. B. 1988, 38:9902~9905
    34 J. Tersoff. Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems. Phys. Rev. B. 1988, 39:5566 ~5568
    35 Berendsen H J C, Postma J P M, Van Gunsteren W F, Dinola A, Haak J R. Molecular Dynamics with Coupling to an External Bath. Journal of Chemical Physics. 1984, 81(8): 3684~3690
    36 H. C. Andersen. Molecular Dynamics at Constant Pressure and/or Temperature. J. Chem. Phys. 1980, 72:2384~2393
    37 Parrinello M, Rahman A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52(12):7182~7190
    38 Bolkhovityanov Y B, Pchelyakov O P, Sokolov L V, Chikichev S I. Artificial GeSi Substrates for Heteroepitaxy: Achievements and Problems [J]. Semiconductors. 2003, 37: 493~518
    39 Hornstra J. Dislocations in Diamond Lattice [J]. J. Phys. Chem. Solids. 1958, 5:129~135
    40 K. Lyutovich, J. Werner, M. Oehme, et al. Characterisation of Virtual Substrates with Ultra-thin Si0.6Ge0.4 Strain Relaxed Buffers. Mater. Sci. Semicond. Process. 2005, 8(1):149~153
    41 Y. B. Bolkhovityanov, O. P. Pchelyakov, L. V. Sokolov, et al. Artificial GeSi Substrates for Heteroepitaxy: Achievements and Problems. Semiconductors. 2003, 37(5):493~518
    42马通达,屠海令,邵贝羚,陈长春,黄文韬. Si/SiGe-OI应变异质结构的高分辨率电子显微分析.半导体学报. 2004, 25(9):1123~1127
    43 L. Vescan, S. Wickenhauser. Relaxation Mechanism of Low Temperature SiGe/Si(001) Buffer Layers. Solid-State Electronics. 2004, 48:1279~1284
    44 K.Sato, T.Yoshiie, T.Ishizaki, Q.Xu. Anisotropic Motion of Point Defects Near Edge Dislocations. Journal of Nuclear Materials. 2004,329-333:929~932
    45 Emmanuel Clouet. The Vacancy–Edge Dislocation Interaction in FCC Metals: A Comparison Between Atomic Simulations and Elasticity Theory. Acta Materialia. 2006,54:3543~3552
    46 A. Antonelli, et al. Point Defect Interactions with Extended Defects in Semiconductors. Physical Review B.1999,60:4711~4714
    47 Wei Cai, et al. Vacancy Interaction with Dislocations in Silicon: The Shuffle-Glide Competition. Physical Review Letters. 2000,84:2172~2175
    48 Wei Cai, et al. Point Defect Interaction with Dislocations in Silicon. Materials Science and Engineering. 2001,309-310:129~132
    49 Benedek and L.H. Yang, et al. Formation Energy and Lattice Relaxation for Point Defects in Li and Al. Physical Review B. 1992,45:2607~2612
    50乔永红,王绍青.硅晶体中点缺陷结合过程的分子动力学研究.物理学报. 2005,54:4827~4834
    51 A.Marzegalli, F.Montalenti, et al. Relaxed SiGe Heteroepitaxy on Si with very Thin Buffer Layers: Experimental LEPECVD Indications and an Interpretation Based on Strain-Dependent Dislocation Nature. Microelectronic Engineering. 2004,76:290~296
    52 J.P Hirth, J. Lothe, Theory of Dislocations, Second edn. Wiley, New York.1982.
    53 Inder P.Batra and Farid F.Abraham, et al. Molecular-Dynamics Study of Self-Interstitials in Silicon. Physical Review B.1987,35:9552~9558

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700